JPH04272236A - Carbon fiber containing fine particle - Google Patents

Carbon fiber containing fine particle

Info

Publication number
JPH04272236A
JPH04272236A JP3466491A JP3466491A JPH04272236A JP H04272236 A JPH04272236 A JP H04272236A JP 3466491 A JP3466491 A JP 3466491A JP 3466491 A JP3466491 A JP 3466491A JP H04272236 A JPH04272236 A JP H04272236A
Authority
JP
Japan
Prior art keywords
fiber
fine particles
tensile strength
carbon fiber
high tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3466491A
Other languages
Japanese (ja)
Inventor
Yoji Matsuhisa
松久 要治
Masayoshi Washiyama
正芳 鷲山
Shoji Yamane
山根 祥司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP3466491A priority Critical patent/JPH04272236A/en
Publication of JPH04272236A publication Critical patent/JPH04272236A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To improve the tensile strength of a carbon fiber containing fine particles for improving the performance of the fiber or imparting additional function to the fiber. CONSTITUTION:The objective carbon fiber contains fine particles exclusively in the inner layer of single fiber. The fine particle-containing carbon fiber has high tensile strength and is hardly producible by conventional process. The fiber has high tensile strength as well as improved performance or imparted additional function by the mixing of fine particles. Since the carbon fiber has high tensile strength and excellent elastic modulus, compressive strength, electrical conductivity, electric wave shielding property or heat-resistance, it is useful as a reinforcing fiber for a composite material containing thermosetting resin, thermoplastic resin, ceramic, metal, etc., as a matrix, concretely, aircraft such as supersonic flying object, space articles such as rocket and truss, sports goods such as fishing rod and golf shaft, electric wave shielding material and heat- resistant member.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は微粒子含有炭素繊維,特
に単繊維の内層部のみに微粒子を含有する炭素繊維に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to carbon fibers containing fine particles, particularly carbon fibers containing fine particles only in the inner layer of the single fiber.

【0002】0002

【従来の技術】近年炭素繊維の用途展開が拡がるととも
に、比強度,比弾性率,耐熱性,電気伝導性,電波遮蔽
性,熱伝導性などの機械特性および機能性に対する向上
要求が高まっている。機能性を付与することを目的とし
て、従来の炭素繊維に微粒子を機能付与材料として混合
する技術(特公昭61−58404号公報、特開平2−
251615号公報など)が提案されている。
[Prior Art] As the use of carbon fibers has expanded in recent years, there has been an increasing demand for improved mechanical properties and functionality such as specific strength, specific modulus of elasticity, heat resistance, electrical conductivity, radio wave shielding properties, and thermal conductivity. . A technique of mixing fine particles as a functional material into conventional carbon fibers for the purpose of imparting functionality (Japanese Patent Publication No. 61-58404, Japanese Patent Application Laid-Open No. 1986-2-
251615, etc.) have been proposed.

【0003】0003

【発明が解決しようとする課題】しかし、上記した微粒
子含有炭素繊維において、微粒子の径は通常0.1μm
以上の物が多く、単繊維径が5〜10μm程度の炭素繊
維にとっては大きな異物となり、引張強度などの機械的
特性を低下させる原因となっていた。引張強度の低下防
止を狙って0.01〜0.1μm径のいわゆる超微粒子
を適用する検討も行なわれているが、二次凝集により実
際に分散している粒子の径が大きくなり、引張強度の低
下を十分抑えることができないという問題があった。
[Problems to be Solved by the Invention] However, in the above-mentioned fine particle-containing carbon fiber, the diameter of the fine particles is usually 0.1 μm.
There are many of the above-mentioned substances, and they become large foreign substances for carbon fibers having a single fiber diameter of about 5 to 10 μm, causing a decrease in mechanical properties such as tensile strength. Studies have been conducted to apply so-called ultrafine particles with a diameter of 0.01 to 0.1 μm with the aim of preventing a decrease in tensile strength. There was a problem in that it was not possible to sufficiently suppress the decrease in .

【0004】そこで本発明者らは微粒子を含有しかつ引
張強度が高い微粒子混合炭素繊維を鋭意検討して本発明
に至った。すなわち本発明の課題は、上記従来技術では
達成し得なかった引張強度の高い微粒子含有炭素繊維を
提供することにある。
[0004] The inventors of the present invention have conducted intensive studies on fine-particle-mixed carbon fibers that contain fine particles and have high tensile strength, and have arrived at the present invention. That is, an object of the present invention is to provide a fine particle-containing carbon fiber having a high tensile strength that could not be achieved with the above-mentioned conventional techniques.

【0005】[0005]

【課題を解決するための手段】本発明の上記課題は、単
繊維の内層部のみに微粒子を含有することを特徴とする
炭素繊維によって解決することができる。
[Means for Solving the Problems] The above-mentioned problems of the present invention can be solved by a carbon fiber characterized by containing fine particles only in the inner layer of the single fiber.

【0006】すなわち、本発明の炭素繊維は内層部のみ
に微粒子を含有した炭素繊維である。好ましくは同心円
状の2層構造であって、実質的にその内層部のみに微粒
子を含有し、繊維表面を含む外層部には微粒子を含有し
ない炭素繊維である。ただし、この外層部にも本発明の
目的を損わぬ限りにおいて、若干量の微粒子の存在は許
される。
That is, the carbon fiber of the present invention is a carbon fiber containing fine particles only in the inner layer. Preferably, carbon fibers have a concentric two-layer structure, containing fine particles only in the inner layer thereof, and not containing fine particles in the outer layer including the fiber surface. However, the presence of a small amount of fine particles in this outer layer is allowed as long as it does not impair the purpose of the present invention.

【0007】一般に炭素繊維は、内層部に比べて外層部
の弾性率が高く、引張応力下では繊維表面に応力が集中
するために、表面欠陥があるとそこが開始点となって破
断する。本発明の炭素繊維は実質的に外層部に微粒子を
含有しないため、微粒子混合に起因する表面欠陥が存在
せず、したがって微粒子混合前の引張強度を維持するこ
とができ、しかも内層部に混合した微粒子による性能向
上あるいは機能性付与効果を有する優れた炭素繊維であ
る。
[0007] In general, carbon fibers have a higher elastic modulus in the outer layer than in the inner layer, and stress concentrates on the fiber surface under tensile stress, so if there is a surface defect, this becomes the starting point for fracture. Since the carbon fiber of the present invention substantially does not contain fine particles in the outer layer, there are no surface defects caused by the mixing of fine particles, and therefore the tensile strength before mixing with fine particles can be maintained. It is an excellent carbon fiber that has the effect of improving performance or imparting functionality through fine particles.

【0008】本発明繊維の内層部とは、単繊維の表面を
含まない部分をいい、内層部と表面との間のいわゆる外
層部の厚みは、好ましくは0.01μm以上,より好ま
しくは0.1μm以上,一層好ましくは1μm以上であ
る。すなわち、外層部の厚みが0.01μm未満では微
粒子に起因する表面欠陥への応力集中を防止することが
難しく、したがって微粒子混合による引張強度の低下を
防止することが難しい場合があり好ましくない。外層部
厚みの上限については、好ましくは単繊維半径の95%
以下,より好ましくは70%以下,一層好ましくは40
%以下である。すなわち、外層部の厚みが95%を越え
ると内層部の厚みが単繊維半径の5%未満となり、実質
的に微粒子混合による性能向上あるいは機能性付与が困
難になることがある。
The inner layer of the fiber of the present invention refers to a portion that does not include the surface of the single fiber, and the thickness of the so-called outer layer between the inner layer and the surface is preferably 0.01 μm or more, more preferably 0.01 μm or more. It is 1 μm or more, more preferably 1 μm or more. That is, if the thickness of the outer layer is less than 0.01 μm, it is difficult to prevent stress concentration on surface defects caused by fine particles, and therefore it may be difficult to prevent a decrease in tensile strength due to mixing of fine particles, which is not preferable. The upper limit of the outer layer thickness is preferably 95% of the single fiber radius.
or less, more preferably 70% or less, even more preferably 40%
% or less. That is, when the thickness of the outer layer exceeds 95%, the thickness of the inner layer becomes less than 5% of the single fiber radius, and it may become difficult to substantially improve performance or impart functionality by mixing fine particles.

【0009】内層部の微粒子混合状態については、内層
部全体に均一に混合してもよいが、濃度分布をつけて混
合することも可能である。またその内層部をさらに微粒
子を含む層と含まない層との多層構造としてもよい。目
的に応じて構成を最適化するのが好ましい。
Regarding the state of the fine particles mixed in the inner layer, they may be mixed uniformly throughout the inner layer, but it is also possible to mix them with a concentration distribution. Further, the inner layer portion may have a multilayer structure including a layer containing fine particles and a layer not containing fine particles. It is preferable to optimize the configuration depending on the purpose.

【0010】微粒子としては炭化ホウ素,炭化ケイ素,
炭化チタンなどの炭化物、酸化チタン,シリカ,酸化ホ
ウ素,ジルコニアなどの酸化物、窒化ケイ素,窒化ホウ
素,窒化チタンなどの窒化物、ホウ化チタン,ホウ化窒
素などのホウ化物、ニッケル,タングステンなどの金属
微粒子、カーボンブラックなどの無機微粒子、ポリスチ
レンなどの有機微粒子およびそれらの混合物が例示でき
る。
[0010] As fine particles, boron carbide, silicon carbide,
Carbides such as titanium carbide, oxides such as titanium oxide, silica, boron oxide, zirconia, nitrides such as silicon nitride, boron nitride, titanium nitride, borides such as titanium boride, nitrogen boride, nickel, tungsten, etc. Examples include metal fine particles, inorganic fine particles such as carbon black, organic fine particles such as polystyrene, and mixtures thereof.

【0011】微粒子の径は、好ましくは1μm以下,よ
り好ましくは0.5μm以下,さらに好ましくは0.1
μm以下がよい。すなわち、1μmを越えると内部異物
として異物の周囲に応力が集中し、そこが破壊開始点と
なって引張強度が低下する場合があり、好ましくない。
[0011] The diameter of the fine particles is preferably 1 μm or less, more preferably 0.5 μm or less, and even more preferably 0.1 μm or less.
Preferably less than μm. That is, if the diameter exceeds 1 μm, stress will be concentrated around the foreign material as an internal foreign material, which may become a starting point of fracture and reduce the tensile strength, which is not preferable.

【0012】微粒子の混合量は目的に応じて最適化する
が、好ましくは0.5〜50wt%,より好ましくは1
〜20wt%程度が一般的である。すなわち、0.5w
t%未満では性能向上あるいは機能性付与効果が小さく
、また50wt%を越えると引張強度が低下することが
あり好ましくない。
The amount of fine particles mixed is optimized depending on the purpose, but is preferably 0.5 to 50 wt%, more preferably 1
The content is generally about 20 wt%. That is, 0.5w
If it is less than t%, the effect of improving performance or imparting functionality is small, and if it exceeds 50wt%, the tensile strength may decrease, which is not preferable.

【0013】本発明繊維の引張強度としては、弾性率が
35×103 kgf/mm2 未満の炭化糸では好ま
しくは550kgf/mm2 以上、より好ましくは6
00kgf/mm2 以上、さらに好ましくは650k
gf/mm2 以上である。一方、弾性率が35×10
3 kgf/mm2 以上の黒鉛化糸では好ましくは4
50kgf/mm2 以上、より好ましくは500kg
f/mm2 以上、さらに好ましくは550kgf/m
m2 以上である。 すなわち、上記炭化糸および黒鉛化糸において、引張強
度がそれぞれ550kgf/mm2 未満および450
kgf/mm2 未満では従来の汎用炭素繊維のレベル
であり、高強度、高弾性率を求められる用途には好まし
くない。
[0013] The tensile strength of the fiber of the present invention is preferably 550 kgf/mm2 or more, more preferably 6
00kgf/mm2 or more, more preferably 650k
gf/mm2 or more. On the other hand, the elastic modulus is 35×10
For graphitized yarns of 3 kgf/mm2 or more, preferably 4
50kgf/mm2 or more, more preferably 500kg
f/mm2 or more, more preferably 550 kgf/m
m2 or more. That is, the carbonized yarn and graphitized yarn have tensile strengths of less than 550 kgf/mm2 and 450 kgf/mm2, respectively.
If it is less than kgf/mm2, it is at the level of conventional general-purpose carbon fibers, and is not preferable for applications requiring high strength and high elastic modulus.

【0014】上記の炭素繊維について、その製法例を説
明する。表面に微粒子を含有しない炭素繊維を製造する
方法としては、アクリル系重合体やピッチの芯鞘型複合
紡糸によりプリカーサーの内層部のみに微粒子を含有さ
せる方法が最も適しており、以下その芯鞘型複合紡糸に
よるアクリル系重合体からの炭素繊維の製造例を説明す
る。
[0014] An example of the manufacturing method for the above carbon fiber will be explained. The most suitable method for manufacturing carbon fibers that do not contain fine particles on the surface is to contain fine particles only in the inner layer of the precursor by core-sheath type composite spinning of acrylic polymer or pitch. An example of manufacturing carbon fiber from an acrylic polymer by composite spinning will be explained.

【0015】すなわち、アクリル系炭素繊維の原料繊維
であるアクリル繊維(プリカ−サ−)を構成するアクリ
ル系重合体としては、アクリロニトリルのホモポリマー
あるいはアクリロニトリルと共重合可能なビニル系モノ
マ,たとえばアクリル酸,メタクリル酸,イタコン酸お
よびそれらのアルカリ金属塩,アンモニウム塩および低
級アルキルエステル類,アクリルアミドおよびその誘導
体,アリルスルホン酸,メタリルスルホン酸およびそれ
らの塩類またはアルキルエステル類などとの共重合体を
挙げることができる。その共重合体の共重合量は好まし
くは10モル%以下,より好ましくは5.0モル%以下
,一層好ましくは2.0モル%以下である。
That is, the acrylic polymer constituting the acrylic fiber (precursor), which is the raw material fiber of the acrylic carbon fiber, is a homopolymer of acrylonitrile or a vinyl monomer copolymerizable with acrylonitrile, such as acrylic acid. , methacrylic acid, itaconic acid and their alkali metal salts, ammonium salts and lower alkyl esters, acrylamide and its derivatives, allylsulfonic acid, methallylsulfonic acid and their salts or copolymers with alkyl esters, etc. be able to. The copolymerization amount of the copolymer is preferably 10 mol% or less, more preferably 5.0 mol% or less, even more preferably 2.0 mol% or less.

【0016】その重合法については、従来公知の溶液重
合,懸濁重合,乳化重合などを適用することができるが
、重合度としては極限粘度([η])で1.0以上,好
ましくは1.5以上にするのが一般的である。内層部と
外層部のポリマー組成および重合度については、同じで
もよいが、目的に応じて変えることもできる。外層部の
ポリマーは実質的に微粒子を含有せず、内層部のポリマ
ーは微粒子を含有するが、ポリマーへの微粒子の混合方
法としては、重合前、重合途中あるいは重合終了後のい
ずれで混合してもよい。いずれの場合も均一に分散する
ことが引張強度向上に重要であり、予め溶媒で十分に均
一分散したものを混合することが好ましい。
Regarding the polymerization method, conventionally known solution polymerization, suspension polymerization, emulsion polymerization, etc. can be applied, but the degree of polymerization is 1.0 or more in terms of intrinsic viscosity ([η]), preferably 1. It is common to set it to .5 or more. The polymer composition and degree of polymerization of the inner layer and the outer layer may be the same, or may be changed depending on the purpose. The outer layer polymer does not substantially contain fine particles, and the inner layer polymer contains fine particles, but the fine particles can be mixed with the polymer before, during, or after polymerization. Good too. In either case, uniform dispersion is important for improving tensile strength, and it is preferable to mix materials that have been sufficiently uniformly dispersed with a solvent in advance.

【0017】上記のアクリル系重合体の芯鞘型複合紡糸
には、湿式紡糸法,乾湿式紡糸法あるいは乾式紡糸法を
採用できるが、好ましくは細繊度が得られやすい乾湿式
紡糸法である。その複合紡糸には、芯鞘口金を用いて芯
部に微粒子を混合したポリマーを入れるようにする。口
金には、同心あるいは偏心タイプなど公知の芯鞘口金を
用いるが、好ましくは同心タイプの口金である。口金孔
数については300〜10000程度が一般的である。 芯および鞘の吐出量を調節することにより、微粒子を混
合した内層部の厚みを調節することができる。
[0017] For the core-sheath type composite spinning of the acrylic polymer, a wet spinning method, a wet-dry spinning method, or a dry spinning method can be employed, but the wet-dry spinning method is preferred because it can easily obtain a fineness. In the composite spinning, a core-sheath spinneret is used to introduce a polymer mixed with fine particles into the core. The base may be a known core/sheath base such as a concentric type or an eccentric type, but a concentric type base is preferable. The number of cap holes is generally about 300 to 10,000. By adjusting the discharge amount of the core and sheath, the thickness of the inner layer mixed with fine particles can be adjusted.

【0018】製糸延伸倍率については、2〜20倍程度
が一般的であるが、倍率が高すぎると鞘がつぶれる場合
があるので4〜15倍程度が好ましい。
[0018] The drawing ratio for the yarn is generally about 2 to 20 times, but if the ratio is too high, the sheath may be crushed, so it is preferably about 4 to 15 times.

【0019】このようにして得られた芯鞘構造のアクリ
ル系繊維を200〜300℃の酸化性雰囲気中で耐炎化
した後、1000℃以上の不活性雰囲気中で炭化する。 より高い引張強度を得るためには、不活性雰囲気中の焼
成温度を1200〜1600℃の範囲にすることが好ま
しいが、さらに必要に応じて2000℃以上で黒鉛化す
ることができる。
The acrylic fiber having a core-sheath structure thus obtained is made flame resistant in an oxidizing atmosphere at 200 to 300°C, and then carbonized in an inert atmosphere at 1000°C or higher. In order to obtain higher tensile strength, it is preferable to set the firing temperature in an inert atmosphere to a range of 1200 to 1600°C, but if necessary, graphitization can be performed at 2000°C or higher.

【0020】炭素繊維の緻密性を上げて強度および弾性
率を向上させるためには、酸化性雰囲気中での耐炎化お
よび不活性雰囲気中での炭化を緊張下あるいは延伸条件
下に行なうことが有効である。特に耐炎化、300〜5
00℃の炭化および2400〜3000℃の黒鉛化領域
で延伸することが一層有効である。具体的には延伸比で
1.0〜1.4倍程度にするのが望ましい。
[0020] In order to increase the density of carbon fibers and improve their strength and elastic modulus, it is effective to make them flame resistant in an oxidizing atmosphere and carbonize them in an inert atmosphere under tension or stretching conditions. It is. Especially flame resistance, 300-5
It is more effective to stretch in the carbonization range of 00°C and graphitization range of 2400-3000°C. Specifically, it is desirable that the stretching ratio be approximately 1.0 to 1.4 times.

【0021】得られた炭素繊維を公知の方法により表面
処理およびサイジング付与することができる。
The obtained carbon fibers can be subjected to surface treatment and sizing by known methods.

【0022】[0022]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。なお、本発明における引張強度および単繊維
圧縮強度は、それぞれ樹脂含浸ストランド評価法および
ループ法により求めた。
[Examples] The present invention will be explained in more detail with reference to Examples below. Note that the tensile strength and single fiber compressive strength in the present invention were determined by the resin-impregnated strand evaluation method and the loop method, respectively.

【0023】引張強度 “ベ−クライト”ERL−4221/三フッ化ホウ素モ
ノエチルアミン(BF3 ・MEA)/アセトン=10
0/3/4部を炭素繊維に含浸し、得られた樹脂含浸ス
トランドを130℃で30分間加熱して硬化させ、JI
S−R−7601に規定する樹脂含浸ストランド試験法
に従って測定した。
Tensile strength "Bakelite" ERL-4221/Boron trifluoride monoethylamine (BF3/MEA)/Acetone=10
Carbon fiber is impregnated with 0/3/4 part, and the resulting resin-impregnated strand is cured by heating at 130°C for 30 minutes.
It was measured according to the resin-impregnated strand test method specified in SR-7601.

【0024】単繊維圧縮強度 約10cmの単繊維をスライドグラス上に置き、中央部
にグリセリンを1〜2滴たらして単繊維をひねりながら
ループを作り、その上にプレパラートを置く。ループの
両端を指で押さえながら、一定速度で引張り歪をかけ、
破断するまでのループの短径(D)と長径(φ)を測定
する。単繊維径(d)とDから次式により歪(ε)を計
算し、εを横軸,長径と短径との比(φ/D)を縦軸に
してグラフにプロットする。 ε=1.07×d/D φ/Dが一定値(約1.3)から急に増大し始める歪を
圧縮降伏歪として約10本の単繊維につき測定し、その
平均値を求めた。得られた平均値に上記ストランド引張
試験で求めた引張弾性率を掛けて単繊維圧縮強度とした
A single fiber having a compressive strength of about 10 cm is placed on a slide glass, 1 to 2 drops of glycerin is added to the center, the single fiber is twisted to form a loop, and a preparation is placed on top of the loop. While holding both ends of the loop with your fingers, apply a tensile strain at a constant speed.
Measure the short axis (D) and long axis (φ) of the loop until it breaks. Strain (ε) is calculated from the single fiber diameter (d) and D using the following equation, and plotted on a graph with ε on the horizontal axis and the ratio of major axis to minor axis (φ/D) on the vertical axis. ε=1.07×d/D The strain at which φ/D suddenly begins to increase from a constant value (approximately 1.3) was measured as the compressive yield strain for approximately 10 single fibers, and the average value thereof was determined. The obtained average value was multiplied by the tensile modulus determined in the above strand tensile test to obtain the single fiber compressive strength.

【0025】実施例1 アクリロニトリル(AN)99.5モル%とメタクリル
酸0.5モル%からなる共重合体を用いて、濃度が19
重量%のジメチルスルホキシド(DMSO)溶液(ポリ
マーA)を作製するとともに、ポリマーAに粒子径0.
9μmの炭化ホウ素微粒子を5wt%混合したポリマー
Bを作製した。
Example 1 Using a copolymer consisting of 99.5 mol% acrylonitrile (AN) and 0.5 mol% methacrylic acid, the concentration was 19.
% by weight dimethyl sulfoxide (DMSO) solution (polymer A) was prepared, and polymer A had a particle size of 0.
Polymer B was prepared by mixing 5 wt % of 9 μm boron carbide fine particles.

【0026】ポリマーAおよびポリマーBをそれぞれ鞘
および芯用ポリマーとして、いずれも温度35℃に調整
し、孔径0.12mmφ,ホ−ル数500の同心タイプ
の芯鞘口金を通して一旦空気中に吐出して約4mmの空
間を走らせた後、温度5℃,濃度30%のDMSO水溶
液中で凝固させた。引取速度は20m/分であった。吐
出量の比は芯部2に対して鞘部は1であった。凝固糸条
を水洗後、3段の温水延伸浴で2.5倍に延伸しシリコ
−ン系油剤を付与した後、110℃に加熱されたロ−ラ
−表面に接触させて乾燥緻密化し、さらに3.7kgf
/cm2 の加圧スチ−ム中で3倍に延伸して単繊維繊
度0.8d,ト−タルデニ−ル400Dの繊維束を得た
。得られたアクリル繊維は芯部に炭化ホウ素微粒子を含
有していた。
Polymer A and Polymer B were used as sheath and core polymers, respectively, and the temperature was adjusted to 35° C., and they were once discharged into the air through a concentric type core-sheath nozzle with a hole diameter of 0.12 mmφ and 500 holes. After running through a space of approximately 4 mm, it was coagulated in an aqueous DMSO solution at a temperature of 5° C. and a concentration of 30%. The withdrawal speed was 20 m/min. The ratio of discharge amount for the core portion was 2 to 1 for the sheath portion. After washing the coagulated yarn with water, it was stretched 2.5 times in a three-stage hot water stretching bath, and a silicone oil was applied thereto, and then it was brought into contact with a roller surface heated to 110°C to make it dry and dense. Another 3.7 kgf
The fiber bundle was drawn three times in a pressurized steam of /cm2 to obtain a fiber bundle with a single fiber fineness of 0.8 d and a total denier of 400 D. The obtained acrylic fiber contained boron carbide fine particles in the core.

【0027】この芯鞘アクリル系繊維を240〜270
℃の空気中で延伸比1.05で耐炎化して耐炎化繊維に
転換し、ついで最高温度1700℃の窒素雰囲気中で炭
化して炭素繊維を得た。得られた芯鞘炭素繊維をさらに
2600℃の窒素雰囲気中、延伸比1.05で焼成して
黒鉛化繊維とした。
[0027] This core-sheath acrylic fiber has a molecular weight of 240 to 270
The fibers were made flame resistant in air at a temperature of 1,700 degrees Celsius and converted into flame resistant fibers at a stretching ratio of 1.05, and then carbonized in a nitrogen atmosphere at a maximum temperature of 1,700 degrees Celsius to obtain carbon fibers. The obtained core-sheath carbon fiber was further fired in a nitrogen atmosphere at 2600° C. at a draw ratio of 1.05 to obtain a graphitized fiber.

【0028】得られた黒鉛化繊維は内層部に微粒子を含
有しており、厚さ約1μmの外層部には微粒子を含有し
ない黒鉛化繊維であった。ストランド引張特性は引張弾
性率が62×103 Kgf/mm2 と高弾性率でか
つ引張強度が480kgf/mm2 と高強度であった
The obtained graphitized fiber contained fine particles in the inner layer and did not contain fine particles in the outer layer having a thickness of about 1 μm. As for the tensile properties of the strand, the tensile modulus was as high as 62 x 103 Kgf/mm2, and the tensile strength was as high as 480 kgf/mm2.

【0029】比較例1 実施例2において、芯部にもポリマーAを入れた以外は
、実施例1と同様な方法で製糸および焼成したところ、
引張強度は490kgf/mm2 と高強度であったが
触媒微粒子は含有せず、引張弾性率は55×103 K
gf/mm2 であった。
Comparative Example 1 The yarn was spun and fired in the same manner as in Example 1, except that Polymer A was also added to the core in Example 2.
Although the tensile strength was high at 490 kgf/mm2, it did not contain catalyst fine particles and the tensile modulus was 55 x 103 K.
gf/mm2.

【0030】比較例2 実施例2において、鞘部にもポリマーBを入れた以外は
、実施例1と同様な方法で製糸および焼成したところ、
引張弾性率は64×103 Kgf/mm2 と高弾性
率だったが、引張強度が330kgf/mm2 と低強
度であった。
Comparative Example 2 The yarn was spun and fired in the same manner as in Example 1 except that Polymer B was also added to the sheath.
Although the tensile modulus was high at 64 x 103 Kgf/mm2, the tensile strength was low at 330 kgf/mm2.

【0031】実施例2 実施例1においてポリマーAに粒子径0.05μmのシ
リカ微粒子を6wt%混合する以外は実施例1と同一条
件で製糸して単繊維繊度0.8d,ト−タルデニ−ル4
00Dの繊維束を得た。得られたアクリル繊維は芯部に
シリカ微粒子を含有していた。
Example 2 A yarn was spun under the same conditions as in Example 1 except that 6 wt % of silica fine particles with a particle size of 0.05 μm were mixed in Polymer A in Example 1 to obtain a single fiber fineness of 0.8 d and total denier. 4
A fiber bundle of 00D was obtained. The obtained acrylic fiber contained silica fine particles in the core.

【0032】この芯鞘アクリル系繊維を240〜270
℃の空気中で延伸比1.05で耐炎化して耐炎化繊維に
転換し、ついで最高温度1500℃の窒素雰囲気中で焼
成することにより、芯部に均一に微粒子を含有し、鞘部
には微粒子を含有しない同心円状の炭素繊維が得られた
[0032] This core/sheath acrylic fiber has a molecular weight of 240 to 270
By making the fiber resistant to flame at a stretching ratio of 1.05 in air at a temperature of 1.05°C, and then firing it in a nitrogen atmosphere at a maximum temperature of 1500°C, the core part contains fine particles uniformly, and the sheath part contains fine particles. Concentric carbon fibers containing no fine particles were obtained.

【0033】ストランド引張特性は引張弾性率が30×
103 Kgf/mm2 でかつ引張強度が570kg
f/mm2 と高強度であり、単繊維圧縮強度は720
kgf/mm2 と高強度であった。
[0033] As for the tensile properties of the strand, the tensile modulus is 30×
103 Kgf/mm2 and tensile strength of 570 kg
f/mm2, and has a single fiber compressive strength of 720.
It had a high strength of kgf/mm2.

【0034】比較例3 実施例1において、芯部にもポリマーAを入れた以外は
、実施例1と同様な方法で製糸および焼成したところ、
引張弾性率および引張強度はそれぞれ30×103 K
gf/mm2 および580kgf/mm2 と同一レ
ベルであったが、単繊維圧縮強度は630kgf/mm
2 とシリカを混合した場合に比べて低強度であった。
Comparative Example 3 The yarn was spun and fired in the same manner as in Example 1, except that Polymer A was also added to the core.
Tensile modulus and tensile strength are respectively 30×103 K
gf/mm2 and 580 kgf/mm2, but the single fiber compressive strength was 630 kgf/mm2.
The strength was lower than that of a mixture of 2 and silica.

【0035】比較例4 実施例1において、鞘部にもポリマーBを入れた以外は
、実施例1と同様な方法で製糸および焼成したところ、
引張強度が430kgf/mm2 と低強度であった。
Comparative Example 4 The yarn was spun and fired in the same manner as in Example 1 except that Polymer B was also added to the sheath.
The tensile strength was low at 430 kgf/mm2.

【0036】[0036]

【発明の効果】本発明の微粒子混合炭素繊維は、従来の
技術では非常に困難な引張強度の高い微粒子含有炭素繊
維であり、微粒子混合による性能向上あるいは機能付与
効果と高引張強度の両方を満足する炭素繊維である。本
発明繊維は、弾性率、圧縮強度、導電性、電波遮蔽性あ
るいは耐熱性に優れた高引張強度炭素繊維であるため、
この炭素繊維を強化繊維として、熱硬化性および熱可塑
性樹脂,セラミックス,金属などをマトリックスとして
機能性に優れかつ高強度の複合材料が得られる。具体的
には、超音速飛翔体などの航空機用途、ロケット,トラ
スなどの宇宙用途、釣竿およびゴルフシャフトなどのス
ポーツ用途,電波遮蔽材,耐熱部材などに用いることが
できる。
[Effects of the Invention] The fine particle-mixed carbon fiber of the present invention is a fine particle-containing carbon fiber with high tensile strength, which is extremely difficult to achieve with conventional techniques, and satisfies both the performance improvement or function imparting effect and high tensile strength by mixing fine particles. It is carbon fiber. The fibers of the present invention are high tensile strength carbon fibers with excellent elastic modulus, compressive strength, conductivity, radio wave shielding properties, and heat resistance.
Using this carbon fiber as a reinforcing fiber and a matrix of thermosetting and thermoplastic resins, ceramics, metals, etc., a highly functional and high-strength composite material can be obtained. Specifically, it can be used for aircraft applications such as supersonic flying vehicles, space applications such as rockets and trusses, sports applications such as fishing rods and golf shafts, radio wave shielding materials, heat-resistant members, etc.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】単繊維の内層部のみに微粒子を含有するこ
とを特徴とする微粒子含有炭素繊維。
1. A carbon fiber containing fine particles, characterized in that the fine particles are contained only in the inner layer of the single fiber.
JP3466491A 1991-02-28 1991-02-28 Carbon fiber containing fine particle Pending JPH04272236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3466491A JPH04272236A (en) 1991-02-28 1991-02-28 Carbon fiber containing fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3466491A JPH04272236A (en) 1991-02-28 1991-02-28 Carbon fiber containing fine particle

Publications (1)

Publication Number Publication Date
JPH04272236A true JPH04272236A (en) 1992-09-29

Family

ID=12420705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3466491A Pending JPH04272236A (en) 1991-02-28 1991-02-28 Carbon fiber containing fine particle

Country Status (1)

Country Link
JP (1) JPH04272236A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109385900A (en) * 2018-10-19 2019-02-26 复旦大学 A kind of enhanced carbon fiber sizing agent of nanoscale twins boron nitride and preparation method thereof
CN112723890A (en) * 2021-02-07 2021-04-30 深圳大学 Preparation method of photocuring ceramic slurry and silicon carbide ceramic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109385900A (en) * 2018-10-19 2019-02-26 复旦大学 A kind of enhanced carbon fiber sizing agent of nanoscale twins boron nitride and preparation method thereof
CN112723890A (en) * 2021-02-07 2021-04-30 深圳大学 Preparation method of photocuring ceramic slurry and silicon carbide ceramic
CN112723890B (en) * 2021-02-07 2022-05-13 深圳大学 Preparation method of photocuring ceramic slurry and silicon carbide ceramic

Similar Documents

Publication Publication Date Title
TWI620843B (en) Carbon fiber bundle,method of manufacturing carbon fiber bundle and resin composite material
JP5691366B2 (en) Carbon fiber manufacturing method
JPH11241230A (en) Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber
JP5434187B2 (en) Polyacrylonitrile-based continuous carbon fiber bundle and method for producing the same
KR102157184B1 (en) Methode for preparing acrylonitrile based copolymer fiber
JP2007182657A (en) Polymer composition for carbon fiber precursor fiber
JPH0345708A (en) Forming method for melt spinning acrylic fiber adapted for heat conversion to high strength carbon fiber
KR101708160B1 (en) Carbon fibers, and production method therefor
JP2009046770A (en) Acrylonitrile-based precursor fiber for carbon fiber
JPH04272236A (en) Carbon fiber containing fine particle
JP4875238B2 (en) Method for producing carbon fiber and precursor thereof, and method for attaching oil agent
JP2892127B2 (en) Non-circular cross-section carbon fiber, method for producing the same, and carbon fiber composite material
JP4975217B2 (en) Carbon fiber and method for producing the same, method for producing carbon fiber precursor fiber, and prepreg
JPH01306619A (en) High-strength and high elastic modulus carbon fiber
JPH05195324A (en) Precursor for carbon fiber production and method for producing the precursor
JP2011001653A (en) Method for producing polyacrylonitrile-based fiber
JPH0583642B2 (en)
JP4887219B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
CN109790648B (en) Method for producing polyacrylonitrile-based fiber and polyacrylonitrile-based copolymer used therein
JPH0329889B2 (en)
JPH0397918A (en) Production of modified cross-sectional carbon fiber
KR102197333B1 (en) Polyacrylonitrile-based STABILIZED FIBER, CARBON FIBER, AND PREPARATION METHOD THEREOF
JPH02264011A (en) Acrylic fiber for graphite fibers
JPH0329890B2 (en)
KR870000534B1 (en) Carbon fiber and it's making method