JPH04271306A - Plastic optical transmission body - Google Patents

Plastic optical transmission body

Info

Publication number
JPH04271306A
JPH04271306A JP3032732A JP3273291A JPH04271306A JP H04271306 A JPH04271306 A JP H04271306A JP 3032732 A JP3032732 A JP 3032732A JP 3273291 A JP3273291 A JP 3273291A JP H04271306 A JPH04271306 A JP H04271306A
Authority
JP
Japan
Prior art keywords
resin composition
refractive index
plastic optical
cladding
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3032732A
Other languages
Japanese (ja)
Inventor
Takayuki Mishima
隆之 三島
Hiroaki Nishimoto
裕明 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3032732A priority Critical patent/JPH04271306A/en
Publication of JPH04271306A publication Critical patent/JPH04271306A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the plastic optical transmission body having excellent heat resistance. CONSTITUTION:This plastic optical transmission body has a clad 14 and core 13 which are formed of the cured matter of a resin compsn. consisting of (a) the ladder type silicone expressed by formula wherein at least one of R<1>, R<2>, R<3>, and R<4> are a group having an unsatd. bond and the other R<1>, R<2>, R<3>, and R<4> are an alkyl group or aryl group; X<1>, X<2>, X<3>, and X<4> are a hydrogen atom, alkyl group or polyorganosiloxane group; m is >=2 number; n is >=0 number ], (b) fluorinated (meth)acrylate monomer and (c) a polymn. initiator.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光通信に用いられるプ
ラスチック光伝送体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic optical transmission body used in optical communications.

【0002】0002

【従来の技術】従来、プラスチック光伝送体の材料とし
てはポリ(メタ)アクリレート系樹脂およびポリカーボ
ネート系樹脂が用いられてきた。
2. Description of the Related Art Conventionally, poly(meth)acrylate resins and polycarbonate resins have been used as materials for plastic optical transmission bodies.

【0003】従来のポリ(メタ)アクリレート系樹脂を
用いた光伝送体の場合、樹脂の耐熱性が劣るために、8
0℃以上の高温において伝送損失等その特性が低下する
という問題があった。この問題を解決すべく、ポリカー
ボネート系樹脂が用いられているが、120℃以上の温
度においてはポリ(メタ)アクリレート系樹脂を用いた
場合と同様に特性の低下が見られる。
In the case of conventional optical transmission bodies using poly(meth)acrylate resin, the heat resistance of the resin is poor;
There is a problem in that characteristics such as transmission loss deteriorate at high temperatures of 0° C. or higher. In order to solve this problem, polycarbonate resins have been used, but at temperatures above 120° C., the properties deteriorate as in the case of using poly(meth)acrylate resins.

【0004】0004

【発明が解決しようとする課題】本発明の目的は、係る
問題を解決し、耐熱性に優れたプラスチック光伝送体を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and provide a plastic optical transmission body with excellent heat resistance.

【0005】[0005]

【課題を解決するための手段】本発明は、クラッドおよ
びコアが、(a)一般式:
[Means for Solving the Problems] The present invention provides that the cladding and the core have the following formula: (a) General formula:

【化2】 [式中、R1、R2、R3およびR4の少なくとも1つ
は不飽和結合を有する基であり、他のR1、R2、R3
およびR4はアルキル基またはアリール基であり、X1
、X2、X3およびX4は水素原子、アルキル基または
ポリオルガノシロキサン基であり、mは2以上の数、n
は0以上の数である。] で表されるラダー型シリコーン、(b)フッ化(メタ)
アクリレートモノマー、および(c)重合開始剤から成
る樹脂組成物の硬化物から形成されているプラスチック
光伝送体を提供する。
[In the formula, at least one of R1, R2, R3 and R4 is a group having an unsaturated bond, and the other R1, R2, R3
and R4 is an alkyl group or an aryl group, and X1
, X2, X3 and X4 are hydrogen atoms, alkyl groups or polyorganosiloxane groups, m is a number of 2 or more, n
is a number greater than or equal to 0. ] Ladder type silicone represented by (b) fluoride (meta)
A plastic optical transmission body is provided which is formed from a cured product of a resin composition comprising an acrylate monomer and (c) a polymerization initiator.

【0006】「光伝送体」とは本明細書において光ファ
イバーおよび光回路を包含する。
[0006] The term "optical transmission body" as used herein includes optical fibers and optical circuits.

【0007】式(I)で示されるラダー型シリコーンに
おいて、R1、R2、R3およびR4の少なくとも1つ
が(メタ)アクリル基を有するアルキル基であることが
好ましい。mの下限は好ましくは10、上限は好ましく
は1000である。nの下限は好ましくは10、上限は
好ましくは1000である。クラッドのラダー型シリコ
ーンとコアのラダー型シリコーンは、同様であっても異
なってもよい。製造の容易さから、クラッドのラダー型
シリコーンとコアのラダー型シリコーンは同様であるこ
とが好ましい。
In the ladder type silicone represented by formula (I), it is preferred that at least one of R1, R2, R3 and R4 is an alkyl group having a (meth)acrylic group. The lower limit of m is preferably 10, and the upper limit is preferably 1000. The lower limit of n is preferably 10, and the upper limit is preferably 1000. The ladder-type silicone of the cladding and the ladder-type silicone of the core may be the same or different. For ease of manufacture, it is preferable that the ladder-type silicone of the cladding and the ladder-type silicone of the core are the same.

【0008】ラダー型シリコーンは、硬化性であり、熱
硬化性または光硬化性であってよいが、熱硬化性および
光硬化性であることが好ましい。
[0008] The ladder type silicone is curable and may be thermosetting or photocurable, preferably thermosetting and photocurable.

【0009】本発明で使用するラダー型シリコーンは透
明性に優れており、伝送体材料として用いるのに適して
いる。さらに、優れた熱安定性を有しており、ポリ(メ
タ)アクリレート系樹脂やポリカーボネート系樹脂等の
一般の有機系樹脂では到達し得ない耐熱性を示す。よっ
てラダー型シリコーンを用いることにより従来にない耐
熱性に優れたプラスチック光伝送体を得ることが出来る
The ladder-type silicone used in the present invention has excellent transparency and is suitable for use as a transmission material. Furthermore, it has excellent thermal stability, and exhibits heat resistance that cannot be achieved with general organic resins such as poly(meth)acrylate resins and polycarbonate resins. Therefore, by using ladder-type silicone, it is possible to obtain a plastic optical transmission body with unprecedented heat resistance.

【0010】ラダー型シリコーンの具体例は、例えば、
以下のとおりである。
Specific examples of ladder-type silicone include, for example:
It is as follows.

【化3】 [式中、nは2〜1000の数である。][Chemical formula 3] [In the formula, n is a number from 2 to 1000. ]

【化4】 [式中、mは2〜1000の数、nは0〜1000の数
である。]
embedded image In the formula, m is a number from 2 to 1000, and n is a number from 0 to 1000. ]

【0011】化3および化4で示されるラダー型シリコ
ーンは紫外線硬化が可能であり、紫外線照射によってコ
アを形成することができる。
The ladder type silicones represented by Chemical Formulas 3 and 4 can be cured by ultraviolet rays, and a core can be formed by irradiation with ultraviolet rays.

【0012】フッ化(メタ)アクリレートは、屈折率制
御用モノマーである。フッ化(メタ)アクリレートとし
てはトリフルオロエチルアクリレート、トリフルオロエ
チルメタクリレート、テトラフルオロプロピルアクリレ
ート、テトラフルオロプロピルメタクリレート等を挙げ
ることができる。フッ化(メタ)アクリレートはラダー
型シリコーンに比べ大きく光反応性に劣ることが望まし
い。 クラッドにおいて、フッ化(メタ)アクリレートの量は
、ラダー型シリコーン100重量部に対して、5〜90
重量部、好ましくは10〜70重量部である。コアにお
いて、フッ化(メタ)アクリレートの量は、ラダー型シ
リコーン100重量部に対して、5〜50重量部、好ま
しくは10〜30重量部である。クラッドの屈折率はコ
アの屈折率よりも低い必要があるので、クラッドにおけ
るフッ化(メタ)アクリレートの量は、コアにおけるフ
ッ化(メタ)アクリレートの量よりも多いことが好まし
い。フッ化(メタ)アクリレートは、コアの樹脂組成物
硬化物の分解温度よりも低い沸点(例えば、200℃以
下)を有することが好ましい。
[0012] Fluorinated (meth)acrylate is a refractive index controlling monomer. Examples of the fluorinated (meth)acrylate include trifluoroethyl acrylate, trifluoroethyl methacrylate, tetrafluoropropyl acrylate, and tetrafluoropropyl methacrylate. It is desirable that fluorinated (meth)acrylate has significantly inferior photoreactivity compared to ladder-type silicone. In the cladding, the amount of fluorinated (meth)acrylate is 5 to 90 parts by weight based on 100 parts by weight of ladder type silicone.
Parts by weight, preferably 10 to 70 parts by weight. In the core, the amount of fluorinated (meth)acrylate is 5 to 50 parts by weight, preferably 10 to 30 parts by weight, based on 100 parts by weight of ladder type silicone. Since the refractive index of the cladding needs to be lower than the refractive index of the core, the amount of fluorinated (meth)acrylate in the cladding is preferably greater than the amount of fluorinated (meth)acrylate in the core. The fluorinated (meth)acrylate preferably has a boiling point lower than the decomposition temperature of the cured resin composition of the core (for example, 200° C. or lower).

【0013】重合開始剤としては、光重合開始剤、特に
紫外線照射により容易にラジカルを発生する化合物が望
ましい。重合開始剤の好ましい例は、ベンゾフェノン、
アセトフェノン、ベンジル、ベンゾイン、ベンゾインメ
チルエーテル、ベンゾインイソブチルエーテル、ベンジ
ルジメチルケタール、α,α’−アゾビスイソブチロニ
トリル、ベンゾイルパーオキサイド、1−ヒドロキシシ
クロベキシルフェニルケトン、2,2−ジメトキシ−2
−フェニルアセトフェノン、2−ヒドロキシ−2−メチ
ル−1−フェニルプロパン−1−オンである。特に、1
−ヒドロキシシクロヘキシルフェニルケトンや2−ヒド
ロキシ−2−メチル−1−フェニルプロパン−1−オン
が好ましい。重合開始剤の量は、ラダー型シリコーン1
00重量部に対して20重量部以下、好ましくは0.0
1〜10重量部である。
The polymerization initiator is preferably a photopolymerization initiator, especially a compound that easily generates radicals when irradiated with ultraviolet rays. Preferred examples of the polymerization initiator are benzophenone,
Acetophenone, benzyl, benzoin, benzoin methyl ether, benzoin isobutyl ether, benzyl dimethyl ketal, α,α'-azobisisobutyronitrile, benzoyl peroxide, 1-hydroxycyclobexylphenyl ketone, 2,2-dimethoxy-2
-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one. In particular, 1
-Hydroxycyclohexylphenylketone and 2-hydroxy-2-methyl-1-phenylpropan-1-one are preferred. The amount of polymerization initiator is 1 for ladder type silicone.
20 parts by weight or less, preferably 0.0 parts by weight
It is 1 to 10 parts by weight.

【0014】本発明に係る光ファイバーは、例えば、以
下の製法によって製造できる。まずコア材樹脂組成物を
50℃〜300℃で紡糸口金から吐き出して紡糸し、コ
アを形成する。このコアの上にクラッド材樹脂組成物を
ダイスコートし50℃〜300℃で熱硬化させることに
より光ファイバーを作製する。
The optical fiber according to the present invention can be manufactured, for example, by the following manufacturing method. First, a core material resin composition is spun from a spinneret at 50° C. to 300° C. to form a core. An optical fiber is produced by die-coating a cladding material resin composition on this core and thermally curing it at 50°C to 300°C.

【0015】本発明の光回路は、図1に示す方法に従っ
て、形成することが好ましい。まず、ポリフッ化(メタ
)アクリレートまたはクラッド材樹脂組成物の硬化物等
から成る低屈折率基板11を形成し、基板11上に本発
明の樹脂組成物から成る層12を配置する(図1(A)
)。 樹脂組成物層12上にフォトマスク(図示せず)を配置
して、紫外線ランプを用い紫外線を照射し、露光部の樹
脂組成物を硬化させることにより導光路パターンを形成
し、コア13とする。このときランプの輻射熱および硬
化時の反応熱により露光部(コア部)における樹脂組成
物層12のフッ化(メタ)アクリレートを少なくとも部
分的に揮発させる(図1(B))。次にマスクされた部
分の未反応樹脂組成物を熱硬化させてクラッド14を形
成することによりプラスチック光回路を得る(図1(C
))。この方法は、コア、クラッドとも同一の樹脂組成
物により形成することができ、かつ原料の注型工程が1
回のみであるため、他のプラスチック光回路形成法と比
べ生産性に優れている。
The optical circuit of the present invention is preferably formed according to the method shown in FIG. First, a low refractive index substrate 11 made of polyfluorinated (meth)acrylate or a cured product of a cladding material resin composition is formed, and a layer 12 made of the resin composition of the present invention is arranged on the substrate 11 (see FIG. A)
). A photomask (not shown) is placed on the resin composition layer 12 and irradiated with ultraviolet rays using an ultraviolet lamp to harden the resin composition in the exposed areas, thereby forming a light guide path pattern to form the core 13. . At this time, the fluorinated (meth)acrylate of the resin composition layer 12 in the exposed part (core part) is at least partially volatilized by the radiant heat of the lamp and the reaction heat during curing (FIG. 1(B)). Next, a plastic optical circuit is obtained by thermally curing the unreacted resin composition in the masked portion to form a cladding 14 (Fig. 1(C)
)). In this method, both the core and the cladding can be formed using the same resin composition, and the casting process of raw materials is done in one step.
Since it only requires one step, it is superior in productivity compared to other plastic optical circuit forming methods.

【0016】また、本発明に係る光回路は、例えば、図
2に示すような方法によって製造してもよい。まずクラ
ッド材樹脂組成物を金型に注型した後、硬化させること
により基板21を形成する(図2(A))。基板21は
、クラッド樹脂組成物以外の低屈折率を有する材料(例
えば、ポリフッ化(メタ)アクリレート)から形成して
もよい。次いで、基板21の上にコア材樹脂組成物層2
2を形成する(図2(B))。フォトリソグラフィーに
より導波路パターンのコア23を形成する(図2(C)
)。さらに、コア23を覆う様にクラッド材樹脂組成物
を注型した後、硬化させることによりクラッド24を形
成し、光回路を作製する(図2(D))。
Further, the optical circuit according to the present invention may be manufactured by a method as shown in FIG. 2, for example. First, a substrate 21 is formed by casting a cladding material resin composition into a mold and curing it (FIG. 2(A)). The substrate 21 may be formed from a material having a low refractive index (for example, polyfluorinated (meth)acrylate) other than the cladding resin composition. Next, a core material resin composition layer 2 is formed on the substrate 21.
2 (Fig. 2(B)). The core 23 of the waveguide pattern is formed by photolithography (FIG. 2(C)
). Further, a cladding material resin composition is cast so as to cover the core 23 and then cured to form a cladding 24, thereby producing an optical circuit (FIG. 2(D)).

【0017】[0017]

【発明の好ましい態様】以下、実施例および比較例を示
し、本発明を具体的に説明する。
Preferred Embodiments of the Invention The present invention will be specifically explained below with reference to Examples and Comparative Examples.

【0018】実施例1 図1に示す方法にしたがって光回路を製造した。ポリト
リフルオロエチルメタクリレート製基板上に、式:
Example 1 An optical circuit was manufactured according to the method shown in FIG. On a substrate made of polytrifluoroethyl methacrylate, the formula:

【化
5】 [式中、nは400〜500の数である。]で表される
硬化性ラダー型シリコーン40重量部、トリフルオロエ
チルメタクリレート60重量部、光重合開始剤である2
−ヒドロキシ−2−メチル−1−フェニルプロパン−1
−オン1重量部よりなる樹脂組成物層を形成し、その上
にフォトマスクを設置して紫外線を照射し、導光路パタ
ーンのコアを形成した。次にマスクされた部分の未反応
樹脂組成物を200℃で熱硬化させることによりクラッ
ドを形成し、プラスチック光回路を得た。得られたプラ
スチック光回路の物性は表1の通りであった。
embedded image where n is a number from 400 to 500. ] 40 parts by weight of the curable ladder type silicone, 60 parts by weight of trifluoroethyl methacrylate, 2 which is a photopolymerization initiator.
-Hydroxy-2-methyl-1-phenylpropane-1
A resin composition layer consisting of 1 part by weight of -ON was formed, a photomask was placed thereon, and ultraviolet rays were irradiated to form the core of the light guide pattern. Next, the unreacted resin composition in the masked portion was thermally cured at 200° C. to form a cladding, and a plastic optical circuit was obtained. The physical properties of the obtained plastic optical circuit were as shown in Table 1.

【0019】比較例1 コア材としてメチルメタクリレート99重量%に熱重合
開始剤であるアゾイソブチロニトリル1重量%を加えた
ものを、またクラッド材としてトリフルオロエチルメタ
クリレート99重量%に光重合開始剤である2−ヒドロ
キシ−2−メチル−1−フェニルプロパン−1−オン1
重量%を加えたものを用いて、図2に示す方法で光回路
を作成した。得られた光回路の物性は表1の通りであっ
た。
Comparative Example 1 As a core material, 99% by weight of methyl methacrylate and 1% by weight of azoisobutyronitrile as a thermal polymerization initiator were used, and as a cladding material, photopolymerization was initiated with 99% by weight of trifluoroethyl methacrylate. 2-hydroxy-2-methyl-1-phenylpropan-1-one 1
An optical circuit was created using the method shown in FIG. 2 using the added weight percent. The physical properties of the obtained optical circuit were as shown in Table 1.

【0020】[0020]

【表1】[Table 1]

【0021】[0021]

【発明の効果】本発明によるプラスチック光伝送体は耐
熱性に優れ、従来のプラスチック光伝送体では使用が不
可能であった高温(120℃以上、例えば、130〜1
50℃)においても使用することが出来る。従って高温
下で用いられる光通信システム用光伝送体として有効で
ある。
Effects of the Invention The plastic optical transmitter according to the present invention has excellent heat resistance and can withstand high temperatures (120°C or higher, e.g. 130-1
50°C). Therefore, it is effective as an optical transmission body for optical communication systems used under high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明に係る光回路の製造の好ましい例の
工程概略を示す光回路の斜視図である。
FIG. 1 is a perspective view of an optical circuit showing a process outline of a preferred example of manufacturing the optical circuit according to the present invention.

【図2】  本発明に係る光回路の製造の他の例の工程
概略を示す光回路の斜視図である。
FIG. 2 is a perspective view of an optical circuit showing a process outline of another example of manufacturing the optical circuit according to the present invention.

【符号の説明】[Explanation of symbols]

11,21  基板 12,22  樹脂組成物層 13,23  コア 14,24  クラッド 11, 21 Board 12, 22 Resin composition layer 13, 23 core 14, 24 Clad

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  クラッドおよびコアが、(a)一般式
:【化1】 [式中、R1、R2、R3およびR4の少なくとも1つ
は不飽和結合を有する基であり、他のR1、R2、R3
およびR4はアルキル基またはアリール基であり、X1
、X2、X3およびX4は水素原子、アルキル基または
ポリオルガノシロキサン基であり、mは2以上の数、n
は0以上の数である。] で表されるラダー型シリコーン、(b)フッ化(メタ)
アクリレートモノマー、および(c)重合開始剤から成
る樹脂組成物の硬化物から形成されているプラスチック
光伝送体。
[Claim 1] The cladding and the core have (a) the general formula: [Formula, at least one of R1, R2, R3 and R4 is a group having an unsaturated bond, and the other R1, R2 , R3
and R4 is an alkyl group or an aryl group, and X1
, X2, X3 and X4 are hydrogen atoms, alkyl groups or polyorganosiloxane groups, m is a number of 2 or more, n
is a number greater than or equal to 0. ] Ladder type silicone represented by (b) fluoride (meta)
A plastic optical transmission body formed from a cured product of a resin composition comprising an acrylate monomer and (c) a polymerization initiator.
【請求項2】  ラダー型シリコーンにおいてR1、R
2、R3およびR4の少なくとも1つが(メタ)アクリ
ル基を有するアルキル基である請求項1記載のプラスチ
ック光伝送体。
Claim 2: In ladder type silicone, R1, R
2. The plastic optical transmitter according to claim 1, wherein at least one of R3 and R4 is an alkyl group having a (meth)acrylic group.
【請求項3】  低屈折率基板上に、(a)硬化性高屈
折率成分、(b)低屈折率成分、および(c)重合開始
剤から成る樹脂組成物層を配置した後、樹脂組成物層上
にフォトマスクを配置して紫外線を照射し、光源の輻射
熱および反応熱により露光部の低屈折率成分を部分的に
揮発させながら、露光部の樹脂組成物を硬化させること
によりコアを形成し、次にマスクされた部分の未反応樹
脂組成物を熱硬化させることによりクラッドを形成する
ことを特徴とするプラスチック光回路の製造方法。
3. After disposing a resin composition layer consisting of (a) a curable high refractive index component, (b) a low refractive index component, and (c) a polymerization initiator on a low refractive index substrate, the resin composition A photomask is placed on the material layer and ultraviolet rays are irradiated.The core is cured by curing the resin composition in the exposed area while partially volatilizing the low refractive index component in the exposed area by the radiant heat of the light source and reaction heat. 1. A method for producing a plastic optical circuit, which comprises forming a cladding, and then thermally curing an unreacted resin composition in a masked portion to form a cladding.
【請求項4】  硬化性高屈折率成分が請求項1で規定
したラダー型シリコーン(I)であり、低屈折率成分が
フッ化(メタ)アクリレートモノマーであることを特徴
とする請求項3記載のプラスチック光回路の製造方法。
4. The method according to claim 3, wherein the curable high refractive index component is the ladder-type silicone (I) defined in claim 1, and the low refractive index component is a fluorinated (meth)acrylate monomer. A method for manufacturing plastic optical circuits.
JP3032732A 1991-02-27 1991-02-27 Plastic optical transmission body Pending JPH04271306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3032732A JPH04271306A (en) 1991-02-27 1991-02-27 Plastic optical transmission body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3032732A JPH04271306A (en) 1991-02-27 1991-02-27 Plastic optical transmission body

Publications (1)

Publication Number Publication Date
JPH04271306A true JPH04271306A (en) 1992-09-28

Family

ID=12367013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3032732A Pending JPH04271306A (en) 1991-02-27 1991-02-27 Plastic optical transmission body

Country Status (1)

Country Link
JP (1) JPH04271306A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709434A3 (en) * 1994-10-26 1997-06-18 Nippon Telegraph & Telephone Polymeric optical materials and optical waveguides made therefrom
EP1154323A1 (en) * 1999-11-12 2001-11-14 Nippon Sheet Glass Co., Ltd. Photosensitive composition, and optical waveguide element and process for producing the same
US6731857B2 (en) 2001-03-29 2004-05-04 Shipley Company, L.L.C. Photodefinable composition, method of manufacturing an optical waveguide with the photodefinable composition, and optical waveguide formed therefrom
US6842577B2 (en) 2002-12-02 2005-01-11 Shipley Company L.L.C. Photoimageable waveguide composition and waveguide formed therefrom
US7024093B2 (en) 2002-12-02 2006-04-04 Shipley Company, Llc Methods of forming waveguides and waveguides formed therefrom
US7072565B2 (en) 2004-04-14 2006-07-04 Rohm And Haas Electronic Materials Llc Waveguide compositions and waveguides formed therefrom
US7072564B2 (en) 2003-11-25 2006-07-04 Rohm And Haas Electronic Materials Llc Waveguide compositions and waveguides formed therefrom
US7072563B2 (en) 2003-11-25 2006-07-04 Rohm And Haas Electronic Materials Llc Waveguide compositions and waveguides formed therefrom

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709434A3 (en) * 1994-10-26 1997-06-18 Nippon Telegraph & Telephone Polymeric optical materials and optical waveguides made therefrom
EP1154323A1 (en) * 1999-11-12 2001-11-14 Nippon Sheet Glass Co., Ltd. Photosensitive composition, and optical waveguide element and process for producing the same
EP1154323A4 (en) * 1999-11-12 2003-07-16 Nippon Sheet Glass Co Ltd Photosensitive composition, and optical waveguide element and process for producing the same
US6731857B2 (en) 2001-03-29 2004-05-04 Shipley Company, L.L.C. Photodefinable composition, method of manufacturing an optical waveguide with the photodefinable composition, and optical waveguide formed therefrom
US6842577B2 (en) 2002-12-02 2005-01-11 Shipley Company L.L.C. Photoimageable waveguide composition and waveguide formed therefrom
US7024093B2 (en) 2002-12-02 2006-04-04 Shipley Company, Llc Methods of forming waveguides and waveguides formed therefrom
US7072564B2 (en) 2003-11-25 2006-07-04 Rohm And Haas Electronic Materials Llc Waveguide compositions and waveguides formed therefrom
US7072563B2 (en) 2003-11-25 2006-07-04 Rohm And Haas Electronic Materials Llc Waveguide compositions and waveguides formed therefrom
US7072565B2 (en) 2004-04-14 2006-07-04 Rohm And Haas Electronic Materials Llc Waveguide compositions and waveguides formed therefrom

Similar Documents

Publication Publication Date Title
CA2026042C (en) Plate plastics optical waveguide
JP2001519044A (en) Method of manufacturing optical element and optical element obtained therefrom
JP3133039B2 (en) Photosensitive composition for optical waveguide, method for producing the same, and method for forming polymer optical waveguide pattern
JP4138494B2 (en) Optimized multilayer optical waveguide system
JPH04271306A (en) Plastic optical transmission body
JP2599497B2 (en) Flat plastic optical waveguide
JP5176546B2 (en) Photosensitive resin composition for forming optical waveguide, optical waveguide, and method for producing optical waveguide
JPH08327842A (en) Optical waveguide
JP2005164650A (en) Manufacturing method of optical waveguide and optical waveguide
JPH06172533A (en) Polymer for forming optical waveguide and production of polysiloxane-based optical waveguide
JP3057161B2 (en) Organic optical waveguide
US20080128929A1 (en) Method for Manufacturing Optical Devices
JP3483188B2 (en) Method for forming optical waveguide of polymer material
JPH10170738A (en) Polymer optical waveguide and its production
JPH10170739A (en) Production of polymer optical waveguide
JP4178996B2 (en) Polymer optical waveguide
JPH04247406A (en) Plastic light transmitting body
JPH08327844A (en) Production of optical waveguide
JP3343849B2 (en) Polymer optical waveguide and manufacturing method thereof
JP2002277662A (en) Method for manufacturing optical waveguide coupler
JP2006119472A (en) Polymeric optical waveguide and manufacturing method therefor
JP2003084150A (en) Optical waveguide device
JPH0875942A (en) Production of optical waveguide
JP4506006B2 (en) Manufacturing method of polymer optical waveguide
JP2002303751A (en) Method for manufacturing high polymer optical waveguide