JPH04270975A - Ic testing device - Google Patents

Ic testing device

Info

Publication number
JPH04270975A
JPH04270975A JP3033160A JP3316091A JPH04270975A JP H04270975 A JPH04270975 A JP H04270975A JP 3033160 A JP3033160 A JP 3033160A JP 3316091 A JP3316091 A JP 3316091A JP H04270975 A JPH04270975 A JP H04270975A
Authority
JP
Japan
Prior art keywords
signal
period
reading
under test
signal acquisition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3033160A
Other languages
Japanese (ja)
Inventor
Minoru Kobayashi
稔 小林
Hiroshi Tsukahara
塚原 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP3033160A priority Critical patent/JPH04270975A/en
Publication of JPH04270975A publication Critical patent/JPH04270975A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a high-resolution and high-accuracy duty ratio measurement by prescribing a signal reading time according to a least common multiple between a period of a signal to be measured and that of a signal to be read and then reading signal by a reading count which is prescribed by this time. CONSTITUTION:A period X of a signal to be measured Pa is set to a period- setting means SET2 and a period T of a strobe pulse Pb which is given to a signal-reading circuit R is set to a reading period setting means SET1, thus enabling a timing generator TG to obtain a least common multiple. With this M as a period, a same point of the signal Pa is punched by a pulse Pb for reading. Further, a signal-reading count P within M can be obtained from a ratio P=M/T. An expectation value, for example 0 logic, is compared with the reading signal logically by a logic comparator LC, thus enabling conformity and non-conformity to be detected. A nonconformity counter FCNT counts a generation count (a count where logic 1 section of the signal Pa is punched) PF. A duty ratio D of the signal Pa can be calculated according to D=PF/P.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は発振器を内蔵したIC
において、発振器の発振出力波形が正常か否かを試験す
ることができる機能を具備したIC試験装置に関する。
[Industrial Application Field] This invention is an IC with a built-in oscillator.
The present invention relates to an IC testing device having a function of testing whether the oscillation output waveform of an oscillator is normal or not.

【0002】0002

【従来の技術】例えばメモリのようなICではメモリに
試験パターン信号を書込み、その読出出力が正常か否か
を見て試験が行なわれる。これに対しマイクロコンピュ
ータを内蔵したICでは動作クロックを発生させるため
にクロック発振器が内蔵される。マイクロコンピュータ
を含む各種の機能が正常に動作するか否かを試験するこ
との外にクロック発振器が出力するクロックパルスの波
形、つまりクロックパルスのデューティ比が例えば限り
なく50%に近い許容の範囲に入っているか否かを試験
することが要求される。
2. Description of the Related Art For example, in an IC such as a memory, a test is performed by writing a test pattern signal into the memory and checking whether the readout output is normal or not. On the other hand, an IC with a built-in microcomputer has a built-in clock oscillator to generate an operating clock. In addition to testing whether various functions including microcomputers operate normally, we also test whether the waveform of the clock pulse output by the clock oscillator, that is, the duty ratio of the clock pulse, is within an acceptable range of, for example, close to 50%. It is required to test whether it is present or not.

【0003】被試験ICから出力されるクロックパルス
のデューティ比を測定するには従来よりIC試験装置の
信号取込回路の機能を利用して測定している。つまり従
来のIC試験装置は、図3に示すように被試験IC1の
各端子に対して、試験パターン信号を与えるドライバD
の出力端子と、被試験IC1の応答出力信号を取込む信
号取込回路Rの入力端子とを接続する。ドライバDはス
リーステート型増幅器が用いられ、信号取込回路Rで被
試験IC1の応答出力を取込むタイミングではドライバ
Dは出力端子が高インピーダンスに制御され、ドライバ
Dを実質的に被試験IC1の負荷から切離した状態とし
、この状態で被試験IC1が出力する信号を信号取込回
路Rが取込む。
Conventionally, the duty ratio of a clock pulse output from an IC under test has been measured using the function of a signal acquisition circuit of an IC tester. In other words, as shown in FIG.
The output terminal of the IC under test 1 is connected to the input terminal of a signal capture circuit R that captures the response output signal of the IC under test 1. A three-state amplifier is used for the driver D, and at the timing when the signal acquisition circuit R takes in the response output of the IC under test 1, the output terminal of the driver D is controlled to a high impedance, and the driver D is substantially connected to the IC under test 1. It is in a state where it is disconnected from the load, and in this state, the signal capture circuit R captures the signal output by the IC under test 1.

【0004】信号取込回路Rはストローブ増幅器が用い
られる。ストローブ増幅器は周知のように、ストローブ
パルスの供給タイミングにおける入力信号の論理状態を
読込む。従って従来はストローブパルスの供給タイミン
グを、被測定信号の1周期毎に一定時間ずつ順次遅延さ
せ、被測定信号の周期の開始時点から論理の変化点まで
の時間を計測し、この時間の計測によって被測定信号の
デューティ比を求めている。
The signal acquisition circuit R uses a strobe amplifier. As is well known, a strobe amplifier reads the logic state of an input signal at the timing of supply of a strobe pulse. Therefore, in the past, the supply timing of the strobe pulse was sequentially delayed by a fixed amount of time for each cycle of the signal under test, and the time from the start of the cycle of the signal under test to the logic change point was measured, and by measuring this time, I am looking for the duty ratio of the signal under test.

【0005】その様子を図4を用いて説明する。図4A
は被測定信号Paを示す。この信号Paが被測定IC1
から出力されるクロックパルスである。被測定信号Pa
の1周期Xは例えば被試験IC1に組込まれた発振素子
の共振周波数により既知の数値として与えられる。ここ
で1周期Xに対する半周期XXが測定できればデューテ
ィ比DはD=XX/Xで求められる。
The situation will be explained using FIG. 4. Figure 4A
indicates the signal under measurement Pa. This signal Pa is the IC1 under test.
This is the clock pulse output from Measured signal Pa
One period X is given as a known value by, for example, the resonant frequency of the oscillation element incorporated in the IC 1 under test. Here, if the half cycle XX for one cycle X can be measured, the duty ratio D can be obtained as D=XX/X.

【0006】図4Bは信号取込回路Rを構成するストロ
ーブ増幅器に与えるストローブパルスを示す。ストロー
ブパルスPbは可変遅延回路によって被測定信号Paの
1周期毎に基準タイミングRSから順次Δtずつ遅延量
が加算されて信号取込回路Rに与えられる。信号取込回
路RはストローブパルスPbが供給されるタイミングに
おいて、被測定信号Paの論理を読込む。従って図の例
では始めから4個目のストローブパルスまでは「1」論
理を読込むが、5個目のストローブパルスでは図4Cに
示すように「0」論理を読込む。従って測定しようとす
る半周期XXはこの例ではXX=4・Δtとなる。Δt
が例えばΔt=100ps(ピコ・秒)とすればXX=
400psとなる。実際上はXが40ns(ナノ・秒)
程度であるからΔt=100PSとすると、被測定信号
Paの1周期XをストローブパルスPbが走査する回数
は40×10−9/100×10−12 =400回と
なる。 従ってその時間は400・X=16000nsとなる。
FIG. 4B shows strobe pulses applied to the strobe amplifier constituting the signal acquisition circuit R. The strobe pulse Pb is given to the signal acquisition circuit R by adding a delay amount of Δt sequentially from the reference timing RS every cycle of the signal under measurement Pa by a variable delay circuit. The signal acquisition circuit R reads the logic of the signal under test Pa at the timing when the strobe pulse Pb is supplied. Therefore, in the illustrated example, "1" logic is read from the beginning to the fourth strobe pulse, but "0" logic is read at the fifth strobe pulse, as shown in FIG. 4C. Therefore, the half period XX to be measured is XX=4·Δt in this example. Δt
For example, if Δt=100ps (picoseconds), then XX=
It becomes 400ps. In reality, X is 40ns (nanoseconds)
Therefore, if Δt=100 PS, the number of times the strobe pulse Pb scans one period X of the signal under measurement Pa is 40×10 −9/100×10 −12 =400 times. Therefore, the time is 400×=16000 ns.

【0007】尚、信号のデューティ比を測定する装置は
各種存在するが、被測定信号がICから出力されること
からIC試験装置によってデューティ比を測定できると
都合がよい。つまりIC試験装置以外の測定器を用いる
場合は、その測定器に被試験ICを接続したり、外した
り、しなくてはならない。また他の測定器を設置するに
は場所を占有し、広い室を必要とする等の不都合が生じ
る。
Although there are various devices for measuring the duty ratio of a signal, since the signal to be measured is output from an IC, it is convenient if the duty ratio can be measured by an IC testing device. In other words, when using a measuring device other than an IC testing device, the IC under test must be connected to and disconnected from the measuring device. Furthermore, installation of other measuring instruments takes up space and is inconvenient, such as requiring a large room.

【0008】[0008]

【発明が解決しようとする課題】従来はストローブパル
スPbの供給タイミングを順次遅延させて供給し、スト
ローブパルスPbの位相位置を変化させ、被測定信号P
aの1周期内をストローブパルスPbで走査し、被測定
信号Paの論理が転換するまでのストローブパルスの供
給個数を計数して被測定信号Paの半周期XXを求めて
いる。被測定信号Paの1周期が40ns、ストローブ
パルスPbの遅延時間の増加量がΔtが100psとし
た場合、被測定信号Paの1周期を測定する時間は16
000nsとなり、試験に要する時間が長くなってしま
う欠点がある。
[Problems to be Solved by the Invention] Conventionally, the supply timing of the strobe pulse Pb is sequentially delayed and supplied, and the phase position of the strobe pulse Pb is changed, so that the signal under measurement P
The half period XX of the signal under test Pa is determined by scanning one cycle of the signal under test a with the strobe pulse Pb and counting the number of strobe pulses supplied until the logic of the signal under test Pa changes. If one period of the signal under test Pa is 40 ns and the amount of increase in the delay time of the strobe pulse Pb Δt is 100 ps, the time to measure one period of the signal under test Pa is 16
000 ns, which has the disadvantage that the time required for the test becomes longer.

【0009】またΔt=100psとすると、半周期X
Xを測定する分解能は100psとなる。つまり分解能
が粗であるため、測定精度が悪い欠点がある。この発明
の目的は、被測定信号の論理の反転を検出するための分
解能がこまかく、然も測定に要する時間を短かくするこ
とができるIC試験装置を提供しようとするものである
[0009] Also, if Δt = 100 ps, the half period
The resolution for measuring X is 100 ps. In other words, since the resolution is coarse, the measurement accuracy is poor. SUMMARY OF THE INVENTION An object of the present invention is to provide an IC testing device that has a fine resolution for detecting a logic reversal of a signal under test and can shorten the time required for measurement.

【0010】0010

【課題を解決するための手段】この発明では、信号取込
回路の信号取込回数を被測定信号の周期Xと、信号取込
回路の信号取込周期Tとの最小公倍数により信号取込回
路の信号取込時間を規定し、この信号取込時間で規定さ
れる信号取込回数だけ被測定信号の各タイミング位置の
論理を取込む。
[Means for Solving the Problems] In the present invention, the number of times the signal acquisition circuit acquires a signal is determined by the least common multiple of the period X of the signal under test and the signal acquisition period T of the signal acquisition circuit. A signal acquisition time is defined, and the logic at each timing position of the signal under test is acquired the number of times of signal acquisition defined by this signal acquisition time.

【0011】周期Xと周期Tとの最小公倍数と信号取込
周期Tとの比によって決まる信号取込回数だけ信号を取
込むとき、信号取込回路は実質的に被測定信号の1周期
内を信号取込回数分の1の分解能でサンプリングしたの
と等価な取込データを得ることができる。この取込デー
タを一定の論理を持つ期待値と比較し、その比較結果と
して得られる一致又は不一致の数と、上記信号取込回数
との比から被測定信号のデューティ比を算出するように
構成したIC試験装置を提案する。
[0011] When acquiring a signal for the number of signal acquisitions determined by the ratio of the least common multiple of period Captured data can be obtained that is equivalent to sampling with a resolution equal to one of the number of signal captures. The structure is configured to compare this captured data with an expected value having a certain logic, and calculate the duty ratio of the signal under test from the ratio of the number of matches or mismatches obtained as a result of the comparison and the number of times of signal capture. We propose a new IC testing device.

【0012】この発明の構成によれば被測定周期と、信
号取込回路の信号取込周期との最小公倍数を求めること
により、この最小公倍数が被測定信号を同一タイミング
位置で取込むことができる信号取込周期の整数倍の周期
となる。従って、この整数倍の周期を信号取込回路の信
号取込周期で除すことにより必要な信号取込回数を求め
ることができる。よってこの回数だけ信号取込回路で被
測定信号の各タイミング位置を取込むことによりデュー
ティ比算出のための全てのデータを得ることができ、短
時間にデューティ比算出のためのデータを得ることがで
きる。尚このデューティ比測定方法を採る場合は被測定
信号Paの周期をX、信号取込回路の信号取込周期をT
とした場合、周期TとXとの間にはX/2<T<Xの制
限が与えられる。
According to the configuration of the present invention, by finding the least common multiple of the period to be measured and the signal acquisition period of the signal acquisition circuit, this least common multiple allows the signal to be measured to be acquired at the same timing position. The period is an integral multiple of the signal acquisition period. Therefore, the required number of signal acquisition times can be determined by dividing this integer multiple period by the signal acquisition period of the signal acquisition circuit. Therefore, by capturing each timing position of the signal under test using the signal acquisition circuit this number of times, all the data for calculating the duty ratio can be obtained, and the data for calculating the duty ratio can be obtained in a short time. can. When using this duty ratio measurement method, the period of the signal under test Pa is X, and the signal acquisition period of the signal acquisition circuit is T.
In this case, a restriction of X/2<T<X is given between the period T and X.

【0013】然も測定分解能は上記信号取込回数で被測
定信号の周期を除した値となる。この値は充分小さな値
となり、分解能が高いデューティ比の測定を行なうこと
ができる。更に測定精度は分解能を被測定信号の周期で
除した値になるのでその値も小さな値となる。よって分
解能が高く、精度のよいデューティ比の測定を行なうこ
とができる。
However, the measurement resolution is the value obtained by dividing the period of the signal under measurement by the number of times of signal acquisition. This value is a sufficiently small value, and it is possible to measure the duty ratio with high resolution. Furthermore, since the measurement accuracy is the value obtained by dividing the resolution by the period of the signal under measurement, the value is also a small value. Therefore, it is possible to measure the duty ratio with high resolution and accuracy.

【0014】[0014]

【実施例】図1にこの発明の一実施例を示す。図1にお
いて1は被試験IC、10はIC試験装置を示す。IC
試験装置10はタイミング発生器TGと、このタイミン
グ発生器TGから出力されるタイミング信号により試験
パターン信号及び期待値パターン信号を発生するパター
ン発生器PGと、パターン発生器PG及び論理比較器L
Cを被試験IC1との間に介在し、被試験IC1をパタ
ーン発生器PGと論理比較器LCに電気的に接続するテ
ストヘッドTHとによって構成される。先に説明したド
ライバDと、信号取込回路RはテストヘッドTHに搭載
される。
[Embodiment] FIG. 1 shows an embodiment of the present invention. In FIG. 1, 1 indicates an IC to be tested, and 10 indicates an IC testing device. IC
The test device 10 includes a timing generator TG, a pattern generator PG that generates a test pattern signal and an expected value pattern signal based on a timing signal output from the timing generator TG, and a pattern generator PG and a logic comparator L.
The test head TH is interposed between the IC 1 and the IC 1 to be tested, and electrically connects the IC 1 to the pattern generator PG and the logic comparator LC. The driver D and signal acquisition circuit R described above are mounted on the test head TH.

【0015】これらタイミング発生器TG、パターン発
生器PG、テストヘッドTH、論理比較器LCとによっ
て構成されるIC試験装置は従来のIC試験装置と同じ
構成である。この発明の特徴とする構成はタイミング発
生器TGに信号取込回路Rの信号取込周期を可変設定す
る取込周期設定手段SET1 と、被測定信号の周期X
を設定する周期設定手段SET2 とを付設した点と、
論理比較器LCの出力側に不一致発生回数を計数する不
一致カウンタFCNTを設けた点である。
[0015] The IC test apparatus composed of the timing generator TG, pattern generator PG, test head TH, and logic comparator LC has the same structure as a conventional IC test apparatus. The feature of the present invention is that the timing generator TG includes an acquisition period setting means SET1 for variably setting the signal acquisition period of the signal acquisition circuit R, and a period X of the signal under measurement.
A period setting means SET2 for setting the period setting means SET2 is attached, and
The point is that a discrepancy counter FCNT is provided on the output side of the logic comparator LC to count the number of times discrepancies occur.

【0016】被測定信号の周期Xは被試験IC1に内蔵
した発振器の規格によって与えられる。この周期Xを予
め周期設定手段SET2 に設定すると共に、信号取込
回路Rに与えるストローブパルスPb(図2C)の周期
Tを取込周期設定手段SET1 に設定する。これらの
周期XとTを設定手段SET1 とSET2 に設定す
ることにより、タイミング発生器TGはその最小公倍数
Mを求める。例えば周期XがX=41.67ns(24
.0MHz)、周期TがT=53.0ns(18.87
MHz)に設定されると、タイミング発生器TGは最小
公倍数MをM=X・TによりM=6625nsを算出す
る。この最小公倍数Mは必要な信号取込時間を意味する
The period X of the signal under test is given by the standard of the oscillator built into the IC 1 under test. This period X is set in advance in the period setting means SET2, and the period T of the strobe pulse Pb (FIG. 2C) applied to the signal acquisition circuit R is set in the acquisition period setting means SET1. By setting these periods X and T in the setting means SET1 and SET2, the timing generator TG determines the least common multiple M thereof. For example, the period X is X=41.67ns (24
.. 0MHz), and the period T is T=53.0ns (18.87
MHz), the timing generator TG calculates the least common multiple M by M=X·T, and calculates M=6625 ns. This least common multiple M means the required signal acquisition time.

【0017】つまり最小公倍数M(時間)は1回目の信
号取込のタイミングにおける被測定信号Pa(図2A)
の信号取込位置と、M(時間)後に取込む信号取込位置
とが一致することを意味し、このM(時間)を周期とし
て被測定信号Paの同一ポイントをストローブパルスP
bによって打ち抜いて取込むことになる。更に最小公倍
数Mと信号取込周期Tとの比P=M/Tから最小公倍数
M(時間)の間に信号を取込む回数Pが得られる。
In other words, the least common multiple M (time) is the signal under measurement Pa at the timing of the first signal acquisition (FIG. 2A)
This means that the signal acquisition position coincides with the signal acquisition position acquired after M (time), and the strobe pulse P
It will be punched out and taken in by b. Further, from the ratio P=M/T of the least common multiple M and the signal acquisition period T, the number of times P of signal acquisition during the least common multiple M (time) can be obtained.

【0018】従ってストローブパルスPbをP個だけ信
号取込回路Rに与えることによって最小公倍数で決まる
被測定信号Paの同一ポイントから、同一ポイントまで
をP回取込んだ取込データを得ることができる。上記し
た数値例によれば信号取込回数PはP=125となる。 従ってこの例ではストローブパルスPbを125個分送
り出し、125ポイントの取込信号を得ることにより、
実質的に被測定信号Paの1周期を1/125の分解能
でサンプリングしたと等価な取込信号を得ることができ
る。
Therefore, by applying P strobe pulses Pb to the signal acquisition circuit R, it is possible to obtain data acquired P times from the same point of the signal under measurement Pa determined by the least common multiple to the same point. . According to the above numerical example, the number of times P of signal acquisition is P=125. Therefore, in this example, by sending out 125 strobe pulses Pb and obtaining 125 points of acquisition signals,
A captured signal substantially equivalent to sampling one period of the signal under measurement Pa at a resolution of 1/125 can be obtained.

【0019】この取込信号を論理比較器LCにおいて一
定の論理、例えば「0」論理を期待値とし、この「0」
論理の期待値と取込信号とを論理比較し、一致、不一致
を検出させる。論理比較器LCにおいて例えば不一致を
検出する毎に不一致カウンタFCNTが計数し不一致の
発生回数を計数する。この不一致の計数値は被測定信号
Paの「1」論理の区間を打抜いた回数を示す。不一致
検出回数をPF とした場合、被測定信号Paのデュー
ティ比DはD=PF /P(Pは信号の全取込回数)で
求めることができる。
This input signal is passed to a logic comparator LC with a certain logic, for example, "0" logic, as the expected value, and this "0"
A logical comparison is made between the expected logical value and the captured signal, and a match or mismatch is detected. For example, every time a mismatch is detected in the logical comparator LC, a mismatch counter FCNT counts the number of times a mismatch occurs. This mismatch count value indicates the number of times the "1" logic section of the signal under measurement Pa is punched out. When the number of mismatch detections is PF, the duty ratio D of the signal under measurement Pa can be determined as D=PF/P (P is the total number of times the signal is captured).

【0020】このデューティ比の測定方法によればデュ
ーティ比Dの分解能UはU=X(ns)/Pとなる。従
って上述の実施例の場合はU=41.67(ns)/1
25=0.333(ns)となる。更にデューティ比D
の測定精度SはS=U/Xで求められる。実施例によれ
ばS=0.333/41.67≒0.008となり、0
.8%の誤差となる。
According to this method of measuring the duty ratio, the resolution U of the duty ratio D is U=X(ns)/P. Therefore, in the case of the above example, U=41.67(ns)/1
25=0.333 (ns). Furthermore, the duty ratio D
The measurement accuracy S is determined by S=U/X. According to the example, S=0.333/41.67≒0.008, and 0
.. This results in an error of 8%.

【0021】[0021]

【発明の効果】以上説明したように、この発明によれば
周期Xと周期Tの最小公倍数Mを信号取込周期Tで除し
て求まる周期Tの整数倍数Pだけ信号の取込を行なうこ
とにより、実質的に被測定信号Paの1周期Xを1/P
の分解能でサンプリングしたのと等価な取込データを得
ることができる。Pは従来の信号取込回数と比較して小
さいから短時間にデータの取込を済ませることができる
[Effects of the Invention] As explained above, according to the present invention, signals are acquired by an integral multiple P of the period T, which is determined by dividing the least common multiple M of the period X and the period T by the signal acquisition period T. Therefore, one period X of the signal under test Pa is reduced to 1/P
It is possible to obtain captured data equivalent to sampling with a resolution of . Since P is smaller than the number of times of conventional signal acquisition, data acquisition can be completed in a short time.

【0022】然も分解能は高く、更に測定精度が高いか
ら短時間に精度の高いデューティ比の測定を行なうこと
ができ利点が得られる。更にIC試験装置だけでデュー
ティ比を測定することができるから、他の測定装置を使
用しなくて済む。よってこの点で経済的な負担、及び占
有面積の低減を達することができる。
Moreover, since the resolution is high and the measurement accuracy is also high, the duty ratio can be measured with high accuracy in a short time, which is an advantage. Furthermore, since the duty ratio can be measured using only the IC test device, there is no need to use any other measuring device. Therefore, in this respect, the economic burden and the occupied area can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】この発明の動作を説明するための波形図。FIG. 2 is a waveform diagram for explaining the operation of the present invention.

【図3】従来の技術を説明するためのブロック図。FIG. 3 is a block diagram for explaining a conventional technique.

【図4】従来の技術の動作を説明するための波形図。FIG. 4 is a waveform diagram for explaining the operation of the conventional technology.

【符号の説明】[Explanation of symbols]

1    被測定IC 10    IC試験装置 TG    タイミング発生器 PG    パターン発生器 LC    論理比較器 TH    テストヘッド FCNT    不一致カウンタ 1 IC to be measured 10 IC test equipment TG timing generator PG pattern generator LC logic comparator TH Test head FCNT    Discrepancy Counter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  被試験ICから出力される論理信号を
信号取込回路によって取込むと共に、この取込んだ論理
値を期待値と比較し、不一致を検出することにより被試
験ICを不良と判定するIC試験装置において、被試験
ICが発振器を内蔵し、この発振器から出力されるクロ
ックパルスを被測定信号として被試験ICの外部に取出
すと共に、この被測定信号の周期Xと、上記信号取込回
路の信号取込周期Tとの最小公倍数により、信号取込時
間を規定し、この信号取込時間内で取込まれる取込デー
タを、一定の論理値を有する期待値と論理比較し、この
論理比較の結果で得られる一致又は不一致の数と上記信
号取込時間内で取込まれるデータ数との比によって上記
クロックパルスのデューティ比を求めるように構成した
IC試験装置。
[Claim 1] The logic signal output from the IC under test is captured by a signal capture circuit, and the captured logic value is compared with an expected value, and by detecting a mismatch, the IC under test is determined to be defective. In the IC test equipment, the IC under test has a built-in oscillator, and the clock pulse output from this oscillator is taken out as the signal under test to the outside of the IC under test, and the period The signal acquisition time is defined by the least common multiple of the signal acquisition period T of the circuit, and the acquired data acquired within this signal acquisition time is logically compared with an expected value having a certain logical value. An IC testing device configured to determine the duty ratio of the clock pulse based on the ratio between the number of matches or mismatches obtained as a result of logical comparison and the number of data acquired within the signal acquisition time.
JP3033160A 1991-02-27 1991-02-27 Ic testing device Pending JPH04270975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3033160A JPH04270975A (en) 1991-02-27 1991-02-27 Ic testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3033160A JPH04270975A (en) 1991-02-27 1991-02-27 Ic testing device

Publications (1)

Publication Number Publication Date
JPH04270975A true JPH04270975A (en) 1992-09-28

Family

ID=12378812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3033160A Pending JPH04270975A (en) 1991-02-27 1991-02-27 Ic testing device

Country Status (1)

Country Link
JP (1) JPH04270975A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292135A (en) * 2004-03-31 2005-10-20 Teradyne Inc How to measure duty cycle
JP2007225414A (en) * 2006-02-23 2007-09-06 Yokogawa Electric Corp Inspection method and device of semiconductor device
JP2008514899A (en) * 2004-09-30 2008-05-08 株式会社アドバンテスト Program, recording medium, test apparatus, and test method
JP2010237214A (en) * 2009-03-30 2010-10-21 Advantest Corp Jitter measurement apparatus, jitter calculator, jitter measurement method, program, recording medium, communication system, and test apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292135A (en) * 2004-03-31 2005-10-20 Teradyne Inc How to measure duty cycle
JP2008514899A (en) * 2004-09-30 2008-05-08 株式会社アドバンテスト Program, recording medium, test apparatus, and test method
JP2007225414A (en) * 2006-02-23 2007-09-06 Yokogawa Electric Corp Inspection method and device of semiconductor device
JP2010237214A (en) * 2009-03-30 2010-10-21 Advantest Corp Jitter measurement apparatus, jitter calculator, jitter measurement method, program, recording medium, communication system, and test apparatus

Similar Documents

Publication Publication Date Title
US5295079A (en) Digital testing techniques for very high frequency phase-locked loops
US4975636A (en) Method and apparatus for selecting and displaying a high resolution window from a main display
US7228464B2 (en) PICA system timing measurement and calibration
US6789224B2 (en) Method and apparatus for testing semiconductor devices
JP3616247B2 (en) Skew adjustment method in IC test apparatus and pseudo device used therefor
US6545460B2 (en) Power source current measurement unit for semiconductor test system
US7627790B2 (en) Apparatus for jitter testing an IC
US6668346B1 (en) Digital process monitor
JP2001318130A (en) Test system for semiconductor
US6081484A (en) Measuring signals in a tester system
JPH06324122A (en) Noncontact test device for electronic circuit board
KR100269704B1 (en) Apparatus for testing delay circuit and integrated circuit including means for testing the same
JPH04270975A (en) Ic testing device
EP1148340B1 (en) All digital built-in self-test circuit for phase-locked loops
JP3569275B2 (en) Sampling digitizer, method therefor, and semiconductor integrated circuit test apparatus equipped with sampling digitizer
CN109976134B (en) High-stability time measurement circuit system and measurement method thereof
JP3516778B2 (en) Frequency measurement method for semiconductor test equipment
JPS63191979A (en) Measuring instrument for transmission line parameter
JP3323121B2 (en) Method and apparatus for measuring semiconductor device
JP2598710B2 (en) IC input threshold measurement device
JP2602339Y2 (en) Delay measurement circuit for semiconductor test equipment
JP3601680B2 (en) IC tester
JP3609780B2 (en) Jitter measuring apparatus and method, and semiconductor integrated circuit testing apparatus including the jitter measuring apparatus
US6556036B2 (en) Semiconductor integrated circuit device
JP3071099U (en) Semiconductor test equipment

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000912