JPH0427028B2 - - Google Patents
Info
- Publication number
- JPH0427028B2 JPH0427028B2 JP58015978A JP1597883A JPH0427028B2 JP H0427028 B2 JPH0427028 B2 JP H0427028B2 JP 58015978 A JP58015978 A JP 58015978A JP 1597883 A JP1597883 A JP 1597883A JP H0427028 B2 JPH0427028 B2 JP H0427028B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- carbon fiber
- cloth
- strength
- laminated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 70
- 239000004917 carbon fiber Substances 0.000 claims description 70
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 60
- 239000004744 fabric Substances 0.000 claims description 49
- 239000000463 material Substances 0.000 claims description 35
- 239000000835 fiber Substances 0.000 claims description 19
- 235000013372 meat Nutrition 0.000 claims description 4
- 238000005452 bending Methods 0.000 description 26
- 239000011521 glass Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 14
- 239000003365 glass fiber Substances 0.000 description 11
- 230000000704 physical effect Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 239000002184 metal Substances 0.000 description 8
- 238000003475 lamination Methods 0.000 description 7
- 239000012783 reinforcing fiber Substances 0.000 description 6
- 231100000817 safety factor Toxicity 0.000 description 5
- 238000009941 weaving Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000032798 delamination Effects 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 229920000298 Cellophane Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Fishing Rods (AREA)
Description
[産業上の利用分野]
本発明は炭素繊維、金属繊維、無機繊維及び有
機繊維の高強度、高弾性繊維とフエノールやポリ
エステル及びエポキシ樹脂等の熱硬化性樹脂やナ
イロン、ピーク樹脂(PEEK)等熱可塑性樹脂か
らなる積層管に係り、特に釣竿、ゴルフシヤフト
に使用される積層管に関するものである。
[従来の技術]
一般に釣竿やゴルフシヤフトに使用される積層
管は、ガラスクロスプリプレグのみを芯金に複数
回巻回して常法により硬化した構成や、ガラス繊
維と炭素繊維の混織クロス芯金に複数回巻回し常
法により硬化した構成や、さらに炭素繊維の一方
向引揃えシートへ極薄ガラスクロスのみを芯金に
複数回巻回して硬化した構成のもの、そしてガラ
スクロスを内層へ配置し、外層へ極薄ガラスクロ
スを付けた炭素繊維一方向引揃えシートを配置し
たもの及び炭素繊維のクロスを内層へ配置し、外
層へ炭素繊維一方向引揃えシートを配置し芯金に
巻回し、常法により硬化した構成の積層管が知ら
れていた。
又、さらに実公昭46−29565号公報には内管と
外管とをガラス繊維編組で構成し、中間へガラス
繊維或いはガラス繊維テープを配し、三層よりな
る対称構造をした積層管が釣竿等の積層管として
広く知られている。
[発明が解決しようとする課題]
これら従来から知られている積層管について、
それぞれ以下に記載する通りの解決すべき問題点
を有している。
ガラスクロスプリプレグのみを複数回巻回した
構成の積層管ではガラス繊維を経糸、緯糸へ使用
して織成したものでガラス糸の番手(TEX)、及
び織成密度(糸本数/mm)によつて、このガラス
クロスの重量(W)、厚さ(mm)、縦弾性係数
(Ex)、横弾性係数(Ey)、縦強度(σx)、横強度
(σy)は決まり、ガラスクロスを単独で使用し、
構成した積層管は均質構造となり、内径、外径の
大きさを決めると、積層管の物理的強度は決まつ
てくるので軽くて、丈夫な積層管を得るための設
計自由度が極めて少ないという問題点があつた。
又、ガラス繊維と炭素繊維の混織クロスより構成
される積層管においては、経糸へのガラス繊維、
炭素繊維の混合比率、糸の番手、織成密度等によ
つて該積層管の物理的強度が決まりガラスクロス
単独使用の積層管に較べれば設計自由度はあるも
のの、いまだ不充分であるという問題点があつ
た、そして炭素繊維の一方向引揃えシートへ極薄
ガラスクロスを貼り合わせた構成による積層管は
目付け(重量/m2)及び炭素繊維自体の物性(引
張弾性率、横弾性率、引張り強度、ポアソン比、
比重等)及び極薄ガラスクロスの経糸、緯糸の番
手、及び織成密度(本数/mm)よつてこれら複合
された材料の物性(厚さ、重量、縦弾性係数
等々)は決まつてしまいガラスクロス単独の構成
の場合やガラス繊維と炭素繊維の混織クロスによ
る構成の場合と同様に、外径と内径がきまり積層
材料の配置等の選択範囲が限定されると軽くて丈
夫や積層管を得るための設計の自由度は小さくな
り、優れた積層管を得られないという問題点があ
つた。
さらに内層へガラスクロスを配置し、外層へ極
薄ガラスクロス付き炭素繊維一方向引揃えシート
を配置した積層管が知られているが、炭素繊維よ
り物理的強度の劣るガラスクロス層を有するため
軽く強度の大きい積層管を得られないという問題
点があつた。
又、さらに内層へ炭素繊維クロスを適当層数配
置し、外層には炭素繊維一方向引揃えシートを適
当層数配置した積層管が知られているが、炭素繊
維クロスはガラスクロス、ガラス、炭素繊維混織
クロスと同様に、経糸、緯糸へ炭素繊維を使用し
織成したもので糸の番手や織成密度(本数/mm)
によつて、炭素繊維クロスの物性(T、W、Ex、
Ey、σx、σy)は決定される。炭素繊維一方向引
揃えシートも炭素繊維そのものの物性及び目付け
によつて物性は決定される。これらの炭素繊維ク
ロスと炭素繊維一方向引揃えシートを各々内層、
外層へ分離した構成による積層管は、同一の曲げ
剛性を得るために炭素繊維クロスや炭素繊維一方
向引揃えシートの組合せ比率は任意に変更できる
ため積層管の物性を任意に選択できるものとして
有効な積層管であつたが、然り積層管の曲げ応力
に対して、外層の炭素繊維一方向引揃えシート層
に縦割れが発生し、続いて炭素繊維クロスと一方
向引揃えシート層との間に層間剥離が発生し、要
求されるモーメントよりも低いモーメントで破壊
するという問題があつた。
そして内管と外管とをガラス繊維編組で構成
し、中間へガラス繊維、或いはガラス繊維テープ
を配し、三層よりなる対称構造をした積層管が実
公昭46−29565号公報によつて広く知られている
が、この積層管は最内層、最外層が編組で構成さ
れているため、編組を構成する繊維が積層管の軸
方向と周方向とに対して少なくとも10度乃至80度
の角度を有するため、積層管に働く引張り、曲げ
圧縮、座屈応力に対し20%乃至80%しかその繊維
の持つ物理的強度が活かされず特に周方向の物性
が不足し要求される重量と強度を満足する積層管
を得らない構成であるという問題点があつた。
本発明は上記のような問題点に鑑みてなされた
ものであり積層管に必要とされる物性即ち重量
(W)、軸方向剛性(EIx)、周方向剛性(Ely)、
曲げ破壊モーメント(M)、比破断モーメント
(M/W)の最適な構成の積層管を得ることを目
的として成されたものである。
[課題を解決するための手段]
本発明にかかる問題を解決するために片肉の断
面が、同一組織、同一材質からなる最外層と最内
層を有し、前記最外層と最内層は高強度、高弾性
炭素繊維で構成されたクロス又は直交交叉シート
等円周方向補強繊維を有する材質で構成されると
共に、中間層は高強度、高弾性繊維で織布された
最外層、最内層と同一組織、同一材質からなるク
ロスもしくは異種組織、異種材質のクロスもしく
は直交交叉シートと一方向引揃えシートとの組合
せ、もしくは一種類又は二種類の弾性率が異なる
一方向引揃えシートのみで構成され、然も片肉の
断面が内外方向に対称構造となることを特徴とす
る積層管とした。
[作用]
積層管の最外層、最内層を同一組織、同一材質
からなる高強度、高弾性炭素繊維で構成されたク
ロス及び直交交叉シート等周方向補強繊維を有す
材料で構成したので、前記炭素繊維の持つ優れた
物性に加えて同一組織、同一材質からなるため均
等な応力を受け、周方向の繊維は圧縮力による周
方向の曲げ応力に対して材質の持つ最大の強度ま
で耐えるように作用する。
そして中間層に最外層、最内層と同一組織、同
一材質からなるクロスを配することにより層間剥
離、集中応力の発生を有効に防止する作用をす
る。又、異種組織、異種材質のクロスもしくは直
交交叉シート等と一方向引揃えシートとの組合
せ、もしくは一種類又は二種類の弾性率が異なる
一方向引揃えシートのみを配することにより、各
種材料の配分によつて重量操作及び強度操作に作
用するばかりでなく、軸方向の引張り応力に有効
に作用する。さらに片肉の断面を内外方向に対称
構造としたことにより、周方向の剪断力に有効に
作用すると共に中央部への最大剪断応力の集中を
各層間に均一に分散させるように作用する。
[実施例]
第1図に示されるように積層管1は一般に熱硬
化性樹脂等を含浸したクロス及びシートを所望形
状及び寸法に裁断し、これを芯金に巻付けた後、
その外側をセロハンテープで巻き込み、加熱硬化
させ、硬化後芯金と分離する従来の製法によつて
製造される。本発明の積層管1は最外層3と最内
層4と最外層3と最内層4に包まれた中間層5と
からなる。片肉の断面とは第10図に示す積層管
1の片肉2aによつて図示されるものである。
[1] 最外層3、最内層4を構成する材料として
は下記のものがあげられる。
(1) 炭素繊維クロス
1 織成方法
平織(表1記載の1n01である)
朱子織
一方織
ノンクリツプ(軸方向に対し90度方向
の繊維を内外に配置)
(2) 直交交叉シート
1 第2図2に具象して示すように炭素繊維
一方向引揃えシートを軸心に対して0度、
90度の方向に積層したものであり軸方向に
対し90度方向の繊維の量の比率は100%か
ら5%まで調節できる。(表1記載の1n02
である。)
[2] 中間層5の材料としては、下記のものがあ
げられる。
(1) 炭素繊維クロス(表1記載の1n01である)
は第2図1に具象化して示してある。
(2) 直交交叉シート
(3) 炭素繊維一方向引揃えシート
第2図4に具象化して示すように実施例で
は東レ株式会社登録商標及品番「トレカ40」
(弾性率40ton/mm2、引張強度280Kg/mm2)を
使用したプリブレグ「東レ株式会社商品番号
4052−12を使用(表1記載の1g12である)」
(4) 炭素繊維一方向引揃えシート
第2図3として具象化して示すように実施
例では「東レ株式会社登録商標及品番「トレ
カ300」(弾性率24ton/mm2、引張強度360Kg/
mm2)を使用したプリプレグ東レ株式会社品番
3051−12を使用。(表1記載の1c12である)
[3] 実験に基づく実施例の説明
(1) 実施例 1
第3図にプリプレグ積層パターンとして示す
ように最外層3、最内層4をそれぞれ炭素繊維
直交交叉シート(表1記載の1n02)を各1層
として、中間層5へ高弾性炭素繊維引揃えシー
ト(表1記載の1g12)を3層設ける構成とし
た。
これに対して比較例を作り対比検討するため
比較例1を造つた。
(2) 比較例 1
第7図にプリプレグの積層パターンとして示
されるように最外層3から高弾性炭素繊維引揃
えシート(表1記載の1g12)を3層設け、内
層へ炭素繊維直交交叉シートを2層設けた。
(3) 実施例1と比較例1との差異
実施例1と比較例1とを比較検討すると、周
方向の剛性、Elyで表される数値で実施例1の
方が比較例1より43%優れた剛性を示す。
この影響によつて曲げ破断モーメントの値も
15.3%向上している。
総合的な積層管1の性能を知ることへ出来る
数値として比曲げ破断モーメントの値と比軸方
向曲げ剛性とを乗じた値が用いられるが、この
値も実施例の方が14.7%向上している。
(4) 実施例 2
第4図にプリプレグの積層パターンとして示
されるように最外層3と最内層4を炭素繊維平
織クロス(表1記載の1n01)を各1層とし、
中間層5は前記炭素繊維平織クロス(表1記載
の1n01)を3層とし、高強度炭素繊維引揃え
シート(表1記載の1g12)4層とを交互に積
層する構成とした。
これに対して比較例を作り実施例2と比較検
討した。
(5) 比較例 2
第8図にプリプレグの積層パターンとして示
されるように最外層3から高強度炭素繊維一方
向引揃えシート(表1記載の1g12)を4層設
けその内層へ炭素繊維平織クロス(表1記載の
1n01)を5層設ける構成とした。
(6) 実施例2と比較例2との差異
これらを比較すると、周方向の剛性Elyは実
施例2の方が5.5%優れ曲げ破壊モーメントは
1・9%向上し、比曲げ破壊モーメントの値と
比軸方向曲げ剛性を乗じて得られる総合性能も
1.5%の向上が見られる。
(7) 実施例 3
第5図にプリプレグ積層パターンとして示す
ように最外層3、最内層4をそれぞれ炭素繊維
直交交叉シート(表1記載の1n02)各1層と
して、中間層5へ高弾性炭素繊維一方向引揃え
シート(表1記載の1g12)を3層設け、その
外層、内層へ高強度炭素繊維一方向引揃えシー
ト(表1記載の1c12)を各1層設けた。
(8) 実施例 3′
第6図にプリプレグ積層パターンとして示す
ように中間層5への高強度繊維の配置換えによ
る影響を知るために実施例3の中間層5の材質
の配置換えを行い実施例3′とした。これは最外
層3と最内層4にそれぞれ炭素繊維直交交叉シ
ート(表1に記載の1n02)を各1層とし、中
間層は高弾性炭素繊維一方向引揃えシート(表
1に記載の1g12)を3層と高強度炭素繊維一
方向引揃えシート(表1記載の1c12)を2層交
互に配置する構成とした。
(9) 比較例 3
第9図にプリプレグ積層パターンとして示す
ように外層より高弾性炭素繊維一方向引揃えシ
ート(表1記載の1c12)を2層設け、その内層
へ高弾性炭素繊維一方向引揃えシート(表1記
載の1g12)を3層設け、その内層へ炭素繊維
直交交叉シート(表1記載の1n02)を2層設
けた。
(10) 実施例3及び実施例3′と比較例3との差異
これらを比較すると実施例3、3′は最外層
3、最内層4は同一構成で、高弾性炭素繊維
一方向引揃えシート(表1記載の1g12)と
高強度炭素繊維一方向引揃えシート(表1記
載の1c12)の配置を変えたものであり、より
高強度繊維の層を片肉の断面の対称の中心点
から遠い位置に配置すると曲げ破壊モーメン
トは向上することがわかる。実施例3、3′は
比較例3と周方向の剛性について比較すれば
24.6%乃至22.6%実施例3、3′の方が大きく、
この影響によつて曲げ破壊モーメントは8.4
%乃至7.9%向上し、比曲げ破壊モーメント
の値と比軸方向曲げ剛性の値を乗じて得られ
る総合性能も8.4%乃至8%の向上が認めら
れる。
(11) その他の構成例
特に図示はしないが、上記実施例の他に最外
層3、最内層4に配置する炭素繊維クロスとし
ては朱子織、一方織、ノンクリツプ等の織物を
配する以外に、直交交叉シートとしてもよく直
交交叉シートの繊維方向が積層管1の軸心に対
して0度方向に高弾性の繊維を配置しても高強
度(低弾性である)繊維を配置することも出来
る。同じように軸心に対して90度の方向へ配置
することも出来る。又前記直交交叉シートに替
えて炭素繊維一方向引揃えシートとして配置し
てもよい。
最外層3、最内層4に使用される材料は積層
管1の周方向の補強繊維を必ず有しており、こ
の周方向の補強繊維が最外層3の外側、最内層
4の内側へ設けることが、軽くて強度の高い積
層管1を構成する場合重要な要素となつて来
る。最外層3、最内層4は必要に応じてそれぞ
れ1層以上設けることができる。
さらに、中間層5は前記炭素繊維クロス、炭
素繊維直交交叉シート、高弾性、高強度炭素繊
維一方向引揃えシートの一種類もしくは複数種
類をそれぞれ1層乃至数層設けることが出来
る。
次に上述構成した積層管を構成した材料の物正
と計算結果について記載する。
計算に使用した各材料の物生を表−1に示す。
[Industrial Application Field] The present invention is applicable to high-strength, high-elasticity fibers such as carbon fibers, metal fibers, inorganic fibers, and organic fibers, thermosetting resins such as phenol, polyester, and epoxy resins, nylon, peak resin (PEEK), etc. The present invention relates to laminated tubes made of thermoplastic resin, and particularly to laminated tubes used in fishing rods and golf shafts. [Prior Art] Generally, laminated tubes used for fishing rods and golf shafts have a structure in which only glass cloth prepreg is wound around a core metal several times and hardened by a conventional method, or a structure in which a glass cloth prepreg is wound around a core metal and hardened by a conventional method, or a cloth core metal made of a mixed fabric of glass fiber and carbon fiber is used. There are configurations in which carbon fibers are wound multiple times and cured using a conventional method, and ultra-thin glass cloth is further wound around a core metal multiple times around a unidirectional carbon fiber sheet and cured, and glass cloth is placed in the inner layer. Then, a carbon fiber unidirectionally aligned sheet with ultra-thin glass cloth attached to the outer layer is placed, and a carbon fiber cloth is placed on the inner layer, a carbon fiber unidirectionally aligned sheet is placed on the outer layer, and wound around a core metal. , a laminated tube having a structure hardened by a conventional method was known. Furthermore, Japanese Utility Model Publication No. 46-29565 discloses that a fishing rod is a laminated tube with a symmetrical structure consisting of three layers, with an inner tube and an outer tube made of glass fiber braid, and a glass fiber or glass fiber tape arranged in the middle. It is widely known as a laminated pipe. [Problems to be solved by the invention] Regarding these conventionally known laminated pipes,
Each has problems to be solved as described below. Laminated pipes with a structure in which only glass cloth prepreg is wound multiple times are woven using glass fibers for the warp and weft, and the woven fabric varies depending on the glass thread count (TEX) and weaving density (number of threads/mm). , the weight (W), thickness (mm), longitudinal elastic modulus (Ex), transverse elastic modulus (Ey), longitudinal strength (σx), and transverse strength (σy) of this glass cloth are determined, and the glass cloth is used alone. death,
The resulting laminated tube has a homogeneous structure, and the physical strength of the laminated tube is determined by determining the inner and outer diameters, so there is extremely little freedom in design to obtain a light and durable laminated tube. There was a problem.
In addition, in laminated pipes made of a mixed cloth of glass fibers and carbon fibers, glass fibers are added to the warp,
The physical strength of the laminated tube is determined by the carbon fiber mixing ratio, yarn count, weaving density, etc.Although there is more freedom in design compared to laminated tubes using only glass cloth, the problem is that it is still insufficient. The laminated tube, which is made by laminating an ultra-thin glass cloth to a unidirectionally aligned sheet of carbon fibers, has a dotted surface and a unidirectionally aligned sheet of carbon fibers, which has a structure with a laminate that has a fabric weight (weight/m 2 ) and the physical properties of the carbon fibers themselves (tensile modulus, transverse modulus, tensile strength, Poisson's ratio,
The physical properties of these composite materials (thickness, weight, modulus of longitudinal elasticity, etc.) are determined by the warp and weft counts of the ultra-thin glass cloth, and the weaving density (number of threads/mm). As with the case of a single cloth structure or a structure of a mixed cloth of glass fiber and carbon fiber, if the outer diameter and inner diameter are determined and the range of selection such as the arrangement of laminated materials is limited, it is possible to choose a light, durable or laminated pipe. There was a problem that the degree of freedom in the design was reduced and it was not possible to obtain an excellent laminated tube. Furthermore, a laminated tube is known in which a glass cloth is arranged in the inner layer and a carbon fiber unidirectionally aligned sheet with ultra-thin glass cloth is arranged in the outer layer, but it is light and has a glass cloth layer that has less physical strength than carbon fiber. There was a problem that a laminated tube with high strength could not be obtained. Furthermore, a laminated tube is known in which an appropriate number of layers of carbon fiber cloth are arranged in the inner layer and an appropriate number of layers of carbon fiber unidirectionally aligned sheets are arranged in the outer layer, but carbon fiber cloth can be made of glass cloth, glass, carbon, etc. Similar to fiber blend cloth, it is woven using carbon fiber for the warp and weft, and the yarn count and weaving density (number/mm)
The physical properties of carbon fiber cloth (T, W, Ex,
Ey, σx, σy) are determined. The physical properties of the carbon fiber unidirectionally aligned sheet are also determined by the physical properties and basis weight of the carbon fibers themselves. These carbon fiber cloth and carbon fiber unidirectionally aligned sheets are each used as an inner layer,
A laminated tube with a structure in which the outer layer is separated is effective because the combination ratio of carbon fiber cloth and carbon fiber unidirectionally aligned sheets can be changed arbitrarily in order to obtain the same bending rigidity, so the physical properties of the laminated tube can be arbitrarily selected. However, due to the bending stress of the laminated pipe, vertical cracks occurred in the outer carbon fiber unidirectionally aligned sheet layer, and then cracks occurred between the carbon fiber cloth and the unidirectionally aligned sheet layer. There was a problem that delamination occurred between the layers, resulting in failure at a moment lower than the required moment. Publication of Utility Model Publication No. 46-29565 has made a laminated tube with a symmetrical three-layer structure in which the inner and outer tubes are made of glass fiber braid, and glass fiber or glass fiber tape is arranged in the middle. As is known, this laminated tube has the innermost and outermost layers made of braid, so the fibers that make up the braid form an angle of at least 10 to 80 degrees with respect to the axial direction and circumferential direction of the laminated tube. As a result, the physical strength of the fibers is only utilized by 20% to 80% of the tensile, bending compression, and buckling stresses that act on the laminated pipe, and the physical properties in the circumferential direction are particularly insufficient to meet the required weight and strength. There was a problem in that the structure did not allow for a laminated tube to be obtained. The present invention was made in view of the above-mentioned problems, and the physical properties required for laminated pipes, namely weight (W), axial stiffness (EIx), circumferential stiffness (Ely),
This was accomplished with the aim of obtaining a laminated pipe with an optimal configuration for bending moment of failure (M) and specific moment of failure (M/W). [Means for Solving the Problems] In order to solve the problems of the present invention, the cross section of the piece of meat has an outermost layer and an innermost layer made of the same structure and the same material, and the outermost layer and the innermost layer have high strength. , is made of a material having circumferential reinforcing fibers such as a cloth or orthogonal cross sheet made of high modulus carbon fiber, and the middle layer is the same as the outermost layer and the innermost layer, which are woven from high strength and high modulus fibers. structure, a cross or different structures made of the same material, a combination of cloth or orthogonal sheets of different materials and unidirectionally aligned sheets, or only unidirectionally aligned sheets with one or two types of different elastic moduli, Moreover, the laminated pipe is characterized by a cross section of one side having a symmetrical structure in the inner and outer directions. [Function] Since the outermost layer and the innermost layer of the laminated pipe are made of a material having circumferential reinforcing fibers such as cross and orthogonal sheets made of high-strength, high-elasticity carbon fibers with the same structure and the same material, the above-mentioned In addition to the excellent physical properties of carbon fiber, since it is made of the same structure and material, it receives even stress, and the circumferential fibers can withstand circumferential bending stress due to compressive force up to the maximum strength of the material. act. By disposing a cloth made of the same structure and material as the outermost layer and the innermost layer in the intermediate layer, delamination and the occurrence of concentrated stress can be effectively prevented. In addition, by combining unidirectionally aligned sheets with different structures, cross or orthogonal sheets made of different materials, or by arranging only unidirectionally aligned sheets with one or two types of different elastic moduli, it is possible to The distribution not only affects weight and strength manipulation, but also effectively affects axial tensile stress. Furthermore, by making the cross section of the piece of meat symmetrical in the inner and outer directions, it effectively acts on the shearing force in the circumferential direction and acts to uniformly disperse the concentration of the maximum shearing stress in the center between the layers. [Example] As shown in FIG. 1, the laminated tube 1 is generally made by cutting a cloth or sheet impregnated with a thermosetting resin or the like into a desired shape and size, and wrapping this around a core metal.
It is manufactured by a conventional manufacturing method in which the outside is wrapped with cellophane tape, heated and cured, and separated from the core metal after curing. The laminated pipe 1 of the present invention consists of an outermost layer 3, an innermost layer 4, and an intermediate layer 5 surrounded by the outermost layer 3 and the innermost layer 4. The cross-section of one wall is illustrated by the one wall 2a of the laminated pipe 1 shown in FIG. [1] Examples of the materials constituting the outermost layer 3 and the innermost layer 4 include the following. (1) Carbon fiber cloth 1 Weaving method Plain weave (1n01 listed in Table 1) Satin weave Single weave Non-clip (fibers oriented at 90 degrees to the axial direction are arranged inside and outside) (2) Orthogonal crisscross sheet 1 Fig. 2 As shown in Fig. 2, the carbon fiber unidirectionally aligned sheet is set at 0 degrees with respect to the axis.
It is laminated in a 90 degree direction, and the ratio of the amount of fibers in the 90 degree direction to the axial direction can be adjusted from 100% to 5%. (1n02 listed in Table 1
It is. ) [2] Examples of materials for the intermediate layer 5 include the following. (1) Carbon fiber cloth (1n01 listed in Table 1)
is concretely shown in FIG. (2) Orthogonal intersecting sheet (3) Carbon fiber unidirectional alignment sheet As shown in FIG.
Pre-Breg using (modulus of elasticity 40ton/mm 2 , tensile strength 280Kg/mm 2 ) "Toray Industries, Ltd. product number
4052-12 (1g12 listed in Table 1)" (4) Carbon fiber unidirectional alignment sheet As shown concretely in Figure 2, in the example, ” (elastic modulus 24ton/mm 2 , tensile strength 360Kg/
mm 2 ) prepreg using Toray Co., Ltd. product number
Uses 3051−12. (1c12 listed in Table 1) [3] Explanation of examples based on experiments (1) Example 1 As shown in the prepreg lamination pattern in Figure 3, the outermost layer 3 and the innermost layer 4 were made of orthogonal carbon fiber sheets. (1n02 listed in Table 1) was used as one layer each, and three layers of highly elastic carbon fiber aligned sheets (1g12 listed in Table 1) were provided in the intermediate layer 5. In contrast, Comparative Example 1 was created in order to create a comparative example and conduct a comparative study. (2) Comparative Example 1 As shown in the prepreg lamination pattern in Figure 7, three layers of high elastic carbon fiber aligned sheets (1g12 listed in Table 1) were provided from the outermost layer 3, and carbon fiber orthogonal sheets were placed in the inner layer. Two layers were provided. (3) Difference between Example 1 and Comparative Example 1 When Example 1 and Comparative Example 1 are compared, Example 1 is 43% higher than Comparative Example 1 in terms of rigidity in the circumferential direction, expressed as Ely. Shows excellent rigidity. Due to this influence, the value of bending rupture moment also
This is an increase of 15.3%. The value obtained by multiplying the specific bending moment of rupture by the specific axial bending stiffness is used as a numerical value that can be used to determine the overall performance of the laminated pipe 1, and this value was also improved by 14.7% in the example. There is. (4) Example 2 As shown in the prepreg lamination pattern in Fig. 4, the outermost layer 3 and the innermost layer 4 were each made of one layer of carbon fiber plain weave cloth (1n01 listed in Table 1),
The intermediate layer 5 had a structure in which three layers of the carbon fiber plain weave cloth (1n01 listed in Table 1) and four layers of high-strength aligned carbon fiber sheets (1g12 listed in Table 1) were laminated alternately. In contrast, a comparative example was created and compared with Example 2. (5) Comparative Example 2 As shown in the prepreg lamination pattern in Figure 8, four layers of high-strength carbon fiber unidirectionally aligned sheets (1g12 listed in Table 1) are provided from the outermost layer 3, and carbon fiber plain weave cloth is added to the inner layer. (as listed in Table 1)
1n01) in five layers. (6) Difference between Example 2 and Comparative Example 2 Comparing them, Example 2 has a 5.5% better circumferential rigidity Ely and a 1.9% increase in bending failure moment, and a 1.9% increase in specific bending failure moment. The overall performance obtained by multiplying by the specific axial bending stiffness is also
An improvement of 1.5% can be seen. (7) Example 3 As shown in the prepreg lamination pattern in FIG. 5, the outermost layer 3 and the innermost layer 4 are each made of one layer each of carbon fiber orthogonal sheets (1n02 listed in Table 1), and the middle layer 5 is made of high elastic carbon. Three layers of fiber unidirectionally aligned sheets (1g12 listed in Table 1) were provided, and one layer each of high-strength carbon fiber unidirectionally aligned sheets (1c12 listed in Table 1) was provided on the outer layer and the inner layer. (8) Example 3' As shown in the prepreg lamination pattern in Figure 6, the material of the intermediate layer 5 in Example 3 was rearranged in order to understand the effect of rearranging the high-strength fibers in the intermediate layer 5. Example 3' is used. The outermost layer 3 and the innermost layer 4 each have one layer of orthogonal carbon fiber sheets (1n02 listed in Table 1), and the middle layer is a highly elastic carbon fiber unidirectionally aligned sheet (1g12 listed in Table 1). The structure was such that three layers and two layers of high-strength carbon fiber unidirectionally aligned sheets (1c12 listed in Table 1) were arranged alternately. (9) Comparative Example 3 As shown in the prepreg lamination pattern in Figure 9, two layers of high-modulus carbon fiber unidirectionally aligned sheets (1c12 in Table 1) are provided from the outer layer, and high-modulus carbon fibers are unidirectionally aligned to the inner layer. Three layers of alignment sheets (1g12 listed in Table 1) were provided, and two layers of carbon fiber orthogonal sheets (1n02 listed in Table 1) were provided on the inner layer. (10) Differences between Example 3 and Example 3' and Comparative Example 3 Comparing these, Examples 3 and 3' have the same structure as the outermost layer 3 and the innermost layer 4, and are high elastic carbon fiber unidirectionally aligned sheets. (1g12 listed in Table 1) and the high-strength carbon fiber unidirectionally aligned sheet (1c12 listed in Table 1) are arranged differently, and the layer of higher-strength fibers is placed from the symmetrical center point of the cross section of one side. It can be seen that the bending failure moment increases when placed at a far position. Comparing Examples 3 and 3' with Comparative Example 3 in terms of rigidity in the circumferential direction,
24.6% to 22.6% Example 3, 3′ is larger;
Due to this effect, the bending failure moment is 8.4
% to 7.9%, and the overall performance obtained by multiplying the value of specific bending failure moment by the value of specific axial bending stiffness is also improved by 8.4% to 8%. (11) Other configuration examples Although not particularly shown in the drawings, in addition to the above embodiments, the carbon fiber cloth disposed in the outermost layer 3 and the innermost layer 4 may include satin weave, one-sided weave, non-clip fabrics, etc. It may be used as an orthogonal orthogonal sheet. Even if the fiber direction of the orthogonal orthogonal sheet is 0 degrees with respect to the axis of the laminated tube 1, high-elastic fibers can be arranged, or high-strength (low-elasticity) fibers can be arranged. . Similarly, it can also be placed at 90 degrees to the axis. Further, instead of the orthogonal intersecting sheets, a carbon fiber unidirectionally aligned sheet may be used. The materials used for the outermost layer 3 and the innermost layer 4 always have reinforcing fibers in the circumferential direction of the laminated pipe 1, and these circumferential reinforcing fibers are provided outside the outermost layer 3 and inside the innermost layer 4. However, this becomes an important element when constructing the laminated tube 1 which is light and strong. One or more layers of each of the outermost layer 3 and the innermost layer 4 can be provided as necessary. Furthermore, the intermediate layer 5 can be provided with one to several layers of one or more types of carbon fiber cloth, carbon fiber orthogonal sheets, high elasticity, high strength carbon fiber unidirectionally aligned sheets. Next, the physical properties and calculation results of the materials that made up the laminated pipe constructed above will be described. Table 1 shows the life of each material used in the calculation.
【表】
計算の手順は下記のとおりである。
(1) 引張り応力及び材料の安全係数
(イ) 種々の物性の異なる層で構成した積層管1
について、これらにの層を等質のものとみな
し、軸方向の剛性Elx=107内径φ20の条件に
おいて外径を調整した。
(ロ) この積層管にモーメント1500Kg/mmからか
け、500Kg・mmピツチで増加させた。
(ハ) この発生する軸方向の歪Ex、周方向Eyを
算出した。
(ニ) 軸方向の歪Exから軸方向の各層の応力を
算出し、この応力を各層を構成する材料が有
する強度で除算して算出したものを引張り安
全係数として表示しているが、この数値が1
を越えると破壊することになる。
表−2は最初に破壊が発生する材料の引張
り安全係数を1とし、その時の他の材料の安
全係数をみている。
(2) 軸と直角方向の曲げ応力、剪断応力とその安
全係数
(イ) 積層管1の片肉厚分を第10図の様に軸方
向と90度方向に取出し、積層板2aとする。
(ロ) 軸方向の剛性Elx=107及び内径φ20によつ
て、この積層板2aの剛性を求めた。
(ハ) この様にして求められた剛性Elyの板につ
いて、周方向の歪Eyからの曲げ応力及び剪
断応力を算出し、これを各層の材料が有する
強度で除算して算出した。
(ニ) 軸の直角方向の曲げ応力については、この
数値が1を越えて破壊する場合と、剛性バラ
ンスの悪さから圧壊する場合がある。
(ホ) 剪断応力については、この数値が1を越え
ると剥離が発生することとなる。
(3) これら各構成における各層の応力分布数値を
表−2に示す。
尚、表−2においてWは軸方向の剛性Elx=
107、内径φ20とした時の積層管1の重量であ
り、この数値が小さい程軽量であるといえる。
Tは軸方向の剛性Elx=107、内径φ20に調整
した後の厚さ。
Elyは軸方向の剛性Elx=107、内径φ20の時
の周方向の剛性であり大きい程横の曲げ剛性が
高く、つぶれにくい。
又、クロスや直交交叉シートを最外層3へ配
置することにより上記周方向の剛性Elyの増加
が顕著である。
Mは、各種層構造の軸方向の各材料の内、引
張り応力/所有強度=1となつた時に耐えられ
る最大曲げ破壊モーメントを表すが、Mが大き
い程高強力の構造といえる。
M/Wは最大曲げ破壊モーメントを積層管1
の重量で除算した比強力を表す。この値が大き
い程軽くかつ強力を有する構造といえる。
EIx/Wは、軸方向の剛性を積層管1の重量
で除算したもので比剛性を表す。この値が大き
い程軽くかつ剛性が大である構造といえる。
M・EIx/W2は比強力と比剛性を積算した
もので積層管の性能を総合的に表す係数といえ
る。[Table] The calculation procedure is as follows. (1) Tensile stress and material safety factor (a) Laminated pipe composed of layers with various physical properties 1
Regarding these layers, the outer diameter was adjusted under the condition that the axial stiffness Elx = 10 7 and the inner diameter φ20. (b) A moment was applied to this laminated pipe from 1500Kg/mm and increased at a pitch of 500Kg/mm. (c) The resulting strain Ex in the axial direction and the strain Ey in the circumferential direction were calculated. (d) The stress of each layer in the axial direction is calculated from the strain Ex in the axial direction, and this stress is divided by the strength of the material constituting each layer, and the calculated value is displayed as the tensile safety factor. is 1
Exceeding this will result in destruction. Table 2 assumes that the tensile safety factor of the material where fracture occurs first is 1, and looks at the safety factors of other materials at that time. (2) Bending stress, shearing stress in the direction perpendicular to the axis, and their safety factors (a) Take out the thickness of one side of the laminated pipe 1 in the direction of 90 degrees to the axial direction as shown in Figure 10, and use it as the laminated plate 2a. (b) The rigidity of this laminated plate 2a was determined from the axial rigidity Elx= 107 and the inner diameter φ20. (c) For the plate with the rigidity Ely determined in this way, the bending stress and shear stress from the strain Ey in the circumferential direction were calculated, and these were divided by the strength of the material of each layer. (d) Regarding the bending stress in the direction perpendicular to the axis, there are cases where this value exceeds 1, causing destruction, and cases where the object collapses due to poor rigidity balance. (e) Regarding shear stress, if this value exceeds 1, peeling will occur. (3) Table 2 shows the stress distribution values for each layer in each of these configurations. In addition, in Table 2, W is the axial stiffness Elx=
10 7 is the weight of the laminated tube 1 when the inner diameter is φ20, and it can be said that the smaller this value is, the lighter it is. T is the thickness after adjusting the axial rigidity Elx = 10 7 and the inner diameter φ20. Ely is the rigidity in the circumferential direction when the axial rigidity Elx = 10 7 and the inner diameter is φ20. Further, by arranging a cloth or orthogonal cross sheet in the outermost layer 3, the rigidity Ely in the circumferential direction is significantly increased. M represents the maximum bending fracture moment that can be withstood when tensile stress/possessive strength=1 among the materials in the axial direction of various layered structures, and it can be said that the larger M is, the stronger the structure is. M/W is the maximum bending failure moment of laminated pipe 1
represents the specific strength divided by the weight of It can be said that the larger this value is, the lighter and stronger the structure is. EIx/W is the stiffness in the axial direction divided by the weight of the laminated pipe 1, and represents specific stiffness. It can be said that the larger this value is, the lighter and more rigid the structure is. M・EIx/W 2 is the sum of specific strength and specific stiffness, and can be said to be a coefficient that comprehensively represents the performance of laminated pipes.
【表】【table】
【表】
軸方向の引張り応力は使用する材料の強度に負
うところが大きく、強度の弱い材料に応力が集中
する傾向がある。高強度炭素繊維プリプレグシー
ト(1c12)は高弾性炭素繊維プリプレグシート
(1g12)の強度より強いため高弾性炭素繊維プリ
プレグシートに応力が集中していることがわか
る。しかし実施例3と実施例3′とを比較すると、
それぞれ高弾性炭素繊維シートプリプレグ
(1g12)を3層、高弾性炭素繊維シートプリプレ
グを2層にて中間層5を構成した上、最外層3と
最内層4とをカーボンクロス(1n02)1層の同
一構成としているにも拘わらず、高強度炭素繊維
シートプリプレグを肉厚の中心から遠がけ外層、
内層よりに配置する実施例3の方が実施例3′より
もモーメントMが若干向上居り対称構造の中でも
高強度材料を肉厚中心より遠い位置に配置した構
成の方が強力が向上することが解る。
又周方向の曲げ応力は対称構造の効果が顕著に
現われる要素である。最外層3、最内層4へ炭素
繊維クロス、炭素繊維直交交叉シート等周方向の
補強繊維を有する材料を配したことにより、最大
応力が発生する最外層3、最内層4で有効に材料
が働き応力の均等な応力負荷を分担しているので
軽量でしかも強度の高い積層管1を得るための構
成としては優れているといえる。
[発明の効果]
本発明の積層管は片肉の断面が、同一組織、同
一材質からなる最外層と最内層を有し、最外層と
最内層は高強度、高弾性炭素繊維で構成されたク
ロス又は直交交叉シート等周方向補強繊維を有す
る材料で構成したので、周方向の曲げに対する最
大応力が発生する最外層、最内層に周方向の炭素
繊維が有効に働き、応力の均等な負担を可能とし
重量が軽く強度のある積層管の構成となり、さら
に中間層は高強度、高弾性繊維で織布された最外
層、最内層と同一組織、同一材質からなるクロス
もしくは異種組織、異種材質のクロスもしくは直
交交叉シートと一方向引揃えシートとの組合せ、
もしくは一種類以上の弾性率が異なる一方向引揃
えシートのみで構成され、然も片肉の断面が内外
方向に対称構造に構成されているので軸方向の応
力に対して効果を発揮し、多層構造とした場合均
質構造の場合にくらべ中央部への最大剪断応力の
集中が無く、無力は分散され層間はくりをよく防
止する構成となつた。軸方向の引張り応力に対す
る効果、周方向の曲げに対する効果、周方向の剪
断応力に対する効果が複合されて、積層管1の曲
げ破壊モーメントを向上させる効果を発揮するこ
とにより、軽量で大きい曲げ剛性、大きい曲げ強
力を有する積層管1が得られるという効果を奏す
るものである。[Table] Tensile stress in the axial direction is largely dependent on the strength of the material used, and stress tends to concentrate on materials with weaker strength. It can be seen that stress is concentrated on the high-strength carbon fiber prepreg sheet (1c12) because it is stronger than the high-modulus carbon fiber prepreg sheet (1g12). However, when comparing Example 3 and Example 3',
The middle layer 5 is made up of three layers of high modulus carbon fiber sheet prepreg (1g12) and two layers of high modulus carbon fiber sheet prepreg, and the outermost layer 3 and the innermost layer 4 are made of one layer of carbon cloth (1n02). Although they have the same structure, the high-strength carbon fiber sheet prepreg is moved away from the center of the wall thickness to create an outer layer,
Example 3, which is placed closer to the inner layer, has a slightly higher moment M than Example 3', and even in a symmetrical structure, the structure in which the high-strength material is placed farther from the center of wall thickness improves the strength. I understand. Furthermore, the bending stress in the circumferential direction is an element in which the effect of the symmetrical structure is noticeable. By arranging materials with reinforcing fibers in the circumferential direction, such as carbon fiber cloth or orthogonal carbon fiber sheets, to the outermost layer 3 and innermost layer 4, the material works effectively in the outermost layer 3 and innermost layer 4, where the maximum stress occurs. Since the stress load is shared evenly, it can be said to be an excellent structure for obtaining a lightweight and high-strength laminated pipe 1. [Effect of the invention] The cross section of the laminated pipe of the present invention has an outermost layer and an innermost layer made of the same structure and the same material, and the outermost layer and the innermost layer are made of high strength and high elasticity carbon fiber. Since it is made of a material that has equal circumferential reinforcing fibers in a cross or orthogonal sheet, the circumferential carbon fibers work effectively on the outermost and innermost layers, where the maximum stress occurs when bending in the circumferential direction, and the stress is evenly distributed. The structure of the laminated tube is light in weight and strong, and the middle layer is the outermost layer woven from high-strength, high-elasticity fibers, the same structure as the innermost layer, a cloth made of the same material, a different structure, or a different material. A combination of a cross or orthogonal sheet and a unidirectionally aligned sheet,
Alternatively, it is made up of only unidirectionally aligned sheets with one or more different moduli of elasticity, and the cross section of one side has a symmetrical structure in the inside-outside direction, so it is effective against stress in the axial direction, and is multi-layered. Compared to a homogeneous structure, the maximum shear stress is not concentrated in the center, and the stress is dispersed, resulting in a structure that effectively prevents delamination. The effect on tensile stress in the axial direction, the effect on bending in the circumferential direction, and the effect on shear stress in the circumferential direction are combined, and the effect of improving the bending failure moment of the laminated pipe 1 is achieved, resulting in lightweight and large bending rigidity, This has the effect that a laminated pipe 1 having high bending strength can be obtained.
第1図は本発明に係る釣竿等積層管を一部切欠
して示した側面図、第2図1は平織クロスを第2
図2は直交交叉シートを第2図3は高強度一方向
引揃えシートをそして第4図4は高弾性一方向引
揃えシートをそれぞれ具象して示した断面図、第
3図乃至第6図は積層管における片肉断面の各実
施例を夫々示した各断面図、第7図乃至第9図は
積層管における片肉断面の各比較例を夫々示した
各断面図、第10図は同積層管の片肉の厚分を強
度計算にために取り出す積層板の取り出し説明図
である。
1……積層管、2a……片肉、3……最外層、
4……最内層、5……最外層。
Figure 1 is a partially cutaway side view of a laminated pipe for fishing rods, etc., according to the present invention, and Figure 2.
Fig. 2 is a cross-sectional view showing an orthogonal sheet, Fig. 3 is a high-strength unidirectionally aligned sheet, and Fig. 4 is a cross-sectional view showing a high elasticity unidirectionally aligned sheet, respectively, and Figs. 3 to 6 7 to 9 are cross-sectional views showing comparative examples of the cross-section of a single wall in a laminated pipe, and FIG. 10 is the same. It is an explanatory view of taking out a laminated plate from which the thickness of one wall of a laminated pipe is taken out for strength calculation. 1... Laminated pipe, 2a... Piece of meat, 3... Outermost layer,
4... Innermost layer, 5... Outermost layer.
Claims (1)
最外層と最内層を有し、前記最外層と最内層は高
強度、高弾性炭素繊維で構成されたクロス又は直
交交叉シート等周方向補強繊維を有する材料で構
成されると共に、中間層は高強度、高弾性繊維で
織成された最外層、最内層と同一組織同一材質か
らなるクロスもしくは異種組織、異種材質のクロ
スもしくは直交交叉シートと一方向引揃えシート
との組合せ、もしくは一種類または二種類の弾性
率が異なる一方向引揃えシートのみで構成され、
然も片肉の断面が内外方向に対称構造となること
を特徴とする釣竿等の積層管。1. The cross section of one piece of meat has an outermost layer and an innermost layer made of the same structure and the same material, and the outermost layer and the innermost layer are reinforced in the circumferential direction by a cloth or orthogonal cross sheet made of high-strength, high-elasticity carbon fiber. The middle layer is composed of a material having fibers, and the middle layer is an outermost layer woven with high-strength, high-elastic fibers, a cloth made of the same material with the same structure as the innermost layer, a cloth of a different type, a cloth of different materials, or an orthogonal cross sheet. It is composed of a combination with a unidirectional aligned sheet, or only a unidirectional aligned sheet with one or two types of different elastic moduli,
A laminated pipe, such as a fishing rod, characterized by a cross section of one side having a symmetrical structure in the inner and outer directions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1597883A JPS59142134A (en) | 1983-02-01 | 1983-02-01 | Laminated tube for fishing rod, etc. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1597883A JPS59142134A (en) | 1983-02-01 | 1983-02-01 | Laminated tube for fishing rod, etc. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59142134A JPS59142134A (en) | 1984-08-15 |
JPH0427028B2 true JPH0427028B2 (en) | 1992-05-08 |
Family
ID=11903776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1597883A Granted JPS59142134A (en) | 1983-02-01 | 1983-02-01 | Laminated tube for fishing rod, etc. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59142134A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003092372A1 (en) * | 2002-05-01 | 2003-11-13 | Shimano Inc. | Fishing rod |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0216628Y2 (en) * | 1985-04-10 | 1990-05-08 | ||
JP2520100B2 (en) * | 1990-04-06 | 1996-07-31 | ダイワ精工株式会社 | Fishing rod |
JP4671466B2 (en) * | 2000-05-10 | 2011-04-20 | 株式会社シマノ | Body |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51147580A (en) * | 1975-06-13 | 1976-12-17 | Kubota Ltd | Fiber reinforced composite pipe |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5669427U (en) * | 1979-10-30 | 1981-06-09 |
-
1983
- 1983-02-01 JP JP1597883A patent/JPS59142134A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51147580A (en) * | 1975-06-13 | 1976-12-17 | Kubota Ltd | Fiber reinforced composite pipe |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003092372A1 (en) * | 2002-05-01 | 2003-11-13 | Shimano Inc. | Fishing rod |
Also Published As
Publication number | Publication date |
---|---|
JPS59142134A (en) | 1984-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4025675A (en) | Reinforced laminates | |
CA2866029C (en) | Hybrid three-dimensional woven/laminated struts for composite structural applications | |
JP3009311B2 (en) | Fiber-reinforced resin coil spring and method of manufacturing the same | |
JPS59196238A (en) | Fiber reinforced composite body | |
JP2022182789A (en) | Fiber structure, and fiber-reinforced composite material | |
US9415566B2 (en) | Three-dimensional fiber-reinforced composite material | |
JP7322588B2 (en) | Fiber structures and fiber reinforced composites | |
JPH04363215A (en) | Carbon fiber prepreg and carbon fiber reinforced resin | |
JPH0427028B2 (en) | ||
JP7177100B2 (en) | Woven 3D fiber reinforced structure and method of making same | |
WO2017038445A1 (en) | Fiber structure and fiber reinforced composite material | |
JPH07144371A (en) | Carbon fiber reinforced resin composite material having high damping capacity | |
JP4402477B2 (en) | Tubular laminate comprising non-woven fabric and method for producing the same | |
KR102200951B1 (en) | Fiber reinforced plastic sheet and stack structure including the same | |
JP7287162B2 (en) | Fiber structures and fiber reinforced composites | |
JP2019094578A (en) | Fiber structure and fiber reinforced composite material | |
JPH0776051A (en) | Frp panel and its manufacture | |
RU2801427C1 (en) | Carbon composite threaded connecting element based on 3d solid-woven preform | |
JPH0369604A (en) | Helmet made of fiber-reinforced resin | |
JPH08336904A (en) | Tube | |
JP3087359B2 (en) | Method for producing three-dimensional fabric for connecting member | |
JPH04249137A (en) | Fiber reinforced resin material | |
JPS62270633A (en) | Composition element | |
JPS58102889A (en) | Tubular shape | |
JPH07217688A (en) | Energy absorption member |