JPH0426961B2 - - Google Patents
Info
- Publication number
- JPH0426961B2 JPH0426961B2 JP58209074A JP20907483A JPH0426961B2 JP H0426961 B2 JPH0426961 B2 JP H0426961B2 JP 58209074 A JP58209074 A JP 58209074A JP 20907483 A JP20907483 A JP 20907483A JP H0426961 B2 JPH0426961 B2 JP H0426961B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- plane
- crystal
- cutting tool
- cutting edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005520 cutting process Methods 0.000 claims description 69
- 239000013078 crystal Substances 0.000 claims description 51
- 229910052582 BN Inorganic materials 0.000 claims description 13
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 238000005219 brazing Methods 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 5
- 229910003460 diamond Inorganic materials 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 230000007017 scission Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 239000000945 filler Substances 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
- B23B27/148—Composition of the cutting inserts
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、切削加工用の切削工具に係り、特に
高硬度の鉄系材料を鏡面切削し得るようにした切
削工具に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a cutting tool for cutting, and particularly to a cutting tool capable of mirror-cutting a highly hard iron-based material.
アルミニウムや銅等の非鉄金属材料の精密切削
や鏡面切削等の切削工具として、単結晶ダイヤモ
ンドを切刃部に用いた切削工具が知られている。
2. Description of the Related Art Cutting tools using single crystal diamond in the cutting edge are known as cutting tools for precision cutting, mirror cutting, etc. of non-ferrous metal materials such as aluminum and copper.
このような、ダイヤモンドを用いた切削工具
で、たとえば焼き入れした炭素鋼やステンレス鋼
のような鉄系材料を切削加工すると、その切削熱
によりダイヤモンドが鉄と反応して炭化物を作る
ため、ダイヤモンドの摩耗が激しくなり、正常な
切削ができなくなる。 When cutting ferrous materials such as hardened carbon steel or stainless steel with a diamond-based cutting tool, the cutting heat causes the diamond to react with the iron and form carbide, which causes the diamond to deteriorate. The wear becomes severe and normal cutting becomes impossible.
このため、鉄系材料の切削加工は、窒化硼素の
結晶を焼結した多結晶焼結体に切刃部を形成した
切削工具を用いている。この切削工具は、たとえ
ば第1図に示すような構成になつている。 For this reason, cutting of iron-based materials uses a cutting tool in which a cutting edge is formed in a polycrystalline sintered body obtained by sintering boron nitride crystals. This cutting tool has a structure as shown in FIG. 1, for example.
すなわち、シヤンク1に基台3を介して多結晶
焼結体で形成されたチツプ3を取付けたものであ
る。そして、チツプ3の切刃部には、チヤンフア
1、逃げ面5が形成されている。このような切削
工具で、切削面の荒さに影響を与える逃げ面5の
面荒さを0.05μm Rmax以下に研磨して切削加工
を行なつても、切削面の面荒さは0.1μm Rmax
の鏡面が限界であつた。 That is, a chip 3 made of a polycrystalline sintered body is attached to a shank 1 via a base 3. A chamfer 1 and a flank 5 are formed on the cutting edge of the chip 3. With such a cutting tool, even if the flank surface 5, which affects the roughness of the cut surface, is polished to 0.05 μm Rmax or less, the roughness of the cut surface will be 0.1 μm Rmax.
The mirror surface was the limit.
この原因は、第2図に示すように多結晶焼結体
で形成されたチツプ3では、切刃部を構成する逃
げ面5とすくい面6で形成される刃先稜7が結晶
粒8を結合するバインダ9のマイクロチツピング
10のために、シヤープネスを確保できないため
である。 The reason for this is that in the chip 3 made of a polycrystalline sintered body as shown in FIG. This is because the sharpness cannot be ensured due to the microchipping 10 of the binder 9.
本発明の目的は、上記した従来技術の欠点をな
くし、鉄系材料のさらに高度な鏡面切削を可能に
した切削工具を提供するにある。
An object of the present invention is to provide a cutting tool that eliminates the drawbacks of the above-mentioned prior art and enables more advanced mirror cutting of iron-based materials.
上記目的を達成するため、本発明は切削工具の
切刃部を単結晶窒化硼素の立方晶体とし、かつ切
刃部のすくい面及び逃げ面をそれぞれ立方晶体の
適切な結晶面となるように形成したことを特徴と
する。
In order to achieve the above object, the present invention has the cutting edge of a cutting tool made of a cubic crystal of single-crystal boron nitride, and the rake face and flank face of the cutting edge are respectively formed to be appropriate crystal planes of the cubic crystal. It is characterized by what it did.
以下本発明の実施例を図面にしたがつて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.
第3図は、本発明に用いる窒化硼素の単結晶体
のうち、最も硬度の大きい立方晶窒化硼素の代表
的な晶癖を示す。これらの単結晶体において三角
形、六角形の面はすべて{111}面である。 FIG. 3 shows a typical crystal habit of cubic boron nitride, which has the greatest hardness among the boron nitride single crystals used in the present invention. All triangular and hexagonal faces in these single crystals are {111} planes.
第4図、ないし第6図は本発明による切削工具
の製造工程の一例を示すものである。シヤンク1
1の一端には、すり鉢状の穴12が形成され、そ
の穴12の底部にろう材13が供給されている。
このろう材13の上に、窒化硼素の単結晶体14
を配置する。そして、シヤンク11を加熱して、
ろう材13を溶融させながら、単結晶体14をシ
ヤンク11の軸方向に加圧して、単結晶体14の
一部をシヤンク11の中に圧入する(第4図およ
び第5図参照)。ついで、シヤンク11を冷却し
て、ろう材13を凝固させたのち、シヤンク11
と共に単結晶体を研削、研磨して第6図に示すよ
うに切削方向が{110}の〈100〉方向あるいは
{111}の〈112〉方向となるよう逃げ面5とすく
い面6を形成し、切削工具とする。 FIG. 4 to FIG. 6 show an example of the manufacturing process of a cutting tool according to the present invention. Shyank 1
A mortar-shaped hole 12 is formed at one end of the hole 1, and a brazing filler metal 13 is supplied to the bottom of the hole 12.
On this brazing material 13, a boron nitride single crystal 14 is placed.
Place. Then, heat the shank 11,
While melting the brazing filler metal 13, the single crystal body 14 is pressurized in the axial direction of the shank 11, and a portion of the single crystal body 14 is press-fitted into the shank 11 (see FIGS. 4 and 5). Next, after cooling the shank 11 and solidifying the brazing filler metal 13, the shank 11 is
At the same time, the single crystal is ground and polished to form a flank face 5 and a rake face 6 so that the cutting direction is in the <100> direction of {110} or the <112> direction of {111}, as shown in FIG. , as a cutting tool.
なお、上記実施例において、窒化硼素の単結晶
体14とシヤンク11の接合には、銀ろう等のろ
う材13を用いるが、前記単結晶体14は、金属
との濡れ性が悪いため、前記単結晶体14にめつ
き等の手段によつてチタン被覆を形成しておくと
よい。また、シヤンク11もチタン系の材料で形
成してもよい。 In the above embodiment, a brazing material 13 such as silver solder is used to bond the boron nitride single crystal 14 and the shank 11, but since the single crystal 14 has poor wettability with metal, It is preferable to form a titanium coating on the single crystal body 14 by means such as plating. Further, the shank 11 may also be formed of a titanium-based material.
第7図及び第8図は、前記実施例と同様の工程
で形成され、第6図に示す切削工具とは刃先の形
状のみが異なる切削工具であり、第7図は切削方
向が{110}面の〈100〉方向、第8図は切削方向
が{111}の〈112〉方向となる結晶方位とした本
発明の切削工具を示している。 7 and 8 are cutting tools that are formed in the same process as the above embodiment and differ only in the shape of the cutting edge from the cutting tool shown in FIG. 6, and in FIG. 7, the cutting direction is {110} The <100> direction of the surface, FIG. 8 shows the cutting tool of the present invention in which the cutting direction is the <112> direction of {111}.
すなわち、シヤンク11に取付けられた単結晶
体14の逃げ面5を円筒面とし、すくい面9を平
面としたもので、鋭利な切先稜7を形成したもの
である。 That is, the flank face 5 of the single crystal body 14 attached to the shank 11 is a cylindrical face, and the rake face 9 is a flat face, forming a sharp cutting edge 7.
この切削工具を用いて、焼き入れされた硬度が
HRC52のクロム合金ステンレス工具鋼の切削
を行なつた結果、切削面は、0.05μm Rmaxの面
荒さで、1m2以上の鏡面加工ができた。 Using this cutting tool, the hardness of the hardened
As a result of cutting HRC52 chromium alloy stainless tool steel, the cut surface was mirror-finished over 1 m 2 with a surface roughness of 0.05 μm Rmax.
これは、上記切削工具の切刃部が単結晶体14
で形成され、従来の切削工具におけるマイクロチ
ツピングがなくなつたため、加工面粗さを向上さ
せることができたものである。 This is because the cutting edge of the cutting tool is made of single crystal 14.
The machined surface roughness can be improved by eliminating the microchipping that occurs in conventional cutting tools.
なお、立方晶窒化硼素単結晶には、ダイヤモン
ド単結晶と同様に劈開の性質がある。特に劈開し
易い結晶面は、{110}面である。このため、切削
工具の逃げ面の結晶方位を適切に選択しないと、
結晶の劈開によつて逃げ面の摩耗が進行し、切刃
稜にチツピングを発生させることになり、切削面
の面粗さを低下させる。 Note that the cubic boron nitride single crystal has a cleavage property similar to the diamond single crystal. The crystal plane that is particularly susceptible to cleavage is the {110} plane. For this reason, if the crystal orientation of the flank surface of the cutting tool is not selected appropriately,
Cleavage of the crystals progresses wear on the flank surface, causing chipping at the edge of the cutting edge, reducing the surface roughness of the cut surface.
すなわち、結晶面の{100}面を逃げ面にした
場合には、どの方向からでもチツピングを生じ易
く逃げ面とはなり得ない。 That is, if the {100} crystal plane is used as a relief surface, chipping is likely to occur from any direction and it cannot be used as a relief surface.
また、結晶面の{110}面の〈100〉方向と、
{111}面の〈112〉方向が劈開面である{110}面
に圧縮力を作用させる切削方向となるため、摩耗
が少なく、チツピングも生じにくい。 Also, the <100> direction of the {110} crystal plane,
Since the <112> direction of the {111} plane is the cutting direction that applies compressive force to the {110} plane, which is the cleavage plane, there is less wear and chipping is less likely to occur.
なお、上記結晶面と該結晶面上の方向の表現
は、一般的な結晶学上表現法に基づき、該結晶面
と直交している結晶面{XYZ}と直交している
方向を示す場合に、結晶面{XYZ}のミラー指
数をもつて〈XYZ〉方向と示す。すなわち、
{110}面の〈100〉方向は、{110}面上で{100}
面と直交する方向を示しており、{111}面の〈2
11〉方向は、{111}面上で{211}面と直交する
方向を示している。 In addition, the expression of the above crystal plane and the direction on the crystal plane is based on the general crystallographic expression method, and when it indicates the direction perpendicular to the crystal plane {XYZ} which is perpendicular to the crystal plane. , the Miller index of the crystal plane {XYZ} is denoted as the <XYZ> direction. That is,
The <100> direction of the {110} plane is the {100} direction on the {110} plane.
The direction perpendicular to the {111} plane is shown.
The 11> direction indicates a direction perpendicular to the {211} plane on the {111} plane.
したがつて、切削工具としては、逃げ角、すく
い角ともほぼ0度と仮定すると、切削方向を
{110}面の〈100〉方向とするために、すくい面
を結晶面の{100}面、逃げ面を結晶面の{110}
面とし、あるいは、切削方向を{111}面の
〈112〉方向とするために、すくい面を結晶面の
{211}面、逃げ面を結晶面の{111}面にするこ
とにより、立方晶窒化硼素のへき開面である
{110}面に圧縮力を作用させることになり、逃げ
面のみに生ずる摩耗形態はチツピングではないす
りへり摩耗を呈し、摩耗の少ない切削工具とする
ことができる。 Therefore, as a cutting tool, assuming that both the clearance angle and the rake angle are approximately 0 degrees, in order to set the cutting direction to the <100> direction of the {110} plane, the rake face should be set to the {100} plane of the crystal plane, The flank face is {110} of the crystal plane.
Or, in order to make the cutting direction the <112> direction of the {111} plane, the rake face is the {211} plane of the crystal plane, and the flank face is the {111} plane of the crystal plane. Compressive force is applied to the {110} plane, which is the cleavage plane of boron nitride, and the type of wear that occurs only on the flank face is not chipping but abrasion wear, and a cutting tool with less wear can be obtained.
なお、上記実施例に示す切削工具を複数個工具
ホルダに取付け、数個所を同時に加工してもよ
い。 Incidentally, a plurality of cutting tools shown in the above embodiments may be attached to a tool holder and several places may be processed simultaneously.
また、上刃植正面フライスのように工具ホルダ
に植てフライス加工に用いることもできる。 Moreover, it can also be used for milling by being planted in a tool holder like a top-blade face milling cutter.
第9図および第10図は本発明の切削工具の結
晶方位を第3図bに示した単結晶CBNの図を用
いて説明したものである。第9図はすくい面9を
結晶面の{100}面、逃げ面5を結晶面の{110}
面とした場合、第10図はすくい面9を結晶面の
{211}面、逃げ面5を結晶面の{111}面とした
場合を示している。 9 and 10 illustrate the crystal orientation of the cutting tool of the present invention using the diagram of single crystal CBN shown in FIG. 3b. In Figure 9, the rake face 9 is the {100} crystal plane, and the flank face 5 is the {110} crystal plane.
FIG. 10 shows the case where the rake face 9 is the {211} crystal plane, and the flank face 5 is the {111} crystal plane.
〔発明の効果〕
以上述べた如く、本発明によれば鉄系材料を切
削面荒さを0.5μm Rmaxの良好な鏡面に切削す
ることができる。[Effects of the Invention] As described above, according to the present invention, iron-based materials can be cut to a good mirror surface with a cut surface roughness of 0.5 μm Rmax.
第1図は、従来の多結晶工具の側面図、第2図
は、従来の多結晶工具の刀先の拡大図、第3図は
立方晶窒化硼素の単結晶の晶癖を示す拡大図、第
4図ないし第6図は、本発明による切削工具の製
作工程を示すもので、第4図、シヤンクに窒化硼
素をの単結晶体埋込んだ状態を示す斜視図、第5
図は、第4図の要部を示す拡大断面図、第6図
は、切削工具としての切刃の先端部を示す拡大
図、第7図は、本発明に係わる切削工具の第1の
実施例を示す説明図、第8図は、本発明に係わる
切削工具の第2の実施例を示す説明図、第9図お
よび第10図は本発明の切削工具の結晶方位の説
明図である。
11……シヤンク、14……窒化硼素の単結晶
体。
FIG. 1 is a side view of a conventional polycrystalline tool, FIG. 2 is an enlarged view of the tip of a conventional polycrystalline tool, and FIG. 3 is an enlarged view showing the crystal habit of a cubic boron nitride single crystal. 4 to 6 show the manufacturing process of a cutting tool according to the present invention, in which FIG. 4 is a perspective view showing a single crystal of boron nitride embedded in the shank, and FIG.
The figure is an enlarged sectional view showing the main part of Fig. 4, Fig. 6 is an enlarged view showing the tip of the cutting blade as a cutting tool, and Fig. 7 is a first embodiment of the cutting tool according to the present invention. An explanatory diagram showing an example, FIG. 8 is an explanatory diagram showing a second embodiment of the cutting tool according to the present invention, and FIGS. 9 and 10 are explanatory diagrams of the crystal orientation of the cutting tool of the present invention. 11...Shank, 14...Boron nitride single crystal.
Claims (1)
プと、このチツプを保持するシヤンクとから成る
切削工具において、前記チツプの切刃部を単結晶
窒化硼素の立方晶体で形成し、前記切刃部のすく
い面を前記立方晶体の{100}面かつ前記切刃部
の逃げ面を前記立方晶体の{110}面とすること
により、切削方向を{110}面の〈100〉方向とな
るようにしたことを特徴とする切削工具。 2 切削を行なうための切刃部が形成されるチツ
プと、このチツプを保持するシヤンクとから成る
切削工具において、前記チツプの切刃部を単結晶
窒化硼素の立方晶体で形成し、前記切刃部のすく
い面を前記立方晶体の{211}面かつ前記切刃部
の逃げ面を前記立方晶体の{111}面とすること
により、切削方向を{111}面の〈112〉方向とな
るようにしたことを特徴とする切削工具。[Scope of Claims] 1. A cutting tool comprising a chip on which a cutting edge for cutting is formed and a shank for holding this chip, in which the cutting edge of the chip is made of a cubic crystal of monocrystalline boron nitride. By making the rake face of the cutting edge the {100} plane of the cubic crystal and the flank face of the cutting edge the {110} plane of the cubic crystal, the cutting direction is set to the {110} plane. A cutting tool characterized by being oriented in the 100> direction. 2. A cutting tool consisting of a chip on which a cutting edge for cutting is formed and a shank for holding this chip, in which the cutting edge of the chip is formed of a cubic crystal of monocrystalline boron nitride, and the cutting edge is By making the rake face of the part the {211} plane of the cubic crystal and the flank surface of the cutting edge the {111} plane of the cubic crystal, the cutting direction is made to be the <112> direction of the {111} plane. A cutting tool characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20907483A JPS60104602A (en) | 1983-11-09 | 1983-11-09 | Machining tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20907483A JPS60104602A (en) | 1983-11-09 | 1983-11-09 | Machining tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60104602A JPS60104602A (en) | 1985-06-10 |
JPH0426961B2 true JPH0426961B2 (en) | 1992-05-08 |
Family
ID=16566821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20907483A Granted JPS60104602A (en) | 1983-11-09 | 1983-11-09 | Machining tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60104602A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006088243A (en) * | 2004-09-22 | 2006-04-06 | Toyoda Mach Works Ltd | Abrasive grain and grindstone |
JP2010046733A (en) * | 2008-08-20 | 2010-03-04 | Osg Corp | Thread milling cutter |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5796704A (en) * | 1981-09-16 | 1982-06-16 | Hitachi Ltd | Diamond tool |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58164603U (en) * | 1982-04-28 | 1983-11-02 | 住友電気工業株式会社 | Tips for precision machining tools |
-
1983
- 1983-11-09 JP JP20907483A patent/JPS60104602A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5796704A (en) * | 1981-09-16 | 1982-06-16 | Hitachi Ltd | Diamond tool |
Also Published As
Publication number | Publication date |
---|---|
JPS60104602A (en) | 1985-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3406774B2 (en) | Diamond-coated insert tool and method of manufacturing the same | |
US6612786B1 (en) | Cutting tool of polycrystalline hard sintered material | |
US7189032B2 (en) | Tool insert | |
JPH0348315B2 (en) | ||
US5183362A (en) | Cutting tool assembly | |
JP3476951B2 (en) | Cutting tool for CVD diamond | |
EP0184223B1 (en) | Cutting tool | |
GB2037629A (en) | Locating tips or inserts into tools | |
JPH11347807A (en) | Cutting tool and cutting method for ductile cutting-resistant material | |
JPH0426961B2 (en) | ||
JP2952403B2 (en) | Super hard cutting insert and method of manufacturing the same | |
CA2290023A1 (en) | Method of making endmills | |
JP2822814B2 (en) | Diamond tools | |
JP2001191212A (en) | Rotary cutting multi-edged tool | |
EP0220964B1 (en) | Cubic boron nitride abrasive bodies | |
JPS62271606A (en) | High hardness sintered material cutting tool | |
EP0547012A2 (en) | Composite insert for cutting tools | |
JPS6137043B2 (en) | ||
EP0138392A1 (en) | Cutting tool | |
JPS60249506A (en) | Cutting tool | |
JPH07107166B2 (en) | Method for manufacturing composite twisted sintered body | |
JPS61100302A (en) | Method of forming land of cutting tool tip made of sintered material of wurtzite structure boron nitride | |
JPH04310312A (en) | End mill or blade | |
JPS61142004A (en) | Diamond cutting tool | |
JPH07136813A (en) | Cutting tool provided with chip breaker |