JPH04269041A - Receiver - Google Patents

Receiver

Info

Publication number
JPH04269041A
JPH04269041A JP3050158A JP5015891A JPH04269041A JP H04269041 A JPH04269041 A JP H04269041A JP 3050158 A JP3050158 A JP 3050158A JP 5015891 A JP5015891 A JP 5015891A JP H04269041 A JPH04269041 A JP H04269041A
Authority
JP
Japan
Prior art keywords
frequency
signal
filter
channel
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3050158A
Other languages
Japanese (ja)
Inventor
Mamoru Sawahashi
衛 佐和橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3050158A priority Critical patent/JPH04269041A/en
Publication of JPH04269041A publication Critical patent/JPH04269041A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To form a receiver able to trace a fast change in a center frequency by converting a multi-carrier signal whose center frequency differs into a base band signal whose center frequency is zero through the use of a sampling clock signal in response to the center frequency of each channel. CONSTITUTION:An RF modulation signal is multiplied with an oscillating frequency of a frequency synthesizer and the result is converted into a 1st IF frequency. On the other hand, since a disturbing wave signal of an adjacent channel is distorted and incorporated into a reception band in the case of amplification in an AGC amplifier 410 in a 2nd IF frequency, the adjacent channel is sufficiently attenuated by a filter 409 in advance. A modulation signal amplified by a limiter amplifier is subjected to orthogonal detection by an orthogonal modulator while keeping a frequency offset. Then output I, Q channel signals are converted into base band signals whose center frequency is zero by using a sampling clock signal in response to the offset frequency at frequency conversion filters 415, 416.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ディジタル通信におけ
る周波数ホッピング伝送に用いる受信機に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a receiver used for frequency hopping transmission in digital communications.

【0002】0002

【従来の技術】陸上移動通信において数百kbps以上
の高速伝送を行う場合には、多重波伝搬による周波数選
択性フェージングによって伝搬特性の劣化が生じる。こ
の周波数選択性フェージングに起因する軽減困難な誤り
(フロア誤り)はバ−スト誤りが支配的であり、フロア
誤りを訂正するためにバースト誤り訂正符号であるリー
ドソロモン符号等の誤り訂正符号が用いられる。フェー
ジング周波数が低くてバースト全体のレベルが低下した
場合には、誤り訂正を行っても誤りを訂正することはで
きなくなる。従って、この場合には周波数ホッピング等
の周波数ダイバーシチを行ってビット単位で中心周波数
をホッピングさせ、誤りをランダム化する方法が用いら
れる。すなわち周波数ホッピングは、ビットごとあるい
は、フレームごとに異なる中心周波数にホッピングさせ
、移動通信に適用する場合、周波数選択性フェージング
下における周波数ダイバーシチ効果とバースト誤りをラ
ンダム化させ、誤り訂正を容易にさせるものである。
2. Description of the Related Art When performing high-speed transmission of several hundred kbps or more in land mobile communications, propagation characteristics deteriorate due to frequency selective fading due to multiple wave propagation. Errors that are difficult to reduce (floor errors) caused by this frequency selective fading are dominated by burst errors, and error correction codes such as Reed-Solomon codes, which are burst error correction codes, are used to correct floor errors. It will be done. If the fading frequency is low and the level of the entire burst is reduced, errors cannot be corrected even if error correction is performed. Therefore, in this case, a method is used in which frequency diversity such as frequency hopping is performed to hop the center frequency in bit units to randomize errors. In other words, frequency hopping involves hopping to a different center frequency for each bit or frame, and when applied to mobile communications, it randomizes the frequency diversity effect and burst errors under frequency selective fading and facilitates error correction. It is.

【0003】従来のFH受信機は、周波数シンセサイザ
でチャネル指定する構成であり、安定した周波数を高速
に切り替える必要がある。
Conventional FH receivers have a configuration in which channels are specified using a frequency synthesizer, and it is necessary to switch between stable frequencies at high speed.

【0004】図1に従来の周波数シンセサイザを用いる
FH受信部の構成を示す。周波数シンセサイザを用いる
方法では、安定した周波数を高速に切り換える周波数シ
ンセサイザが必要である。周波数シンセサイザの構成は
大きく分けて、1.直接合成方式、2.間接合成方式に
分類できる。直接合成方式は、安定な信号から高調波を
発生させ、高調波間の乗算や高調波と分周波との乗算演
算により希望する周波数成分を得る方法である。この方
法は、数μs以下の時間での周波数の高速切り換えが可
能であるが、ミクサや乗算器の回路部品が多くなり回路
規模が増加し、またスプリアスもかなり増加し、安定し
た信号の合成は、極めて困難となる。
FIG. 1 shows the configuration of an FH receiver using a conventional frequency synthesizer. The method using a frequency synthesizer requires a frequency synthesizer that can switch between stable frequencies at high speed. The configuration of a frequency synthesizer can be broadly divided into 1. Direct synthesis method, 2. It can be classified as an indirect synthesis method. The direct synthesis method is a method in which harmonics are generated from a stable signal and a desired frequency component is obtained by multiplication between the harmonics or multiplication between the harmonics and a frequency-divided wave. This method allows high-speed switching of frequencies in a few μs or less, but it increases the circuit scale due to the large number of mixer and multiplier circuit components, and also causes a considerable increase in spurious signals, making it difficult to synthesize stable signals. , it becomes extremely difficult.

【0005】間接合成方式は、分周器とPLLによって
出力周波数を基準周波数に同期させる方式で、直接合成
方式に比べてスプリアスは少なく、回路も小型になる。 しかし周波数の切り換え時間はループ内のLPFの時定
数よりも短くすることは不可能で、一般に数十ms〜数
sで、切り換え時間を早くしようとするとVCO出力信
号の周波数安定性は劣化する。このため、PLLの引き
込み特性を改善する方法として、(1)引き込みの時だ
け時定数を下げたり、ループ利得を上げる方法、(2)
位相比較周波数を切り換え、実効的にループ利得を切り
換える方法、(3)第2次高調波成分を除去するために
LPFの代わりにノッチフィルタを用いて、ループ応答
特性を改善する方法、(4)分周比を切り換えるときに
D/A変換器によって希望周波数に対応するDC電圧を
VCO入力に重畳して、VCO出力周波数をできるだけ
希望周波数に近づけ、その差周波数だけを引き込ませる
方法等の方法が検討されているが、高速切り換えと周波
数の安定性を実現するためには、不十分である。
The indirect synthesis method is a method in which the output frequency is synchronized with the reference frequency using a frequency divider and a PLL, and as compared with the direct synthesis method, there is less spurious and the circuit is smaller. However, it is impossible to make the frequency switching time shorter than the time constant of the LPF in the loop, and is generally several tens of milliseconds to several seconds, and if an attempt is made to make the switching time faster, the frequency stability of the VCO output signal deteriorates. For this reason, methods for improving the PLL pull-in characteristics include (1) lowering the time constant or increasing the loop gain only during pull-in; (2)
(3) A method of effectively switching the loop gain by switching the phase comparison frequency; (3) A method of improving the loop response characteristics by using a notch filter instead of an LPF to remove the second harmonic component; (4) When switching the frequency division ratio, there are methods such as superimposing a DC voltage corresponding to the desired frequency on the VCO input using a D/A converter, bringing the VCO output frequency as close to the desired frequency as possible, and drawing in only the difference frequency. Although it is being considered, it is insufficient to achieve high-speed switching and frequency stability.

【0006】現在の自動車電話システムの移動機、携帯
機で用いられている周波数シンセサイザの立ち上がり時
間は、1ms程度であり、ビット単位に周波数ホッピン
グさせる場合、データの伝送レートに制約がある。1つ
の周波数シンセサイザでは、高速のチャネル切り替えが
できないために、図2のBに示すように周波数シンセサ
イザを2個用意し、例えばビットごとに中心周波数がホ
ッピングする場合奇数ビットと偶数ビットでチャネル指
定を行う周波数シンセサイザを分けて用いる方法もある
が、回路規模が増大するために、移動機、携帯機には適
さない。
The rise time of frequency synthesizers used in mobile and portable devices of current car telephone systems is about 1 ms, and when frequency hopping is performed bit by bit, there are restrictions on the data transmission rate. Since one frequency synthesizer cannot perform high-speed channel switching, two frequency synthesizers are prepared as shown in B in Figure 2. For example, if the center frequency hops for each bit, the channel can be specified using odd and even bits. There is also a method of using separate frequency synthesizers, but this increases the circuit scale and is not suitable for mobile devices and portable devices.

【0007】従って、中心周波数の異なる信号を高速に
復調する受信機が必要になる。
[0007] Therefore, a receiver is required that can demodulate signals having different center frequencies at high speed.

【0008】[0008]

【発明が解決しようとする課題】従来のFH受信機のよ
うに周波数シンセサイザで中心周波数の異なるRF変調
信号を同一周波数のIF信号に周波数変換する方法では
、周波数の切り替え時間がループフィルタの時定数の制
約を受け、高速の信号に対してビット単位でチャネルを
切り替えることは困難である。
[Problems to be Solved by the Invention] In the method of frequency converting RF modulated signals with different center frequencies into IF signals of the same frequency using a frequency synthesizer as in the conventional FH receiver, the frequency switching time is the time constant of the loop filter. It is difficult to switch channels on a bit-by-bit basis for high-speed signals.

【0009】本発明は、ベースバンド信号処理回路で、
高速のチャネル切り替えが可能で、回路の小型化に適し
たFH受信機を実現することを目的とする。
[0009] The present invention is a baseband signal processing circuit,
The purpose of this invention is to realize an FH receiver that is capable of high-speed channel switching and is suitable for circuit miniaturization.

【0010】0010

【課題を解決するための手段】図1は、本発明の受信機
の原理構成を示すブロック図である。
[Means for Solving the Problems] FIG. 1 is a block diagram showing the basic configuration of a receiver according to the present invention.

【0011】本発明は、中心周波数の異なる各チャネル
の信号に対して、隣接チャネルの信号を減衰させるIF
フィルタ105と、IF信号を所要レベルまで増幅する
リミタアンプあるいはAGCアンプ106と、増幅され
た中心周波数の異なるIF信号をミクサ107、ハイブ
リッド108、90度移相器109、局部発振器110
で構成されるIチャネル及びQチャネルのベースバンド
信号に変換する直交検波手段と、直交検波後の高調波成
分を除去し、各チャネルの中心周波数でサンプリングす
るサンプル値系フィルタを含む周波数変換フィルタ(L
PF)111、112と、周波数変換フィルタ出力のベ
ースバンド信号をディジタル値に変換するA/D変換器
113、114と、準同期検波機では、クロック同期回
路、搬送波周波数誤差抽出回路、搬送波周波数誤差保証
回路、遅延検波機では、1タイムスロット前のデータと
の位相差を検出する回路、クロック同期回路等を含むデ
ィジタル信号処理復調部115と、を備えて構成する。
[0011] The present invention provides an IF for attenuating adjacent channel signals for each channel signal having a different center frequency.
A filter 105, a limiter amplifier or AGC amplifier 106 that amplifies the IF signal to a required level, a mixer 107, a hybrid 108, a 90-degree phase shifter 109, and a local oscillator 110 that amplify the IF signal with a different center frequency.
a frequency conversion filter (including a sample value system filter that removes harmonic components after quadrature detection and samples at the center frequency of each channel); L
PF) 111, 112, A/D converters 113, 114 that convert the baseband signal output from the frequency conversion filter into digital values, and a quasi-synchronous detector, which includes a clock synchronization circuit, a carrier frequency error extraction circuit, and a carrier frequency error. The guarantee circuit and delay detector include a digital signal processing demodulation section 115 including a circuit for detecting a phase difference with data one time slot before, a clock synchronization circuit, and the like.

【0012】本発明は、予め、中心周波数の異なるRF
信号を中心周波数がオフセットしたままでIF周波数に
周波数変換し、IF体で帯域制限、所要のレベルまで増
幅し、直交検波後、サンプリングによるベースバンド帯
(中心周波数零)への折り返し信号を用いることにより
、高速に周波数オフセットした信号を同一チャネル信号
(周波数零)に変換し、A/D変換後、ディジタル処理
で復調することを特徴とする。
[0012] The present invention provides a method in which RF signals with different center frequencies are used in advance.
Frequency conversion of the signal to the IF frequency with the center frequency offset, band limiting with the IF body, amplification to the required level, and after quadrature detection, use the folded signal to the baseband band (center frequency zero) by sampling. It is characterized by converting a signal with a frequency offset at high speed into a same channel signal (zero frequency), and demodulating it by digital processing after A/D conversion.

【0013】[0013]

【作用】cos〔φi+(ωc+Δωn)t〕で表わさ
れるRF変調信号は、中心周波数がオフセットしたまま
で、IF帯に周波数変換され、IFフィルタで隣接チャ
ネルの不要信号を除去された後、リミタアンプあるいは
、AGCアンプで−10dBm程度まで増幅される。 増幅されたIF信号は、直交検波器で直交検波される。 直交検波器のIチャネル出力cos〔φi+Δωnt〕
、Qチャネル出力sin〔φi+Δωnt〕は、高調波
成分を除去された後、各チャネルの中心周波数Δfn(
Δfn=Δωn/2π)でサンプリングされる。サンプ
リング後、ベースバンドの折返し信号だけを取り出すア
ナログの低域通過フィルタ(LPF)で基本波、高調波
成分を除去する。ベースバンド信号はA/D変換器でデ
ィジタル信号に変換されて、ディジタル処理復調部の演
算処理で復調される。
[Operation] The RF modulated signal expressed as cos [φi + (ωc + Δωn) t] is frequency-converted to the IF band with the center frequency offset, and after removing unnecessary signals of adjacent channels with the IF filter, it is passed through the limiter amplifier or , is amplified to about -10 dBm by the AGC amplifier. The amplified IF signal is orthogonally detected by a quadrature detector. Quadrature detector I channel output cos [φi+Δωnt]
, the Q channel output sin[φi+Δωnt] has the harmonic components removed, and then the center frequency Δfn(
Δfn=Δωn/2π). After sampling, the fundamental wave and harmonic components are removed using an analog low-pass filter (LPF) that extracts only the baseband folded signal. The baseband signal is converted into a digital signal by an A/D converter, and demodulated by arithmetic processing in a digital processing demodulation section.

【0014】図3に本発明のFH受信機の周波数領域で
の原理説明図を示す。
FIG. 3 is a diagram illustrating the principle of the FH receiver of the present invention in the frequency domain.

【0015】直交検波後の周波数オフセットしたアナロ
グ信号に対して、LPFで高調波成分を除去した後、A
/D変換後ディジタルフィルタでサンプリングしてディ
ジタルLPFで処理する方法もあるが、この場合、中心
周波数がオフセットしている分だけ信号の最高周波数が
高くなり、従ってA/D変換器のサンプリング周波数も
高くなるので、消費電力の点で不利になる。
After removing harmonic components from the frequency-offset analog signal after orthogonal detection using an LPF,
There is also a method of sampling with a digital filter after A/D conversion and processing with a digital LPF, but in this case, the highest frequency of the signal becomes higher by the offset of the center frequency, and therefore the sampling frequency of the A/D converter also increases. Since it is expensive, it is disadvantageous in terms of power consumption.

【0016】[0016]

【実施例】ダブルコンバージョン方式の受信機における
本発明のFH受信機の実施例を図4に示す。図中404
は周波数シンセサイザ、405はBPF、406は増幅
器、407はミクサ、408は発振器、409は第2I
Fフィルタラダー、410はリミタ増幅器あるいはAG
C増幅器、415,416は周波数変換フィルタ、41
7,418はA/D変換器、419はディジタル信号処
理復調部である。
Embodiment FIG. 4 shows an embodiment of the FH receiver of the present invention in a double conversion type receiver. 404 in the diagram
is a frequency synthesizer, 405 is a BPF, 406 is an amplifier, 407 is a mixer, 408 is an oscillator, 409 is a second I
F filter ladder, 410 is limiter amplifier or AG
C amplifier, 415, 416 are frequency conversion filters, 41
7,418 is an A/D converter, and 419 is a digital signal processing demodulation section.

【0017】RF変調信号は周波数シンセサイザの発信
周波数と乗算されて、第1IF周波数に周波数変換され
る。第1IFBPF405の帯域は、第2IF周波数の
イメージ信号除去用フィルタであるので、あるチャネル
の全ホッピング周波数帯域を通過帯域とするよう広い帯
域で取っておく。第2IF周波数におけるリミタアンプ
あるいはAGCアンプ410では、70dB以上のダイ
ナミックレンジが必要であり、増幅の際に隣接チャネル
の妨害波の信号が歪んで受信帯域内に落ち込むために、
予め第2IFフィルタ409で隣接チャネル信号を十分
減衰しておく必要がある。中心周波数の異なる第2IF
フィルタは例えば10MHz程度の周波数ならばセラミ
ックフィルタで構成され、数MHzまで中心周波数を下
げることができるなら、モノリシックIC化も可能であ
る。リミタアンプで増幅された変調信号は、周波数オフ
セットしたまま、直交変調器で直交検波される。直交検
波されたI,Qチャネル信号は、周波数変換フィルタ4
15,416でオフセット周波数に応じたサンプリング
クロック信号でベースバンド信号に変換され、さらに中
心周波数ゼロの信号に変換されたI,Qチャネル信号は
、ディジタル処理復調部419で、準同期検波、あるい
はベースバンド遅延検波される。遅延検波は、乗算、加
算演算により下式の演算を行うことにより実行される。   cos(φn−φn−1)=cos( φn)co
s(φn−1)+sin( φn)sin(φn−1)
             (1)  sin(φn−
φn−1)=sin( φn)cos(φn−1)−c
os( φn)sin(φn−1)         
    (2)準同期検波は、復調データから搬送波周
波数誤差を検出し、復調データに補償することにより行
われる。
The RF modulated signal is multiplied by the oscillation frequency of the frequency synthesizer and frequency converted to the first IF frequency. Since the first IFBPF 405 is a filter for removing image signals of the second IF frequency, a wide band is set so that the entire hopping frequency band of a certain channel is used as a pass band. The limiter amplifier or AGC amplifier 410 at the second IF frequency requires a dynamic range of 70 dB or more, and during amplification, the interference wave signal of the adjacent channel is distorted and falls within the reception band.
It is necessary to sufficiently attenuate the adjacent channel signal using the second IF filter 409 in advance. 2nd IF with different center frequency
For example, if the filter has a frequency of about 10 MHz, it is composed of a ceramic filter, and if the center frequency can be lowered to several MHz, it is possible to use a monolithic IC. The modulated signal amplified by the limiter amplifier is orthogonally detected by a quadrature modulator while maintaining the frequency offset. The orthogonally detected I and Q channel signals are passed through a frequency conversion filter 4.
15, 416, the I and Q channel signals are converted into baseband signals using sampling clock signals according to the offset frequency, and further converted into signals with a center frequency of zero. Band delay detection is performed. Delay detection is performed by performing the following calculation using multiplication and addition operations. cos(φn-φn-1)=cos(φn)co
s(φn-1)+sin(φn)sin(φn-1)
(1) sin(φn-
φn-1)=sin(φn)cos(φn-1)-c
os(φn)sin(φn-1)
(2) Quasi-synchronous detection is performed by detecting a carrier frequency error from demodulated data and compensating it to the demodulated data.

【0018】図5に周波数変換フィルタの実施例並びに
各ブロックの周波数特性を示す。初段は直交検波後の高
調波成分を除去するフィルタであり、OTA(Oper
ationalTransconductance A
mplifier)フィルタ等の高精度アナログフィル
タで構成される。2次のOTAフィルタの例を図6に示
す。OTAフィルタは、OTAアンプとコンデンサで構
成され、モノリシックIC化が容易な高精度アナログフ
ィルタである。第2段と第3段全体の周波数特性で周波
数変換する前の信号成分を除去する特性を有する。第2
段は第3段に比較して低次であり、第2段はSCF(S
witched Capacitor Filter)
で構成される。SCFを構成する1次の積分器の例を図
6に示す。 SCFは増幅器、コンデンサ、アナログスイッチで構成
される高精度サンプル値系フィルタである。第3段はO
TAフィルタで構成される。前記のOTAフィルタ並び
にSCFは外部からのクロック周波数を変化させること
により周波数特性可変なフィルタである。現在の移動機
では、12.8MHzの高安定度(3ppm)の電圧補
償型水晶フィルタ(TCXO)を内部に含む。例えばこ
のTCXOの出力信号を分周器により分周比を変化させ
ることにより、周波数変換フィルタの制御信号とするこ
とができる。
FIG. 5 shows an embodiment of the frequency conversion filter and the frequency characteristics of each block. The first stage is a filter that removes harmonic components after quadrature detection, and OTA (Oper
ational Transconductance A
It consists of a high-precision analog filter such as a mplifier filter. An example of a second-order OTA filter is shown in FIG. The OTA filter is a high-precision analog filter that is composed of an OTA amplifier and a capacitor and can be easily fabricated into a monolithic IC. The frequency characteristics of the second and third stages as a whole have a characteristic of removing signal components before frequency conversion. Second
The stage is of low order compared to the third stage, and the second stage is SCF (S
witched Capacitor Filter)
Consists of. FIG. 6 shows an example of a first-order integrator that constitutes the SCF. The SCF is a high-precision sample value filter consisting of an amplifier, a capacitor, and an analog switch. The third stage is O
Consists of a TA filter. The above-mentioned OTA filter and SCF are filters whose frequency characteristics can be varied by changing the external clock frequency. Current mobile devices internally include a 12.8 MHz high stability (3 ppm) voltage compensated crystal filter (TCXO). For example, by changing the frequency division ratio of this TCXO output signal using a frequency divider, it can be used as a control signal for a frequency conversion filter.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、中
心周波数の異なるマルチキャリア信号を、サンプル値系
フィルタの折返し信号を利用してベースバンド回路で各
チャネルの中心周波数に応じて、中心周波数ゼロのベー
スバンド信号に変換するので、従来の周波数シンセサイ
ザを用いる方法と異なり、高速な中心周波数の変化にも
追従できる受信機を構成できる。
As explained above, according to the present invention, multi-carrier signals with different center frequencies are processed by a baseband circuit using folded signals of sampled value filters according to the center frequency of each channel. Since it is converted into a baseband signal with zero frequency, it is possible to configure a receiver that can follow rapid changes in the center frequency, unlike the conventional method using a frequency synthesizer.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のFH受信機原理構成図[Fig. 1] Principle configuration diagram of the FH receiver of the present invention

【図2】従来の
周波数シンセサイザによるFH受信機構成図
[Figure 2] FH receiver configuration diagram using a conventional frequency synthesizer

【図3】本発明のFH受信機の周波数領域での動作説明
FIG. 3 is an explanatory diagram of the operation of the FH receiver of the present invention in the frequency domain.

【図4】本発明のFH受信機の実施例FIG. 4: Embodiment of the FH receiver of the present invention

【図5】本発明の周波数変換フィルタ実施例[Figure 5] Example of frequency conversion filter of the present invention

【図6】周
波数変換フィルタの実施例を示す。
FIG. 6 shows an example of a frequency conversion filter.

【符号の説明】[Explanation of symbols]

101  RF変調信号入力端子 102  データ出力端子 103  ミクサ 104  周波数シンセサイザ 105  IFフィルタ 106  リミタ増幅器あるいはAGC増幅器107 
 ミクサ 108  ハイブリッド 109  90度移相器 110  局発発振器 111  周波数変換フィルタ 112  周波数変換フィルタ 113  A/D変換器 114  A/D変換器 115  ディジタル信号処理復調部 201  RF変調信号入力端子 202  データ出力端子 203  帯域通過フィルタ(BPF)204  ミク
サ 205  周波数シンセサイザ 206  帯域通過フィルタ(BPF)207  AG
Cまたはリミタ 208  復調器 209  RF変調信号入力端子 210  データ出力端子 211  帯域通過フィルタ(BPF)212  ミク
サ 213  切り換えスイッチ 214  周波数シンセサイザ 215  周波数シンセサイザ 216  帯域通過フィルタ(BPF)217  AG
Cまたはリミタ 218  復調器 401  RF変調信号入力端子 402  データ出力端子 403  ミクサ 404  周波数シンセサイザ 405  第1IFフィルタ 406  増幅器 407  ミクサ 408  発振器 409  第2IFフィルタ 410  AGCまたはリミタ 411  ミクサ 412  ハイブリッド 413  90度移相器 414  発振器 415  周波数変換フィルタ 416  周波数変換フィルタ 417  A/D変換器 418  A/D変換器 419  ディジタル信号処理復調部 420  電圧補償型水晶発振器 421  分周器
101 RF modulation signal input terminal 102 Data output terminal 103 Mixer 104 Frequency synthesizer 105 IF filter 106 Limiter amplifier or AGC amplifier 107
Mixer 108 Hybrid 109 90 degree phase shifter 110 Local oscillator 111 Frequency conversion filter 112 Frequency conversion filter 113 A/D converter 114 A/D converter 115 Digital signal processing demodulator 201 RF modulation signal input terminal 202 Data output terminal 203 Bandpass filter (BPF) 204 Mixer 205 Frequency synthesizer 206 Bandpass filter (BPF) 207 AG
C or limiter 208 Demodulator 209 RF modulation signal input terminal 210 Data output terminal 211 Bandpass filter (BPF) 212 Mixer 213 Changeover switch 214 Frequency synthesizer 215 Frequency synthesizer 216 Bandpass filter (BPF) 217 AG
C or limiter 218 Demodulator 401 RF modulation signal input terminal 402 Data output terminal 403 Mixer 404 Frequency synthesizer 405 First IF filter 406 Amplifier 407 Mixer 408 Oscillator 409 Second IF filter 410 AGC or limiter 411 Mixer 412 Hybrid 413 90 degree phase shifter 414 Oscillator 415 Frequency conversion filter 416 Frequency conversion filter 417 A/D converter 418 A/D converter 419 Digital signal processing demodulator 420 Voltage compensated crystal oscillator 421 Frequency divider

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】中心周波数の異なる変調されたRF信号に
対して、中心周波数が異なったまま、周波数シンセサイ
ザで周波数変換する受信機において、中心周波数が異な
った中間周波(IF)信号を帯域制限する中心周波数の
異なった複数の帯域通過フィルタ(BPF)と、前記B
PFで帯域制限された信号を増幅するリミタ増幅期ある
いはAGC増幅器と、得られた中間周波数変調信号をc
os〔φi+2π(fc+Δfn)t〕(φiを変調成
分、fcを中間搬送波周波数、Δfnをチャネルnの中
心周波数とfcとの間の周波数とする)で表し、この変
調信号を発信周波数fcの局発信号でIチャネル信号c
os〔φi+2πtΔfn〕とQチャネル信号sin〔
φi+2πtΔfn〕に変換する直交検波手段と、当該
直交検波されたIチャンネル信号と、Qチャネル信号を
それぞれ、周波数Δfnでサンプリングし、中心周波数
が零の折返し信号を用いてベースバンド信号に変換する
サンプル値系フィルタを含む周波数変換フィルタと、を
備えたことを特徴とする受信機。
Claim 1: In a receiver that uses a frequency synthesizer to perform frequency conversion on modulated RF signals with different center frequencies, the intermediate frequency (IF) signals with different center frequencies are band-limited. a plurality of band pass filters (BPF) with different center frequencies;
A limiter amplification stage or AGC amplifier that amplifies the band-limited signal by the PF, and a c
This modulated signal is expressed as os[φi+2π(fc+Δfn)t] (where φi is the modulation component, fc is the intermediate carrier frequency, and Δfn is the frequency between the center frequency of channel n and fc), and this modulated signal is transmitted from the local oscillator at the oscillation frequency fc. I channel signal c
os[φi+2πtΔfn] and Q channel signal sin[
φi+2πtΔfn], and a sample value that samples the orthogonally detected I-channel signal and Q-channel signal at a frequency Δfn, respectively, and converts them into a baseband signal using a folded signal with a center frequency of zero. A receiver comprising: a frequency conversion filter including a system filter.
JP3050158A 1991-02-25 1991-02-25 Receiver Withdrawn JPH04269041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3050158A JPH04269041A (en) 1991-02-25 1991-02-25 Receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3050158A JPH04269041A (en) 1991-02-25 1991-02-25 Receiver

Publications (1)

Publication Number Publication Date
JPH04269041A true JPH04269041A (en) 1992-09-25

Family

ID=12851389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3050158A Withdrawn JPH04269041A (en) 1991-02-25 1991-02-25 Receiver

Country Status (1)

Country Link
JP (1) JPH04269041A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032148A (en) * 2001-07-17 2003-01-31 Advantest Corp Signal processor
JP2005286532A (en) * 2004-03-29 2005-10-13 Rohm Co Ltd Sound quality adjustment apparatus
KR100678217B1 (en) * 2000-11-23 2007-02-01 삼성전자주식회사 Apparatus for receiving multi-carrier signal and method thereof in mobile telecommunication system
JP2008515360A (en) * 2004-10-01 2008-05-08 クゥアルコム・インコーポレイテッド Apparatus and method for receiving packet data on a subset of carrier frequencies in a wireless communication system
JP2011055438A (en) * 2009-09-04 2011-03-17 Nec Corp Multi-band radio communication device and multi-band radio communication method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100678217B1 (en) * 2000-11-23 2007-02-01 삼성전자주식회사 Apparatus for receiving multi-carrier signal and method thereof in mobile telecommunication system
JP2003032148A (en) * 2001-07-17 2003-01-31 Advantest Corp Signal processor
JP2005286532A (en) * 2004-03-29 2005-10-13 Rohm Co Ltd Sound quality adjustment apparatus
JP2008515360A (en) * 2004-10-01 2008-05-08 クゥアルコム・インコーポレイテッド Apparatus and method for receiving packet data on a subset of carrier frequencies in a wireless communication system
US8018930B2 (en) 2004-10-01 2011-09-13 Qualcomm Incorporated Apparatus and method for receiving packet data on a subset of carrier frequencies in a wireless communication system
US8593981B2 (en) 2004-10-01 2013-11-26 Qualcomm Incorporated Apparatus and method for receiving packet data on a subset of carrier frequencies in a wireless communication system
JP2011055438A (en) * 2009-09-04 2011-03-17 Nec Corp Multi-band radio communication device and multi-band radio communication method

Similar Documents

Publication Publication Date Title
KR100780117B1 (en) Phase interpolation receiver for angle modulated rf signals
US6195400B1 (en) Two-mode demodulating apparatus
US7817979B2 (en) Systems and methods for DC offset correction in a direct conversion RF receiver
JP4633902B2 (en) Digital down converter
JPH11234150A (en) Digital demodulator
JPH0548483A (en) Frequency conversion circuit
JP3788305B2 (en) Circuit and method for deriving a second clock signal from a first clock signal
JP2001268145A (en) Amplitude deviation correcting circuit
JPH04269041A (en) Receiver
JP4717309B2 (en) Improvements in multiphase receivers, or improvements related to multiphase receivers
JP3898839B2 (en) Transmitter
JP3441311B2 (en) Receiving machine
US20160226686A1 (en) Receiving apparatus and receiving method
Nezami Performance assessment of baseband algorithms for direct conversion tactical software defined receivers: I/Q imbalance correction, image rejection, DC removal, and channelization
JP4461640B2 (en) Receiver
JPH0621722A (en) Receiver
JP3265585B2 (en) AFC circuit
JP4982403B2 (en) Multi-antenna communication device
JPH11122135A (en) Receiver
JP2004349789A (en) Frequency converter and frequency converting method
JPH0654013A (en) Frequency conversion circuit for receiver
JP3134801B2 (en) Shared receiver
JP2710877B2 (en) FM receiver
JPH07177051A (en) Fm radio telephone equipment
WO2002084870A2 (en) Methods and apparatus for tuning rf-filters in radio receivers

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514