JPH04269002A - Orthogonal detector - Google Patents

Orthogonal detector

Info

Publication number
JPH04269002A
JPH04269002A JP3030291A JP3030291A JPH04269002A JP H04269002 A JPH04269002 A JP H04269002A JP 3030291 A JP3030291 A JP 3030291A JP 3030291 A JP3030291 A JP 3030291A JP H04269002 A JPH04269002 A JP H04269002A
Authority
JP
Japan
Prior art keywords
signal
detection signal
orthogonal
amplitude
orthogonal detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3030291A
Other languages
Japanese (ja)
Other versions
JP3036093B2 (en
Inventor
Hiroshi Suzuki
博 鈴木
Hitoshi Yoshino
仁 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3030302A priority Critical patent/JP3036093B2/en
Publication of JPH04269002A publication Critical patent/JPH04269002A/en
Application granted granted Critical
Publication of JP3036093B2 publication Critical patent/JP3036093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To realize the orthogonal detector with a small linear distortion by measuring an amplitude ratio and a correlation coefficient due to a distortion of an orthogonal detection signal and compensating the distortion based on the measured value. CONSTITUTION:A conventional orthogonal detector is provided with a measurement means 3 and a linear conversion means 4. A signal generating means 2 eliminates a DC component from an orthogonal detection output obtained by multiplying a reference signal and a modulation signal inputted from an input terminal 1 to generate an in-phase detection signal and an orthogonal detection signal. The measurement means 3 measures an amplitude ratio and a correlation ratio from the two signal components being the in-phase detection signal and the orthogonal detection signal. The linear conversion means 4 based on the said amplitude ratio and correlation ratio eliminate the correlation component from the orthogonal detection signal and makes the amplitude of the orthogonal detection signal with that of the in-phase detection signal to output the orthogonal detection signal subject to linear conversion.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は直交検波器に係り、特に
、直交性のよい直交検波出力信号を得るための直交検波
器に関する。 【0002】 【従来の技術】図4は従来の直交検波器の構成図を示す
。先ず、従来の直交検波器は入力端子41、出力端子4
2、43、ミキサ44、45、低域通過フィルタ46、
47、90度移相器48より構成される。 【0003】次に、従来の直交検波器の動作を説明する
。入力端子41から変調信号S(t)が入力される。 変調信号S(t)は             S(t)=I(t)cos 
ωc t −Q(t)sin ωc t       
         (1)のように表される。式(1)
 において、右辺のI(t)とQ(t)はそれぞれを同
相及び直交検波成分の振幅であり、変調の不確定位相を
反映している。この変調信号S(t)は2つのミキサ4
4、45に加えられる。これらのミキサ44、45には
搬送波発振器OSC 49から出力される基準信号C(
t)とその基準信号C(t)を90°移相器48で90
度移相した変調信号S(t)が加えられている。基準信
号C(t)は     C(t)=Ac cos(ωc t)    
                         
        (2)であり、90°移相変調信号S
(t)は    S(t)=−As sin(ωc t
 −θ)                     
        (3)である。ここで、式 (2)と
式 (3)のAc とAsは振幅、θは移相器48の不
完全性による偏差移相である。 【0004】図4のミキサ44、45の後段にある低域
通過フィルタ(LPF1)46,(LPF2)47はミ
キサ44、45の乗積信号から高域成分を除去するため
のものである。このような構成の出力OUT1,OUT
2 は出力端子42、43より以下のような出力が得ら
れる。 【0005】出力OUT1は     i(t)= Ac I(t)+δc     
                         
           (4)   出力OUT2は     q(t)= As [Q(t) cosθ−I
(t) sinθ]+δs             
      (5) 但し、式(4) 、(5) の右
辺の第 2項のδc 、δs はDCオフセット成分で
あり、ミキサ44,45、及び低域通過フィルタ46,
47のDCオフセットなどの影響で発生するものである
。本来、振幅 Ac = As 、偏差移相θ=0、D
Cオフセット成分δc =δs =0であるから、出力
OUT1は i(t)= Ac I(t) 出力OUT2は q(t)= Ac Q(t) となるべきであるが、一般には式(4)、(5)に示さ
れるように歪み成分が付加される。 【0006】 【発明が解決しようとする課題】しかるに、前述した式
(4) 、(5) のように、出力OUT1がi(t)
= Ac I(t)、出力OUT2がq(t)= Ac
 Q(t)とはならず、歪みを受けている。 【0007】図5は従来の直交検波器の線形歪みの状態
を示す。同図(A)は振幅、偏差移相、DCオフセット
成分等が理想的な場合を示している。その理想的な値と
は、振幅はA c = As 、DCオフセット成分は
δc =δs =0、偏差移相はθ=0である。I(t
)=cos(ωo t), Q(t)=sin(ωo 
t)の変調波を受信したときに I(t) とQ(t)
により描く円の軌跡を示している。 【0008】同図(B)はDCオフセット成分がある場
合であり、その場合、振幅は Ac = As 、DC
オフセット成分はδc ≠0 、δs ≠0、偏差移相
はθ=0である。従って、円軌跡の中心がDCオフセッ
ト成分δc 、δs だけシフトしている。 【0009】同図(C)は振幅がアンバランスの場合で
あり、その場合、振幅はA c < As 、DCオフ
セット成分はδc =δs =0、偏差移相はθ=0で
ある。従って、Q方向に伸びた楕円軌跡となる。 【0010】同図(D)は90度移相器が不完全な場合
であり、その場合、振幅は Ac = As 、DCオ
フセット成分はδc =δs =0、偏差移相はθ>0
 である。従って、傾いた楕円軌跡になる。 【0011】このように線形歪みがあると検波特性、例
えば、ディジタル伝送における誤り率特性などが大きく
劣化するために直交検波器の製作には、バランスのよい
部品の選定、熟練を要するような微調整作業、高価な測
定器等を必要とする欠点があった。 【0012】本発明は上記の点に鑑みなされたもので直
交検波器の製作にあたり、線形歪を防ぐための様々な方
法を必要とせずに、線形歪が極めて小さい直交検波器を
提供することを目的とする。 【0013】 【課題を解決するための手段】図1は本発明の原理構成
図を示す。入力端子(1)より変調信号を入力し、基準
信号を発生させる基準信号発生手段、基準信号と変調信
号を乗算して得られる直交検波出力から直流成分を除去
して同相検波信号と直交検波信号を生成する信号生成手
段(2)と、同相検波信号と直交検波信号の2つの信号
成分から振幅比と相関係数を測定する測定手段(3)と
、測定手段(3)による振幅比と前記相関係数を基にし
て直交検波信号から相関成分を除去するとともに直交検
波信号の振幅を同相検波信号と一致させることで線形変
換された直交検波信号を出力する線形変換手段(4)と
を有し、構成する。 【0014】 【作用】本発明は従来の直交検波器の構成に測定手段と
、線形変換手段を設けており、測定手段は信号生成手段
で生成された信号の振幅比と相関係数により歪を測定す
る。線形変換手段はその測定値を基にして直交検波信号
に歪の補償を行う。これにより、互いに相関性がない、
レベルが等しい検波信号を得ることができる。 【0015】 【実施例】先ず、歪補償処理について説明する。先ず、
前述の式(4) と(5) の方程式を本来の信号I(
t) 及び、Q(t)について解くと、      Ac I(t)=i(t)−δc     
                         
            (6)     Ac Q(
t)=[q(t)−δs ]/A cos θ+[i(
t)−δc ]tan θ     (7)となる。た
だし、A = As / Ac である。 【0016】すなわち、直交検波出力i(t),q(t
)に式(6) 、(7) の処理を行えば、本来の信号
I(t), Q(t)のA c 倍の信号が得られる。 この処理のためにはDCオフセット成分δc , δs
 、振幅A 、偏差移相θを知る必要がある。これらは
、変調波が次の条件を満たす時に容易に測定できる。 
    【0017】     〈I(t)〉=0             
                         
        (7a)    〈Q(t)〉=0 
                         
                    (7b) 
     〈I(t)Q(t)〉=0        
                         
         (7c)    〈I2(t) 〉
=〈Q2(t) 〉=σ2             
                  (7d)これら
は、I(t)とQ(t)がそれぞれDCオフセット成分
を持たず、また、互いに無相関であることを意味してお
り、通常の適用条件では成立している。このとき式(4
)、(5) から              〈i(t)〉=δc            
                         
         (8a)     〈q(t)〉=
δs                       
                       (8
b) であるから、直交検波i(t)とq(t)を平均
すればDCオフセット成分δc とδs が求められる
。そこでこれらのDCオフセット成分を直交検波i(t
)とq(t)より除去したものをi0(t) と q0
(t)とする。      【0018】     i0(t) =i(t)−δc       
                         
           (9a)      q0(t
) =q(t)−δs               
                         
   (9b)    ここでDCオフセット成分を除
去したi0(t) と q0(t)の二乗平均を測定す
ると、次のようになる。       【0019】     〈i02(t)〉= Ac 2 σ2    
                         
           (10a)    〈q02(
t)〉= As 2 σ2             
                         
  (10b)従って、    A  =[〈i02(t)〉/〈q02(t)〉
]1/2                     
        (11)により振幅A が求められる
。 【0020】次にDCオフセット成分を除去したi0(
t) とq0(t) の相関係数ρを測定すると、  
ρ=〈i0(t)q0(t)〉/[〈i02(t)〉〈
q02(t)〉]1/2     =−sin θ  
                         
                         
(12)となるので         θ=arcsin(−ρ)         
                         
          (13)により偏差移相θが求め
られる。 【0021】以上説明したようにDCオフセット成分δ
c , δs 、振幅A 、相関係数ρが容易に測定で
きるので、式(6) 、(7) により本来の信号I(
t), Q(t)を得ることができる。 【0022】図2は本発明の一実施例の構成図を示す。 同図中、図4と同一構成部分には同一符号を付しその説
明を省略する。 【0023】同図中、オフセット測定回路11及びDC
オフセット補償回路13は低域通過フィルタ46、47
からの出力が供給される。振幅比移相測定回路12はD
Cオフセット補償回路13からの出力が供給される。振
幅移相補償回路14はDCオフセット補償回路13の出
力信号q0(t)からの出力と振幅比移相測定回路12
からの測定結果が供給される。 【0024】低域通過フィルタ46、47までの回路を
介して得られた出力i(t), q(t)をオフセット
測定回路11に入力される。オフセット測定回路11は
前述の式(8a)(8b)による平均処理が行なわれ、
DCオフセット成分δc とδs が測定される。次に
DCオフセット成分δc とδs 及び、低域通過フィ
ルタ46,47からの出力i(t), q(t)はDC
オフセット補償回路13に入力され、前述の式(9a)
,(9b) による直流成分の除去処理が行われ、i0
(t) = Ac I(t)とq0(t) が得られる
。 【0025】次にこれらi0(t) とq0(t) は
振幅比移相測定回路12に入力される。振幅比移相測定
回路12はDCオフセット成分を除去した二乗平均を測
定するための式(10 a),(10b)の計算を行い
、次に式(11)により振幅A を求め、さらに式(1
2)、(13)により偏差移相θが求められる。これら
により求められた振幅A と偏差移相θはi0(t) 
とq0(t) とともに振幅移相補償回路14に入力さ
れる。 【0026】振幅移相補償回路14は前述の式(7a)
,(7b),(7c),(7d) により直交成分が歪
補償としての Ac q(t)が得られる。また、同相
成分については何も行われないので、AC I(t)の
ままである。このようにして振幅が同じで、且つ直交検
波性のすぐれた検波信号が得られる。 【0027】上記のような構成の直交検波器を具体的に
適応した例を示す。図3は本発明を適応等化器に用いた
移動通信に適応した結果を示すグラフである。同図(A
)は直流成分補償を行った例を示しており、グラフ21
の補償無しの状態に較べてグラフ22の補償ありの場合
にはかなりの効果をあげていることが分かる。 【0028】同様に同図(B)は振幅補償を行った例で
ある。また、同図(C)は移相補償を行った例であるが
、それぞれ、補償を行うと補償無しの状態に比較してか
なりの差が生じていることがわかる。 【0029】 【発明の効果】上述のように本発明によれば、直流検波
出力i(t)及び、q(t)をA/D 変換器によりデ
ィジタル信号に変換すれば、容易に実現できる。また、
CMOS−IC 半導体技術で容易に実現できるので消
費電力を削減することも可能となり、携帯電話等の伝送
系の機器に広く利用できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quadrature detector, and more particularly to a quadrature detector for obtaining quadrature detection output signals with good orthogonality. 2. Description of the Related Art FIG. 4 shows a configuration diagram of a conventional quadrature detector. First, the conventional quadrature detector has an input terminal 41 and an output terminal 4.
2, 43, mixers 44, 45, low pass filter 46,
It is composed of a 47 and 90 degree phase shifter 48. Next, the operation of a conventional quadrature detector will be explained. A modulated signal S(t) is input from the input terminal 41. The modulated signal S(t) is S(t)=I(t)cos
ωc t −Q(t) sin ωc t
It is expressed as (1). Formula (1)
, I(t) and Q(t) on the right side are the amplitudes of the in-phase and quadrature detection components, respectively, and reflect the uncertain phase of modulation. This modulated signal S(t) is sent to two mixers 4
4, added to 45. These mixers 44 and 45 receive a reference signal C (
t) and its reference signal C(t) by 90° phase shifter 48.
A modulated signal S(t) phase-shifted by a degree is added. The reference signal C(t) is C(t)=Ac cos(ωc t)

(2), and the 90° phase shift modulation signal S
(t) is S(t)=-As sin(ωc t
−θ)
(3). Here, Ac and As in equations (2) and (3) are amplitudes, and θ is a deviation phase shift due to imperfection of the phase shifter 48. Low-pass filters (LPF1) 46 and (LPF2) 47 located after the mixers 44 and 45 in FIG. 4 are for removing high-frequency components from the product signals of the mixers 44 and 45. Outputs OUT1 and OUT of this configuration
2, the following outputs can be obtained from the output terminals 42 and 43. [0005] The output OUT1 is i(t)=Ac I(t)+δc

(4) Output OUT2 is q(t)=As [Q(t) cosθ−I
(t) sinθ]+δs
(5) However, the second terms δc and δs on the right side of equations (4) and (5) are DC offset components, and the mixers 44 and 45 and the low-pass filter 46,
This occurs due to the influence of the DC offset of 47. Originally, amplitude Ac = As, deviation phase shift θ = 0, D
Since the C offset component δc = δs = 0, the output OUT1 should be i(t) = Ac I(t) and the output OUT2 should be q(t) = Ac Q(t), but in general, equation (4 ), distortion components are added as shown in (5). [Problem to be Solved by the Invention] However, as shown in equations (4) and (5) above, if the output OUT1 is i(t)
= Ac I(t), output OUT2 is q(t) = Ac
Q(t) and is subject to distortion. FIG. 5 shows the state of linear distortion of a conventional quadrature detector. FIG. 5A shows a case where the amplitude, deviation phase shift, DC offset component, etc. are ideal. The ideal values are that the amplitude is A c = As, the DC offset component is δc = δs = 0, and the deviation phase shift is θ = 0. I(t
)=cos(ωo t), Q(t)=sin(ωo
When receiving the modulated wave of t), I(t) and Q(t)
It shows the locus of the circle drawn by. [0008] Figure (B) shows the case where there is a DC offset component, in which case the amplitude is Ac = As, DC
The offset component is δc≠0, δs≠0, and the deviation phase shift is θ=0. Therefore, the center of the circular locus is shifted by the DC offset components δc and δs. FIG. 2C shows a case where the amplitude is unbalanced. In this case, the amplitude is A c < As, the DC offset component is δc = δs = 0, and the deviation phase shift is θ = 0. Therefore, it becomes an elliptical locus extending in the Q direction. [0010] Figure (D) shows the case where the 90-degree phase shifter is incomplete, in which case the amplitude is Ac = As, the DC offset component is δc = δs = 0, and the deviation phase shift is θ>0.
It is. Therefore, the trajectory becomes a tilted ellipse. [0011] In this way, linear distortion greatly deteriorates detection characteristics, such as error rate characteristics in digital transmission, so manufacturing a quadrature detector requires careful selection of well-balanced components and fine tuning that requires skill. This method has disadvantages in that it requires adjustment work and expensive measuring instruments. The present invention has been made in view of the above points, and it is an object of the present invention to provide a quadrature detector with extremely small linear distortion without requiring various methods for preventing linear distortion when manufacturing the quadrature detector. purpose. [Means for Solving the Problems] FIG. 1 shows a diagram of the basic configuration of the present invention. A reference signal generating means inputs a modulated signal from the input terminal (1) and generates a reference signal, and removes a DC component from the quadrature detection output obtained by multiplying the reference signal and the modulation signal to generate an in-phase detection signal and a quadrature detection signal. a signal generating means (2) for generating a signal, a measuring means (3) for measuring an amplitude ratio and a correlation coefficient from two signal components, an in-phase detection signal and a quadrature detection signal; The linear conversion means (4) removes the correlation component from the orthogonal detection signal based on the correlation coefficient, and outputs the linearly converted orthogonal detection signal by matching the amplitude of the orthogonal detection signal with the in-phase detection signal. and configure. [Operation] The present invention includes a measurement means and a linear conversion means in the configuration of a conventional quadrature detector, and the measurement means eliminates distortion by using the amplitude ratio and correlation coefficient of the signal generated by the signal generation means. Measure. The linear conversion means compensates for distortion in the quadrature detection signal based on the measured value. This means that there is no correlation with each other,
Detection signals with equal levels can be obtained. [Embodiment] First, distortion compensation processing will be explained. First of all,
The equations (4) and (5) above can be transformed into the original signal I (
t) and Q(t), Ac I(t)=i(t)−δc

(6) Ac Q(
t)=[q(t)−δs]/A cos θ+[i(
t)−δc ]tan θ (7). However, A=As/Ac. That is, the orthogonal detection outputs i(t), q(t
) is processed by equations (6) and (7), signals A c times the original signals I(t) and Q(t) can be obtained. For this process, DC offset components δc, δs
, amplitude A, and deviation phase shift θ. These can be easily measured when the modulated wave satisfies the following conditions.
<I(t)>=0

(7a) <Q(t)>=0

(7b)
<I(t)Q(t)>=0

(7c) <I2(t)>
=〈Q2(t)〉=σ2
(7d) These mean that I(t) and Q(t) each have no DC offset component and are mutually uncorrelated, which is true under normal application conditions. At this time, the formula (4
), (5) from 〈i(t)〉=δc

(8a) <q(t)>=
δs
(8
b) Therefore, by averaging the orthogonal detection i(t) and q(t), the DC offset components δc and δs can be obtained. Therefore, these DC offset components are detected by quadrature detection i(t
) and q(t), i0(t) and q0
(t). i0(t) = i(t)−δc

(9a) q0(t
) = q(t)−δs

(9b) Here, when the root mean square of i0(t) and q0(t) with the DC offset component removed is measured, it is as follows. <i02(t)>= Ac 2 σ2

(10a) <q02(
t)〉= As 2 σ2

(10b) Therefore, A = [<i02(t)>/<q02(t)>
]1/2
The amplitude A is determined by (11). Next, i0(
When we measure the correlation coefficient ρ between t) and q0(t), we get
ρ=〈i0(t)q0(t)〉/[〈i02(t)〉〈
q02(t)〉]1/2 =-sin θ


(12), so θ=arcsin(-ρ)

The deviation phase shift θ is determined by (13). As explained above, the DC offset component δ
Since c, δs, amplitude A, and correlation coefficient ρ can be easily measured, the original signal I(
t), Q(t) can be obtained. FIG. 2 shows a configuration diagram of an embodiment of the present invention. In the figure, the same components as those in FIG. 4 are given the same reference numerals, and the explanation thereof will be omitted. In the figure, the offset measurement circuit 11 and the DC
The offset compensation circuit 13 includes low-pass filters 46 and 47.
The output from The amplitude ratio phase shift measuring circuit 12 is D
The output from the C offset compensation circuit 13 is supplied. The amplitude phase shift compensation circuit 14 has an output from the output signal q0(t) of the DC offset compensation circuit 13 and the amplitude ratio phase shift measurement circuit 12.
The measurement results from Outputs i(t) and q(t) obtained through the circuits up to the low-pass filters 46 and 47 are input to the offset measuring circuit 11. The offset measurement circuit 11 performs averaging processing using the above-mentioned equations (8a) and (8b),
DC offset components δc and δs are measured. Next, the DC offset components δc and δs and the outputs i(t) and q(t) from the low-pass filters 46 and 47 are
Inputted into the offset compensation circuit 13, the above equation (9a)
, (9b) is performed, and i0
(t) = Ac I(t) and q0(t) are obtained. Next, these i0(t) and q0(t) are input to the amplitude ratio phase shift measuring circuit 12. The amplitude ratio phase shift measurement circuit 12 calculates equations (10a) and (10b) for measuring the root mean square with the DC offset component removed, then calculates the amplitude A using equation (11), and then calculates the amplitude A by equation (11). 1
The deviation phase shift θ is determined by 2) and (13). The amplitude A and deviation phase shift θ obtained from these are i0(t)
and q0(t) are input to the amplitude phase shift compensation circuit 14. The amplitude phase shift compensation circuit 14 is based on the above equation (7a).
, (7b), (7c), and (7d), Ac q(t) in which the orthogonal component serves as distortion compensation is obtained. Also, since nothing is done about the in-phase component, it remains AC I(t). In this way, detection signals having the same amplitude and excellent orthogonal detection properties can be obtained. An example in which the orthogonal detector having the above configuration is specifically applied will be described. FIG. 3 is a graph showing the results of applying the present invention to mobile communications using an adaptive equalizer. The same figure (A
) shows an example of DC component compensation, and graph 21
It can be seen that the case with compensation shown in graph 22 has a considerable effect compared to the state without compensation. Similarly, FIG. 3B shows an example in which amplitude compensation is performed. In addition, FIG. 6(C) is an example in which phase shift compensation is performed, and it can be seen that when compensation is performed, a considerable difference occurs compared to the state without compensation. As described above, according to the present invention, the present invention can be easily realized by converting the DC detection outputs i(t) and q(t) into digital signals using an A/D converter. Also,
CMOS-IC Since it can be easily realized using semiconductor technology, power consumption can be reduced, and it can be widely used in transmission equipment such as mobile phones.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の原理構成図である。FIG. 1 is a diagram showing the principle configuration of the present invention.

【図2】本発明の一実施例の構成図である。FIG. 2 is a configuration diagram of an embodiment of the present invention.

【図3】本発明を適応等化器に用いて移動通信に適用し
た結果を示すグラフである。
FIG. 3 is a graph showing the results of applying the present invention to mobile communications using an adaptive equalizer.

【図4】従来の直交検波器の構成図である。FIG. 4 is a configuration diagram of a conventional quadrature detector.

【図5】従来の直交検波器の線形歪の状態を示す図であ
る。
FIG. 5 is a diagram showing the state of linear distortion of a conventional quadrature detector.

【符号の説明】[Explanation of symbols]

1  入力端子 2  信号生成手段 3  測定手段 4  線形変換手段 11  オフセット測定回路 12  振幅比移相測定回路 13  DCオフセット補償回路 14  振幅移相補償回路 41  入力端子 42,43  出力端子 44,45  ミキサ 46,47  低域通過フィルタ 1 Input terminal 2 Signal generation means 3 Measurement means 4 Linear conversion means 11 Offset measurement circuit 12 Amplitude ratio phase shift measurement circuit 13 DC offset compensation circuit 14 Amplitude phase shift compensation circuit 41 Input terminal 42, 43 Output terminal 44, 45 Mixer 46, 47 Low pass filter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  入力端子より変調信号を入力し、基準
信号を発生させる基準信号発生手段、該基準信号と該変
調信号を乗算して得られる直交検波出力から直流成分を
除去して同相検波信号と直交検波信号を生成する信号生
成手段と、前記同相検波信号と前記直交検波信号の2つ
の信号成分から振幅比と相関係数を測定する測定手段と
、前記測定手段による前記振幅比と前記相関係数を基に
して前記直交検波信号から相関成分を除去するとともに
前記直交検波信号の振幅を前記同相検波信号と一致させ
ることで線形変換された直交検波信号を出力する線形変
換手段とを有することを特徴とする直交検波器。
1. A reference signal generating means which inputs a modulated signal from an input terminal and generates a reference signal, and generates an in-phase detected signal by removing a DC component from a quadrature detection output obtained by multiplying the reference signal and the modulated signal. signal generating means for generating a quadrature detection signal; measuring means for measuring an amplitude ratio and a correlation coefficient from two signal components of the in-phase detection signal and the quadrature detection signal; linear conversion means for removing a correlation component from the orthogonal detection signal based on a relational coefficient and outputting a linearly converted orthogonal detection signal by making the amplitude of the orthogonal detection signal coincide with the in-phase detection signal; A quadrature detector featuring:
JP3030302A 1991-02-25 1991-02-25 Quadrature detector Expired - Lifetime JP3036093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3030302A JP3036093B2 (en) 1991-02-25 1991-02-25 Quadrature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3030302A JP3036093B2 (en) 1991-02-25 1991-02-25 Quadrature detector

Publications (2)

Publication Number Publication Date
JPH04269002A true JPH04269002A (en) 1992-09-25
JP3036093B2 JP3036093B2 (en) 2000-04-24

Family

ID=12299957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3030302A Expired - Lifetime JP3036093B2 (en) 1991-02-25 1991-02-25 Quadrature detector

Country Status (1)

Country Link
JP (1) JP3036093B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223447A (en) * 2006-02-23 2007-09-06 Kyosan Electric Mfg Co Ltd Train selecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223447A (en) * 2006-02-23 2007-09-06 Kyosan Electric Mfg Co Ltd Train selecting device
JP4666506B2 (en) * 2006-02-23 2011-04-06 株式会社京三製作所 Train sorting device

Also Published As

Publication number Publication date
JP3036093B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
JP4031367B2 (en) Tunable phase shifter and applications for it
JP4555898B2 (en) Quadrature modulator and calibration method
RU2115222C1 (en) Phase-angle corrector for power amplifier feedback circuit (options)
US8224269B2 (en) Vector modulator calibration system
US8515379B2 (en) Receiver capable of reducing local oscillation leakage and in-phase/quadrature-phase (I/Q) mismatch and an adjusting method thereof
JPH0690261A (en) Method and apparatus for control of gain and phase error between signal channels in direct-conversion receiver
CN110708084B (en) Envelope detection based originating IQ correction circuit and method
JP4087850B2 (en) Apparatus and method for downmixing input signal to output signal
US20030165203A1 (en) Quadrature gain and phase imbalance correction in a receiver
JPH0382248A (en) 90× phase shifter and data receiver
JP2001045085A (en) Orthogonal signal generating circuit and orthogonal signal generating method
TWI280002B (en) Apparatus and method for calibrating IQ mismatch
JP3982662B2 (en) Reception method and high-frequency signal receiver
JPH01135223A (en) Differential frequency detector
JP2746781B2 (en) Phase shifter
US10491198B1 (en) Methods and apparatus for phase imbalance correction
JPH04269002A (en) Orthogonal detector
US7142614B2 (en) Signal generating circuit for generating a reference phase signal and a quadrature signal
JP4332113B2 (en) Direct conversion receiver
JP2006186581A (en) Method and circuit for orthogonal demodulation error compensation
US20050111587A1 (en) Demodulator and receiver using same
US6570939B1 (en) Receiving device with demodulating function based on orthogonal detection and equalizing function based on maximum likelihood sequence estimation
JP2837914B2 (en) AFC device
JP2837915B2 (en) AFC device
Colsell et al. A study of reconfigurable analogue for DRM and HF systems

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

EXPY Cancellation because of completion of term