JP3036093B2 - Quadrature detector - Google Patents

Quadrature detector

Info

Publication number
JP3036093B2
JP3036093B2 JP3030302A JP3030291A JP3036093B2 JP 3036093 B2 JP3036093 B2 JP 3036093B2 JP 3030302 A JP3030302 A JP 3030302A JP 3030291 A JP3030291 A JP 3030291A JP 3036093 B2 JP3036093 B2 JP 3036093B2
Authority
JP
Japan
Prior art keywords
signal
amplitude
detection signal
quadrature
offset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3030302A
Other languages
Japanese (ja)
Other versions
JPH04269002A (en
Inventor
博 鈴木
仁 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3030302A priority Critical patent/JP3036093B2/en
Publication of JPH04269002A publication Critical patent/JPH04269002A/en
Application granted granted Critical
Publication of JP3036093B2 publication Critical patent/JP3036093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は直交検波器に係り、特
に、直交性のよい直交検波出力信号を得るための直交検
波器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quadrature detector and, more particularly, to a quadrature detector for obtaining a quadrature detection output signal having good orthogonality.

【0002】[0002]

【従来の技術】図4は従来の直交検波器の構成図を示
す。先ず、従来の直交検波器は入力端子41、出力端子
42、43、ミキサ44、45、低域通過フィルタ4
6、47、90度移相器48より構成される。
2. Description of the Related Art FIG. 4 shows the configuration of a conventional quadrature detector. First, a conventional quadrature detector has an input terminal 41, output terminals 42 and 43, mixers 44 and 45, a low-pass filter 4
6, 47, and 90-degree phase shifters 48.

【0003】次に、従来の直交検波器の動作を説明す
る。入力端子41から変調S(t)が入力される。変
調S(t)は S(t)=I(t)cos ωc t −Q(t)sin ωc t (1) のように表される。式(1) において、右辺のI(t)とQ(t)
それぞれ同相及び直交成分の振幅であり、変調の不確
定位相をも反映している。この変調波S(t)は2つの
ミキサ44、45に加えられる。これらのミキサ44、
45には搬送波発振器OSC 49から出力される基準信号
γ(t)とその基準信号Cγ(t)を90°移相器4
8で90度移相した基準信号Sγ(t)が加えられてい
る。基準信号Cγ(t)Cγ(t)=Ac cos(ωc t) (2) であり、90°移相基準信号Sγ(t)は Sγ(t)=−As sin(ωc t θ) (3) である。ここで、式 (2)と式 (3)のAc とAs は振幅、
θは移相器48の不完全性による移相偏差である。
Next, the operation of the conventional quadrature detector will be described. The modulated wave S (t) is input from the input terminal 41. Modulated wave S (t) can be expressed as S (t) = I (t ) cos ω c t -Q (t) sin ω c t (1). In equation (1), I (t) and Q (t) on the right side
Are the amplitudes of the in-phase and quadrature components , respectively, and also reflect the uncertain phase of the modulation. This modulated wave S (t) is applied to two mixers 44 and 45. These mixers 44,
45 the reference signal C gamma (t) and the reference signal C gamma a (t) 90 ° phase shifter 4 that is outputted from the carrier oscillator OSC 49 in
8, a reference signal Sγ (t ) shifted by 90 degrees is added. Reference signal C gamma (t) is Cγ (t) = A c cos (ω c t) (2), 90 ° phase-shifted reference signal S [gamma] (t) is Sγ (t) = - A s sin (ω c t + Θ) (3). Here, A c and A s of formula (2) and (3) the amplitude,
θ is a phase shift deviation due to imperfection of the phase shifter 48.

【0004】図4のミキサ44、45の後段にある低域
通過フィルタ(LPF1)46,(LPF2)47はミキサ44、4
5の乗積信号から高域成分を除去するためのものであ
る。このような構成の出力OUT1,OUT2 は出力端子42、
43より以下のような出力が得られる。
The low-pass filters (LPF1) 46 and (LPF2) 47 at the subsequent stage of the mixers 44 and 45 in FIG.
This is for removing high frequency components from the product signal of 5. Outputs OUT1 and OUT2 having such a configuration are connected to output terminal 42,
43, the following output is obtained.

【0005】出力OUT1は i(t)= Ac I(t)+δc (4) 出力OUT2は q(t)= As [Q(t) cosθ−I(t) sinθ]+δs (5) 但し、式(4) 、(5) の右辺の第 2項のδc 、δs はDCオ
フセット成分であり、ミキサ44,45、及び低域通過
フィルタ46,47のDCオフセットなどの影響で発生す
るものである。理想的には、振幅 Ac = As 移相偏差
θ=0、DCオフセット成分δc =δs =0であるから、
出力OUT1は i(t)= Ac I(t) 出力OUT2は q(t)= Ac Q(t) となるべきであるが、一般には式(4)、(5)に示さ
れるように歪み成分が付加される。
The output OUT1 is i (t) = A c I (t) + δ c (4) The output OUT2 is q (t) = A s [Q (t) cos θ−I (t) sin θ] + δ s (5) However, δ c and δ s of the second term on the right side of the equations (4) and (5) are DC offset components, which are generated due to the DC offset of the mixers 44 and 45 and the low-pass filters 46 and 47. Is what you do. Ideally , the amplitude A c = A s , the phase shift deviation θ = 0, and the DC offset component δ c = δ s = 0,
The output OUT1 is i (t) = A c I (t). The output OUT2 should be q (t) = A c Q (t). Generally, as shown in equations (4) and (5), A distortion component is added.

【0006】[0006]

【発明が解決しようとする課題】しかるに、前述した式
(4) 、(5) のように、出力OUT1がi(t)= Ac I(t)、出力
OUT2がq(t)= Ac Q(t)とはならず、歪みを受けている。
SUMMARY OF THE INVENTION However, the above equation
As shown in (4) and (5), output OUT1 is i (t) = A c I (t)
OUT2 does not satisfy q (t) = A c Q (t) and is distorted.

【0007】図5は従来の直交検波器の線形歪みの状態
を示す。同図(A)は振幅、移相偏差、DCオフセット成
分等が理想的な場合を示している。の理想的な値と
は、振幅はA c = As 、DCオフセット成分はδc =δs
=0、移相偏差はθ=0である。I(t)=cos(ωo t), Q
(t)=sin(ωo t)の変調波を受信したときに I(t) とQ
(t)により描く円の軌跡を示している。
FIG. 5 shows a state of linear distortion of a conventional quadrature detector. FIG. 6A shows a case where the amplitude, the phase shift deviation , the DC offset component, and the like are ideal. The ideal value of this amplitude is A c = A s, DC offset component δ c = δ s
= 0, and the phase shift deviation is θ = 0. I (t) = cos (ω o t), Q
When (t) = sin (ω ot ) modulated wave is received, I (t) and Q
The trajectory of the circle drawn by (t) is shown.

【0008】同図(B)はDCオフセット成分がある場合
であり、の場合、振幅は Ac = As 、DCオフセット成
分はδc ≠0 、δs ≠0、移相偏差はθ=0である。従
って、円軌跡の中心がDCオフセット成分δc 、δs だけ
シフトしている。
[0008] FIG. (B) shows a case where there is a DC offset component, In this case, the amplitude A c = A s, the DC offset component δ c ≠ 0, δ s ≠ 0, the phase shift deviation theta = 0. Accordingly, the center of the circular locus is shifted by DC offset component [delta] c, [delta] s.

【0009】同図(C)は振幅がアンバランスの場合で
あり、の場合、振幅はA c < As、DCオフセット成分
はδc =δs =0、移相偏差はθ=0である。従って、
方向に伸びた楕円軌跡となる。
[0009] FIG. (C) shows a case amplitude imbalance, In this case, the amplitude A c <A s, DC offset component δ c = δ s = 0, the phase shift deviation in theta = 0 is there. Therefore,
It becomes an elliptical locus extending in the q direction.

【0010】同図(D)は90度移相器が不完全な場合
であり、の場合、振幅は Ac = As 、DCオフセット成
分はδc =δs =0、移相偏差はθ>0 である。従っ
て、傾いた楕円軌跡になる。
[0010] FIG. (D) shows a case is incomplete 90-degree phase shifter, In this case, the amplitude A c = A s, DC offset component δ c = δ s = 0, the phase shift deviation θ> 0. Therefore, it becomes an inclined elliptical locus.

【0011】このように線形歪みがあると検波特性、例
えば、ディジタル伝送における誤り率特性などが大きく
劣化するために直交検波器の製作には、バランスのよい
部品の選定、熟練を要するような微調整作業、高価な測
定器等を必要とする欠点があった。
As described above, detection characteristics such as error rate characteristics in digital transmission are greatly degraded when linear distortion is present. Therefore, in the manufacture of a quadrature detector, it is necessary to select a well-balanced component and to obtain skill. There were drawbacks that required adjustment work and expensive measuring instruments.

【0012】本発明は上記の点に鑑みなされたもので直
交検波器の製作にあたり、線形歪を防ぐための様々な方
法を必要とせずに、線形歪が極めて小さい直交検波器を
提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a quadrature detector having extremely small linear distortion without the need for various methods for preventing linear distortion in manufacturing the quadrature detector. Aim.

【0013】[0013]

【課題を解決するための手段】図1は本発明の原理構成
図を示す。入力端子(1)より変調信号を入力し、基準
信号を発生させる基準信号発生手段、基準信号と変調信
号を乗算して得られる直交検波出力から直流成分を除去
して同相検波信号と直交検波信号を生成する信号生成手
段(2)と、同相検波信号と直交検波信号の2つの信号
から振幅比と相関係数を測定する測定手段(3)と、測
定手段(3)による振幅比と前記相関係数を基にして直
交検波信号から相関成分を除去するとともに直交検波信
号の振幅を同相検波信号と一致させることで線形変換さ
れた直交検波信号を出力する線形変換手段(4)とを有
し、構成する。
FIG. 1 is a block diagram showing the principle of the present invention. A reference signal generating means for receiving a modulation signal from an input terminal (1) and generating a reference signal; removing a DC component from a quadrature detection output obtained by multiplying the reference signal and the modulation signal to remove an in-phase detection signal and a quadrature detection signal amplitude and signal generating means for generating (2), the amplitude ratio of the two signals <br/> in-phase detection signal and the quadrature detection signal and measuring means for measuring a correlation coefficient (3), by measuring means (3) Linear conversion means for removing a correlation component from the quadrature detection signal based on the ratio and the correlation coefficient, and outputting a quadrature detection signal linearly converted by matching the amplitude of the quadrature detection signal with the in-phase detection signal (4) And comprising.

【0014】[0014]

【作用】本発明は従来の直交検波器の構成に測定手段
と、線形変換手段を設けており、測定手段は信号生成手
段で生成された信号の歪による振幅比と相関係数を測定
する。線形変換手段はその測定値を基にして直交検波信
号に歪の補償を行う。これにより、互いに相関性がな
い、レベルが等しい検波信号を得ることができる。
According to the present invention, a conventional quadrature detector is provided with a measuring means and a linear converting means in the configuration of the conventional quadrature detector, and the measuring means measures an amplitude ratio and a correlation coefficient due to distortion of a signal generated by the signal generating means.
I do . The linear conversion means performs distortion compensation on the quadrature detection signal based on the measured value. This makes it possible to obtain detection signals having no correlation and equal levels.

【0015】[0015]

【実施例】先ず、歪補償処理について説明する。前述の
式(4) と(5) の方程式を本来の信号I(t) 及び、Q(t)に
ついて解くと、 Ac I(t)=i(t)−δc (6a) Ac Q(t)=[q(t)−δs ]/A cos θ+[i(t)−δc ]tan θ (6b) となる。ただし、A = As / Ac である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the distortion compensation processing will be described . The expression before mentioned (4) the original signal I (t) the equations (5) and, Solving for Q (t), A c I (t) = i (t) -δ c (6a) A c Q (t) = [q (t) −δ s ] / A cos θ + [i (t) −δ c ] tan θ (6b) . However, it is A = A s / A c.

【0016】すなわち、直交検波出力i(t),q
(t)に式(6a)、(6b)の処理を行えば、本来の信号I
(t), Q(t)のA c 倍の信号が得られる。この処理のため
にはDCオフセット成分δc , δs 、振幅A 、移相偏差θ
を知る必要がある。これらは、変調波が次の条件を満た
す時に容易に測定できる。
That is, the quadrature detection outputs i (t), q
By performing the processing of equations (6a) and (6b) on (t), the original signal I
(t), a signal of Ac times Q (t) is obtained. For this processing, DC offset components δ c , δ s , amplitude A, phase shift deviation θ
You need to know. These can be easily measured when the modulated wave satisfies the following conditions.

【0017】 I(t)〉=0 (7a) 〈Q(t)〉=0 (7b) 〈I(t)Q(t)〉=0 (7c) 〈I2(t) 〉=〈Q2(t) 〉=σ2 (7d) これらは、I(t)とQ(t)がそれぞれDCオフセット成分を持
たず、また、互いに無相関であることを意味しており、
通常の適用条件では成立している。このとき式(4)、
(5) から 〈i(t)〉=δc (8a) 〈q(t)〉=δs (8b) であるから、直交検波出力i(t)とq(t)を平均すればDCオ
フセット成分δc とδsが求められる。そこでこれらのD
Cオフセット成分を直交検波i(t)とq(t)より除去したも
のをi0(t) と q0(t)とする。
I (t)> = 0 (7a) <Q (t)> = 0 (7b) <I (t) Q (t)> = 0 (7c) <I 2 (t)> = <Q 2 (t)〉 = σ 2 (7d) These mean that I (t) and Q (t) have no DC offset components and are uncorrelated with each other,
This is true under normal application conditions. At this time, equation (4)
(5) from <i (t)> = δ c (8a) <q (t)> = because it is [delta] s (8b), DC offset if the average quadrature detection output i and (t) q (t), component [delta] c and [delta] s is obtained. So these D
Those obtained by removing the C offset component from the quadrature detections i (t) and q (t) are defined as i 0 (t) and q 0 (t).

【0018】 i0(t) =i(t)−δc (9a) q0(t) =q(t)−δs (9b) ここでDCオフセット成分を除去したi0(t) と q0(t)の二
乗平均を測定すると、次のようになる。
I 0 (t) = i (t) −δ c (9a) q 0 (t) = q (t) −δ s (9b) where i 0 (t) and q from which the DC offset component has been removed When the root mean square of 0 (t) is measured, it is as follows.

【0019】 〈i0 2(t)〉= Ac 2 σ2 (10a) 〈q0 2(t)〉= As 2 σ2 (10b) 従って、 A =[〈i0 2(t)〉/〈q0 2(t)〉]1/2 (11) により振幅A が求められる。[0019] <i 0 2 (t)> = A c 2 σ 2 (10a) <q 0 2 (t)> = A s 2 σ 2 (10b) Therefore, A = [<i 0 2 (t)> / <Q 0 2 (t)>] 1/2 (11) gives the amplitude A.

【0020】次にDCオフセット成分を除去したi0(t) と
q0(t) の相関係数ρを測定すると、 ρ=〈i0(t)q0(t)〉/[〈i0 2(t)〉〈q0 2(t)〉]1/2 (12) となるので θ=arcsin(−ρ) (13) により移相偏差θが求められる。
Next, i 0 (t) from which the DC offset component has been removed is
When the correlation coefficient ρ of q 0 (t) is measured, ρ = <i 0 (t) q 0 (t)> / [<i 0 2 (t)><q 0 2 (t)> 1/2 (12), the phase shift deviation θ is obtained from θ = arcsin (−ρ) (13).

【0021】以上説明したようにDCオフセット成分δ
c , δs 、振幅A 、相関係数ρが容易に測定できるの
で、式(6a) 、(6b)により本来の信号I(t), Q(t)を得る
ことができる。
As described above, the DC offset component δ
Since c, δ s , amplitude A, and correlation coefficient ρ can be easily measured, the original signals I (t) and Q (t) can be obtained from equations (6a) and (6b) .

【0022】図2は本発明の一実施例の構成図を示す。
同図中、図4と同一構成部分には同一符号を付しその説
明を省略する。
FIG. 2 is a block diagram showing one embodiment of the present invention.
4, the same components as those of FIG. 4 are denoted by the same reference numerals, and the description thereof will be omitted.

【0023】同図中、オフセット測定回路11及びDCオ
フセット補償回路13は低域通過フィルタ46、47か
らの出力が供給される。振幅・相関測定回路12はDC
オフセット補償回路13からの出力が供給される。振幅
・移相補償回路14はDCオフセット補償回路13の出力
信号q0(t) からの出力と振幅・相関測定回路12からの
測定結果が供給される。
[0023] In the figure, the offset measurement circuitry 11 and the DC offset compensation circuit 13 outputs from the low-pass filter 46, 47 is supplied. DC is the amplitude-correlation measurement circuit 12
An output from the offset compensation circuit 13 is supplied. amplitude
The phase shift compensating circuit 14 is supplied with the output from the output signal q 0 (t) of the DC offset compensating circuit 13 and the measurement result from the amplitude / correlation measuring circuit 12.

【0024】低域通過フィルタ46、47までの回路を介し
て得られた出力i(t), q(t)オフセット測定回路11に
入力される。オフセット測定回路11は前述の式(8a)(8
b)による平均処理が行なわれ、DCオフセット成分δc
δs が測定される。次にDCオフセット成分δc とδs
び、低域通過フィルタ46,47からの出力i(t), q(t)
はDCオフセット補償回路13に入力され、前述の式(9a),
(9b) による直流成分の除去処理が行われ、i0(t) = A
c I(t)とq0(t) が得られる。
The low-pass output i obtained through the circuit to filter 46,47 (t), q (t ) is input to the offset measurement circuitry 11. The offset measuring circuit 11 uses the above formula (8a) (8
Mean treatment with b) is carried out, DC offset component [delta] c and [delta] s is measured. Next, DC offset components δ c and δ s and outputs i (t) and q (t) from low-pass filters 46 and 47 are obtained.
Is input to the DC offset compensating circuit 13, and the above equation (9a),
The DC component is removed by (9b), and i 0 (t) = A
c I (t) and q 0 (t) are obtained.

【0025】次にこれらi0(t) とq0(t) は振幅・相関
定回路12に入力される。振幅・相関測定回路12はDCオフ
セット成分を除去した二乗平均を測定するための式(10
a),(10b)の計算を行い、次に式(11)により振幅A を求
め、さらに式(12)、(13)により移相偏差θが求められ
る。これらにより求められた振幅A と移相偏差θはi
0(t)とq0(t) とともに振幅移相補償回路14に入力さ
れる。
Next, these i 0 (t) and q 0 (t) are inputted to the amplitude / correlation measuring circuit 12. The amplitude / correlation measurement circuit 12 calculates an equation (10) for measuring a root mean square from which a DC offset component has been removed.
a) and (10b) are calculated, then the amplitude A is obtained by equation (11), and the phase shift deviation θ is obtained by equations (12) and (13). The amplitude A and the phase shift deviation θ obtained from these are i
0 (t) and q 0 (t) are input to the amplitude / phase shift compensation circuit 14.

【0026】振幅移相補償回路14は前述の式(6b)によ
り直交成分が歪補償された Ac q(t)が得られる。また、
同相成分については何も行われないので、 AC I(t)のま
まである。このようにして振幅が同じで、且つ直交検波
性のすぐれた検波信号が得られる。
The amplitude / phase shift compensating circuit 14 obtains A c q (t) in which the quadrature component is distortion-compensated by the above equation (6b) . Also,
Since nothing is done about the phase component remains A C I (t). In this way, a detection signal having the same amplitude and excellent quadrature detection can be obtained.

【0027】上記のような構成の直交検波器を具体的に
適用した例を示す。図3は本発明を適応等化器に用いた
移動通信に適用した結果を示すグラフである。同図
(A)は直流成分補償を行った例を示しており、グラフ
1の補償無しの状態に較べてグラフ22の補償ありの
場合にはかなりの効果をあげていることが分かる。
The quadrature detector having the above configuration is specifically described.
Here is an example of application . FIG. 3 is a graph showing a result of applying the present invention to mobile communication using an adaptive equalizer. FIG. 7A shows an example in which DC component compensation is performed, and is a graph.
It can be seen that a considerable effect is obtained in the case with the compensation shown in the graph 22 as compared with the state without the compensation in 31 .

【0028】同様に同図(B)は振幅補償を行った例で
ある。また、同図(C)は移相補償を行った例である
が、それぞれ、補償を行うと補償無しの特性に比較して
かなり改善されていることがわかる。
FIG. 2B shows an example in which amplitude compensation is performed. FIG. 11C shows an example in which phase shift compensation is performed, and it can be seen that the compensation is considerably improved as compared with the characteristics without compensation.

【0029】[0029]

【発明の効果】上述のように本発明によれば、直流検波
出力i(t)及び、q(t)をA/D 変換器によりディジタル信号
に変換すれば、容易に実現できる。また、CMOS-IC 半導
体技術で容易に実現できるので消費電力を削減すること
も可能となり、携帯電話等の伝送系の機器に広く利用で
きる。
As described above, according to the present invention, if the DC detection outputs i (t) and q (t) are converted into digital signals by an A / D converter, it can be easily realized. In addition, since it can be easily realized by CMOS-IC semiconductor technology, it is possible to reduce power consumption, and it can be widely used for transmission equipment such as mobile phones.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理構成図である。FIG. 1 is a principle configuration diagram of the present invention.

【図2】本発明の一実施例の構成図である。FIG. 2 is a configuration diagram of one embodiment of the present invention.

【図3】本発明を適応等化器用い移動通信に適用し
た結果を示すグラフである。
3 is a graph showing the result of applying the present invention to a mobile communication using the adaptive equalizer.

【図4】従来の直交検波器の構成図である。FIG. 4 is a configuration diagram of a conventional quadrature detector.

【図5】従来の直交検波器の線形歪の状態を示す図であ
る。
FIG. 5 is a diagram showing a state of linear distortion of a conventional quadrature detector.

【符号の説明】[Explanation of symbols]

1 入力端子 2 信号生成手段 3 測定手段 4 線形変換手段 11 オフセット測定回路 12 振幅・相関測定回路 13 DCオフセット補償回路 14 振幅移相補償回路 41 入力端子 42,43 出力端子 44,45 ミキサ 46,47 低域通過フィルタReference Signs List 1 input terminal 2 signal generation means 3 measurement means 4 linear conversion means 11 offset measurement circuit 12 amplitude / correlation measurement circuit 13 DC offset compensation circuit 14 amplitude / phase shift compensation circuit 41 input terminals 42, 43 output terminals 44, 45 mixer 46, 47 Low Pass Filter

───────────────────────────────────────────────────── フロントページの続き 審査官 吉岡 浩 (56)参考文献 特開 昭57−57007(JP,A) (58)調査した分野(Int.Cl.7,DB名) H03D 3/02 - 3/06 H04L 27/14 ────────────────────────────────────────────────── ─── Continuing from the front page Examiner Hiroshi Yoshioka (56) References JP-A-57-57007 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H03D 3/02-3 / 06 H04L 27/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 入力端子より変調信号を入力し、基準信
号を発生させる基準信号発生手段、該基準信号と該変調
信号を乗算して得られる直交検波出力から直流成分を除
去して同相検波信号と直交検波信号を生成する信号生成
手段と、 前記同相検波信号と前記直交検波信号の2つの信号から
振幅比と相関係数を測定する測定手段と、 前記測定手段による前記振幅比と前記相関係数を基にし
て前記直交検波信号から相関成分を除去するとともに前
記直交検波信号の振幅を前記同相検波信号と一致させる
ことで線形変換された直交検波信号を出力する線形変換
手段とを有することを特徴とする直交検波器。
1. A reference signal generating means for inputting a modulation signal from an input terminal and generating a reference signal, and removing a DC component from a quadrature detection output obtained by multiplying the reference signal and the modulation signal to remove an in-phase detection signal. the phase relationship between the signal generating means for generating a quadrature detection signal, measuring means for measuring a correlation coefficient between the amplitude ratio of the two signals of the same phase detection signal and the quadrature detection signal, and the amplitude ratio by the measuring means A linear conversion unit that outputs a quadrature detection signal that is linearly converted by removing a correlation component from the quadrature detection signal based on a number and matching the amplitude of the quadrature detection signal with the in-phase detection signal. Characteristic quadrature detector.
JP3030302A 1991-02-25 1991-02-25 Quadrature detector Expired - Lifetime JP3036093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3030302A JP3036093B2 (en) 1991-02-25 1991-02-25 Quadrature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3030302A JP3036093B2 (en) 1991-02-25 1991-02-25 Quadrature detector

Publications (2)

Publication Number Publication Date
JPH04269002A JPH04269002A (en) 1992-09-25
JP3036093B2 true JP3036093B2 (en) 2000-04-24

Family

ID=12299957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3030302A Expired - Lifetime JP3036093B2 (en) 1991-02-25 1991-02-25 Quadrature detector

Country Status (1)

Country Link
JP (1) JP3036093B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666506B2 (en) * 2006-02-23 2011-04-06 株式会社京三製作所 Train sorting device

Also Published As

Publication number Publication date
JPH04269002A (en) 1992-09-25

Similar Documents

Publication Publication Date Title
KR100335713B1 (en) I/Q quadraphase modulator circuit
US7555271B2 (en) Single side band transmissions
US8515379B2 (en) Receiver capable of reducing local oscillation leakage and in-phase/quadrature-phase (I/Q) mismatch and an adjusting method thereof
EP1529338B1 (en) Improved mixers with a plurality of local oscillators and systems based thereon
CN108777671B (en) Compensation method and device of ultra-wideband orthogonal demodulation receiver
AU4766093A (en) Apparatus for compensating of phase rotation in a final amplifier stage
WO2005039043A1 (en) Amplifier circuit
EP1289125A2 (en) Double balance mixer circuit and orthogonal demodulation circuit using the same
JP2004343753A (en) Communication receiver and transmitter
JPH0382248A (en) 90× phase shifter and data receiver
JP2007104007A (en) Orthogonal modulator, and vector correction method in the same
JP2001045085A (en) Orthogonal signal generating circuit and orthogonal signal generating method
TWI280002B (en) Apparatus and method for calibrating IQ mismatch
TWI269521B (en) Harmonic mixer
US7181186B2 (en) Mixer and frequency conversion apparatus for improving phase-mismatching
JP3036093B2 (en) Quadrature detector
JPH0865248A (en) Adaptive equalizer for analogue optical signal transmission
JP2746781B2 (en) Phase shifter
JPS62142440A (en) Modulator-demodulator
JP3115821B2 (en) Modulation circuit
JP2000183764A (en) Output circuit
AU642373B2 (en) A digital quadrature phase detector for angle modulated signals
US6570939B1 (en) Receiving device with demodulating function based on orthogonal detection and equalizing function based on maximum likelihood sequence estimation
JPH0897872A (en) Transmitter of radio equipment
De Witt et al. Novel IQ imbalance and offset compensation techniques for quadrature mixing radio transceivers

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

EXPY Cancellation because of completion of term