JPH04268055A - Manufacture of copper alloy for lead frame - Google Patents

Manufacture of copper alloy for lead frame

Info

Publication number
JPH04268055A
JPH04268055A JP5063591A JP5063591A JPH04268055A JP H04268055 A JPH04268055 A JP H04268055A JP 5063591 A JP5063591 A JP 5063591A JP 5063591 A JP5063591 A JP 5063591A JP H04268055 A JPH04268055 A JP H04268055A
Authority
JP
Japan
Prior art keywords
copper alloy
treatment
precipitation hardening
subjected
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5063591A
Other languages
Japanese (ja)
Inventor
Hideya Takahashi
秀也 高橋
Yasuyoshi Muramatsu
康義 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP5063591A priority Critical patent/JPH04268055A/en
Publication of JPH04268055A publication Critical patent/JPH04268055A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the plating properties, solderability and etching properties of a copper alloy by subjecting the rolled stock of a Be-Ni-Cu alloy to precipitation hardening, thereafter removing an oxidized film and next executing flattening and internal stress relieving annealing. CONSTITUTION:A Cu alloy contg. Be and Ni is cast, is subjected to hot working, is subjected to soln. treatment in such a manner that it is heated to 850 to 950 deg.C and is thereafter cooled at 10 to 200 deg.C/sec cooling rate. Next, it is subjected to cold rolling. The soln. treatment and rolling are repeated for one or plural times into a sheet material having a prescribed thickness. The rolled stock is held to 400 to 550 deg.C for 2min to 2hr and is subjected to precipitation hardening treatment. An oxidized film formed on the surface by the above treatment is removed, and after that, flattening and internal stress relieving annealing are executed. In this way, the copper alloy excellent in strength, electric conductivity and thermal conductivity and suitable as the material for a lead frame of multipins can be obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は電気伝導度が高く、平滑
性、エッチング性、メッキ性及びロウ付け性が優れてい
ることが要求される多ピンリードフレーム用の材料とし
て好適のリードフレーム用銅合金の製造方法に関する。
[Industrial Application Field] The present invention is suitable for use in lead frames as a material for multi-pin lead frames which are required to have high electrical conductivity and excellent smoothness, etching properties, plating properties, and brazing properties. This invention relates to a method for producing a copper alloy.

【0002】0002

【従来の技術】近時、電子機器の小型化の要請に伴い、
IC(半導体集積回路)の高密度化、寸法の小型化及び
薄型化が要求されるようになった。このため、ICのリ
ードフレームも、ピン数の増加、ピンの狭幅化及び薄肉
化が要求されている。例えば、ピン数は80ピンから1
60ピンへ、また300ピンへと増加している。ピン幅
は0.65mmから0.5mm、0.3mmへと狭幅化
している。そして、これらのピン数の増加及びピン幅の
狭幅化に伴い、エッチング及びプレス加工の便宜上、ピ
ンの薄肉化が促進されている。
[Background Art] Recently, with the demand for downsizing of electronic devices,
There has been a demand for higher density, smaller size, and thinner ICs (semiconductor integrated circuits). For this reason, IC lead frames are also required to have an increased number of pins, narrow pin widths, and thin pin walls. For example, the number of pins is from 80 pins to 1
It has increased to 60 pins and then to 300 pins. The pin width has been narrowed from 0.65mm to 0.5mm to 0.3mm. As the number of these pins increases and the width of the pins becomes narrower, pins are being made thinner for convenience in etching and press processing.

【0003】このように、ピンの数増加、狭幅化及び薄
肉化により、リードフレームとしては、放熱特性の改善
のために熱伝導率の向上が要求され、高速度化のために
電気伝導率(導電率)の向上が要求され、ピンの変形防
止のためにバネ強度(Kb値)の向上が要求されている
As described above, due to the increase in the number of pins, narrower widths, and thinner walls, lead frames are required to have higher thermal conductivity in order to improve heat dissipation characteristics, and to increase the electrical conductivity in order to increase speed. (electrical conductivity) is required, and spring strength (Kb value) is required to be improved to prevent pin deformation.

【0004】而して、従来、リードフレーム用材料とし
ては、Niを42%(但し、%はwt%を示す。以下同
じ)含有し、残部がFeである42合金か、又はC70
250(CDA規格;Copper  Develop
ment  Association)が使用されてい
る。このC70250は、2.2〜4.2%のNi、0
.25〜1.2%のSi、0.05〜0.3%のMgを
含有し、残部がCuである銅合金である。
Conventionally, materials for lead frames include 42 alloy containing 42% Ni (however, % indicates wt%; the same applies hereinafter) and the balance being Fe, or C70 alloy.
250 (CDA standard; Copper Develop
ment Association) is used. This C70250 contains 2.2-4.2% Ni, 0
.. It is a copper alloy containing 25-1.2% Si, 0.05-0.3% Mg, and the balance is Cu.

【0005】また、これらのリードフレーム用材料は以
下のようにして製造されている。
[0005] Furthermore, these materials for lead frames are manufactured as follows.

【0006】先ず、42合金はそのインゴットを熱間圧
延した後、焼鈍及び冷間圧延を繰り返して所定の厚さの
板を得、次いでこれを歪取り焼鈍し、又は焼鈍せずにリ
ードフレーム用の板材を製造している。
First, alloy 42 is produced by hot rolling the ingot, then repeating annealing and cold rolling to obtain a plate of a predetermined thickness, which is then annealed to remove strain or used for lead frames without annealing. The company manufactures board materials.

【0007】C70250はそのインゴットを熱間圧延
した後、焼鈍及び冷間圧延を繰り返し、その後、歪取り
焼鈍し、又は焼鈍せずにてリードフレーム用材料を製造
している。
[0007] C70250 is produced by hot rolling the ingot, repeating annealing and cold rolling, and then subjecting it to strain relief annealing or without annealing to produce a lead frame material.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、これら
の従来のリードフレーム用材料は、42合金が導電率が
低いという欠点を有する一方、C70250は強度が低
いという欠点を有する。このため、従来のリードフレー
ム用材料は、ピン数の増加、狭幅化及び薄肉化に応える
ことができる特性を具備していない。従って、前述の熱
伝導率、導電率及びバネ強度が向上したリードフレーム
用材料の開発が要望されている。
However, these conventional materials for lead frames have the disadvantage that alloy 42 has a low electrical conductivity, while C70250 has a disadvantage of low strength. For this reason, conventional materials for lead frames do not have characteristics that can respond to an increase in the number of pins, narrower widths, and thinner walls. Therefore, there is a need for the development of lead frame materials that have improved thermal conductivity, electrical conductivity, and spring strength.

【0009】なお、バネ材料として使用されているBe
−Ni−Cu系合金は、強度が高いのに加え、熱伝導率
及び導電率も優れている。このため、近時、リードフレ
ーム用材料に要求されている前述の要件を具備している
が、リードフレーム用材料として基本的に必要な平滑性
、エッチング性、メッキ性及びロウ付け性が極めて悪い
という欠点がある。
[0009] Furthermore, Be used as a spring material.
-Ni-Cu alloys have high strength as well as excellent thermal conductivity and electrical conductivity. For this reason, although it meets the above-mentioned requirements recently required for lead frame materials, it has extremely poor smoothness, etching properties, plating properties, and brazing properties, which are basically required for lead frame materials. There is a drawback.

【0010】このBe−Ni−Cu系合金はC1751
0の規格で表されるが、これは溶体化処理と冷間圧延と
を繰り返して所定の厚さの板材を得、この板材に析出硬
化処理を施して製造されている。このように、この材料
は析出硬化型の銅合金であるため、この析出硬化によっ
て表面に硬く、緻密な膜が発生する。この膜の存在によ
り、メッキ性、半田付け性及びエッチング性が悪化する
。そして、この硬く緻密な膜を取り除くために、酸洗及
びバフ研磨を施すと、表面の残留応力のバランスがくず
れ、バネ限界値が劣化すると共に、平坦性も劣化してし
まう。また、溶体化処理で高温から急冷するため、本来
、平坦性が優れている板材を得にくいという欠点がある
。なお、このBe−Ni−Cu系合金は時効硬化型の合
金であるため、従来のリードフレーム用銅合金を製造し
ている前述の方法では、析出硬化処理がないため、十分
な強度を具備することができないことはいうまでもない
[0010] This Be-Ni-Cu alloy is C1751
0 standard, which is manufactured by repeating solution treatment and cold rolling to obtain a plate material of a predetermined thickness, and then subjecting this plate material to precipitation hardening treatment. As described above, since this material is a precipitation hardening type copper alloy, a hard and dense film is generated on the surface by this precipitation hardening. The presence of this film deteriorates plating properties, soldering properties, and etching properties. If pickling and buffing are performed to remove this hard and dense film, the balance of residual stress on the surface will be disrupted, and the spring limit value will deteriorate as well as the flatness. Furthermore, because the solution treatment involves rapid cooling from a high temperature, it is inherently difficult to obtain a plate material with excellent flatness. Furthermore, since this Be-Ni-Cu alloy is an age-hardening alloy, the above-mentioned method for producing conventional copper alloys for lead frames does not require precipitation hardening treatment, so it does not have sufficient strength. Needless to say, this is not possible.

【0011】本発明はかかる問題点に鑑みてなされたも
のであって、熱伝導率及び導電率が優れているのに加え
、強度が従来のリードフレーム用材料に比して著しく向
上したリードフレーム用銅合金を製造することができる
リードフレーム用銅合金の製造方法を提供することを目
的とする。
The present invention has been made in view of these problems, and provides a lead frame which has excellent thermal conductivity and electrical conductivity, and which has significantly improved strength compared to conventional lead frame materials. It is an object of the present invention to provide a method for producing a copper alloy for lead frames, which can produce copper alloys for lead frames.

【0012】0012

【課題を解決するための手段】本発明に係るリードフレ
ーム用銅合金の製造方法は、Be及びNiを含有し、残
部がCu及び不可避的不純物からなる銅合金を850〜
950℃に加熱した後10〜200℃/秒の冷却速度で
冷却する溶体化処理工程と、その後に冷間圧延する圧延
工程とを1又は複数回繰り返し、得られた圧延材を40
0〜550℃に2分〜2時間保持して析出硬化させ、こ
の析出硬化処理により生成した酸化膜を除去した後、平
坦化加工及び歪取り焼鈍をこの順に又は逆の順に実施す
ることを特徴とする。
[Means for Solving the Problems] A method for producing a copper alloy for lead frames according to the present invention is to produce a copper alloy containing Be and Ni, with the remainder being Cu and inevitable impurities.
The solution treatment step of heating to 950°C and then cooling at a cooling rate of 10 to 200°C/sec, followed by the rolling step of cold rolling, is repeated one or more times, and the obtained rolled material is heated to 40°C.
It is characterized by precipitation hardening by holding at 0 to 550°C for 2 minutes to 2 hours, and after removing the oxide film generated by this precipitation hardening treatment, flattening processing and strain relief annealing are performed in this order or in the reverse order. shall be.

【0013】[0013]

【作用】本発明においては、Be及びNiを主添加成分
とする析出硬化型銅合金に対し、析出硬化処理後に、酸
化膜除去工程と平坦化加工及び歪取り焼鈍工程とを実施
する。これにより、従来バネ材料として使用されていた
Be−Ni−Cu合金の持つ優れた特性(高強度、高導
電率及び高熱伝導性)を生かしつつ、平坦性、エッチン
グ性及びメッキ性等が著しく改善された銅合金を得るこ
とができる。この銅合金は多ピンのリードフレーム用材
料として極めて有効である。
[Operation] In the present invention, a precipitation hardening type copper alloy containing Be and Ni as main additive components is subjected to an oxide film removal step, a flattening process, and a strain relief annealing step after a precipitation hardening treatment. As a result, while taking advantage of the excellent properties (high strength, high electrical conductivity, and high thermal conductivity) of the Be-Ni-Cu alloy conventionally used as a spring material, flatness, etching performance, plating performance, etc. have been significantly improved. copper alloys can be obtained. This copper alloy is extremely effective as a material for multi-pin lead frames.

【0014】[0014]

【実施例】次に、本発明の実施例について具体的に説明
する。
[Example] Next, an example of the present invention will be explained in detail.

【0015】先ず、Be及びNiを所定の組成で含有し
、残部がCu及び不可避的不純物である銅合金を溶製し
、その溶湯を鋳造してインゴットを得る。そして、この
インゴットを熱間で加工して得た素条を更に850〜9
50℃に加熱した後、10〜200℃/秒の冷却速度で
冷却して、溶体化処理を施す。この溶体化処理後に条材
を冷間圧延加工する。そして、この溶体化処理と圧延と
を1回又は複数回繰り返して、前記条材を所定の厚さの
板材にする。
[0015] First, a copper alloy containing Be and Ni in a predetermined composition, with the remainder being Cu and unavoidable impurities is melted, and the molten metal is cast to obtain an ingot. Then, the raw material obtained by hot processing this ingot is further made into 850 to 9
After heating to 50°C, solution treatment is performed by cooling at a cooling rate of 10 to 200°C/sec. After this solution treatment, the strip is cold rolled. Then, this solution treatment and rolling are repeated once or multiple times to make the strip material into a plate material of a predetermined thickness.

【0016】その後、この冷間圧延後の板材に対し、4
00〜550℃に2分〜2時間保持して、析出硬化処理
を施す。 この析出硬化処理により、Be−Ni−Cu合金はその
強度及び硬度が上昇する。しかし、この析出硬化処理は
不活性ガス中で行われるが、この圧延板材はその表面に
薄い酸化膜(例えば、数10nμ)が形成され、またバ
ッチ処理の場合には巻きぐせが生じる。
[0016] After that, this plate material after cold rolling was subjected to 4
Precipitation hardening treatment is performed by holding at 00 to 550°C for 2 minutes to 2 hours. This precipitation hardening treatment increases the strength and hardness of the Be-Ni-Cu alloy. However, although this precipitation hardening treatment is performed in an inert gas, a thin oxide film (for example, several tens of nanometers) is formed on the surface of the rolled plate material, and curling occurs in the case of batch treatment.

【0017】そこで、析出硬化処理後に、この酸化膜を
除去する。具体的には、析出硬化処理後の板材に対し、
酸洗、バフ研磨及び電解研磨等の手段を施してその表面
の酸化膜を除去する。なお、この酸化膜の除去は上記手
段に限らず、種々の方法を適用することができる。
Therefore, after the precipitation hardening treatment, this oxide film is removed. Specifically, for the plate material after precipitation hardening treatment,
The oxide film on the surface is removed by means such as pickling, buffing, and electrolytic polishing. Note that the removal of this oxide film is not limited to the above-described method, and various methods can be applied.

【0018】次に、この析出硬化後の銅合金板材に対し
、平坦化加工を施す。具体的には、図1に示すようなテ
ンションレベラーにより、銅合金板材の表面を平坦化す
る。このテンションレベラーにおいては、銅合金板材1
は送り出しリール2に巻回されており、この送り出しリ
ール2から送り出された板材1は上流側張力ロール4a
,4b,4c、レベラーロール5,6及び下流側張力ロ
ール7a,7b,7cを経て巻き取りリール3に巻き取
られるようになっている。
Next, the copper alloy plate material after precipitation hardening is subjected to a flattening process. Specifically, the surface of the copper alloy plate material is flattened using a tension leveler as shown in FIG. In this tension leveler, copper alloy plate material 1
is wound around a delivery reel 2, and the plate material 1 sent out from this delivery reel 2 is transferred to an upstream tension roll 4a.
, 4b, 4c, leveler rolls 5, 6, and downstream tension rolls 7a, 7b, 7c, and then wound onto the take-up reel 3.

【0019】このように構成されたテンションレベラー
においては、送り出しリール2から巻き解かれて送り出
された板材1は前後の張力ロール4,7により強く引っ
張られた状態で、中央のレベラーロール5,6によって
幅方向及び長手方向の形状を矯正され、平坦化される。 なお、この平坦化加工において、通常、板材1の板厚は
変化しない。また、平坦化加工は前述のテンションレベ
ラーに限らず、張力ロール4a,4b,4c,7a,7
b,7cを具備しないローラーレベラー等、種々の装置
を使用することができる。
In the tension leveler constructed as described above, the plate material 1 unwound and sent out from the delivery reel 2 is strongly pulled by the front and rear tension rolls 4 and 7, and is then transferred to the center leveler rolls 5 and 6. The shape in the width direction and longitudinal direction is corrected and flattened. Note that in this flattening process, the thickness of the plate material 1 usually does not change. In addition, the flattening process is not limited to the tension leveler described above, but also the tension rolls 4a, 4b, 4c, 7a, 7
Various devices can be used, such as a roller leveler not equipped with b, 7c.

【0020】板材の内部歪に対しては、歪取り焼鈍処理
を施す。この歪取り焼鈍処理は、通常、板材を300〜
600℃に加熱して行う。これにより、内部歪が除去さ
れて板材のバネ限界値が向上する。そうすると、板材の
曲げ強度が高くなるため、IC製造工程途中の運搬時及
びセパレータのテーピング時にインナーリードの外力に
よる変形が起きにくくなる。
[0020] For internal distortion of the plate material, strain relief annealing treatment is performed. This strain relief annealing treatment is usually performed on plate materials with a temperature of 300~
This is done by heating to 600°C. This eliminates internal strain and improves the spring limit value of the plate material. This increases the bending strength of the plate material, making it difficult for the inner leads to be deformed by external forces during transportation during the IC manufacturing process and during taping of the separator.

【0021】ところで、平坦化加工と歪取り焼鈍処理と
は、その工程順序は任意である。但し、平坦度に対する
要求がよりきびしい場合には、歪取り焼鈍処理した後に
、平坦化加工する。一方、高いバネ限界値が要求される
場合には、平坦化加工した後に、歪取り焼鈍処理する。
By the way, the order of the flattening process and strain relief annealing process is arbitrary. However, if the flatness requirements are more severe, the flattening process is performed after the strain relief annealing process. On the other hand, when a high spring limit value is required, strain relief annealing is performed after flattening.

【0022】このようにして、本実施例においては、酸
化膜を除去した後、平坦化加工及び内部歪取り焼鈍処理
を行うので、メッキ性及び半田付け性が向上し、エッチ
ング性が優れたリードフレーム用銅合金を得ることがで
きる。即ち、本実施例は、42合金及びC70250と
いう従来のリードフレーム用合金の替わりに、高強度で
あると共に、熱伝導率及び導電率が高いBe−Ni−C
u合金を使用してその特性を有効に利用し、このBe−
Ni−Cu合金の欠点である平坦度、エッチング性及び
メッキ性については、この合金を析出硬化させた後に、
その表面の酸化膜を除去し、更に平坦化加工及び歪み取
り焼鈍を加えることによって向上させた。これにより、
リードフレーム用材料として平坦度等の基本的な特性も
満足すると共に、その強度が従来のリードフレームより
も著しく向上したリードフレーム用銅合金を得ることが
できる。
In this way, in this example, after the oxide film is removed, the flattening process and internal strain relief annealing process are performed, so that the plating and soldering properties are improved, and the lead has excellent etching properties. A copper alloy for frames can be obtained. That is, in this embodiment, Be-Ni-C, which has high strength and high thermal conductivity and electrical conductivity, is used instead of the conventional lead frame alloys 42 alloy and C70250.
This Be-
Regarding flatness, etching property, and plating property, which are disadvantages of Ni-Cu alloy, after precipitation hardening of this alloy,
It was improved by removing the oxide film on the surface and further adding flattening processing and strain relief annealing. This results in
It is possible to obtain a copper alloy for lead frames that satisfies basic properties such as flatness as a material for lead frames and has significantly improved strength than conventional lead frames.

【0023】[0023]

【発明の効果】本発明によれば、析出硬化させた後、酸
化膜を除去し、次いで平坦化加工及び内部歪み取り焼鈍
処理を施すから、リードフレーム用材料として必須の平
坦度、エッチング性及びメッキ性等が優れていると共に
、強度、導電率及び熱伝導度が優れていて、多ピンのリ
ードフレーム用材料として好適のリードフレーム用銅合
金を製造することができる。
Effects of the Invention According to the present invention, after precipitation hardening, the oxide film is removed, and then flattening processing and internal strain relief annealing treatment are performed. It is possible to produce a copper alloy for lead frames that has excellent plating properties, etc., as well as excellent strength, electrical conductivity, and thermal conductivity, and is suitable as a material for multi-pin lead frames.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例にて使用するテンションローラ
を示す模式図である。
FIG. 1 is a schematic diagram showing a tension roller used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1;板材 2,3;リール 4a,4b,4c,7a,7b,7c;矯正ロール5,
6;レベラーロール
1; Plate materials 2, 3; Reels 4a, 4b, 4c, 7a, 7b, 7c; Straightening roll 5,
6; Leveler roll

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  Be及びNiを含有し、残部がCu及
び不可避的不純物からなる銅合金を850〜950℃に
加熱した後10〜200℃/秒の冷却速度で冷却する溶
体化処理工程と、その後に冷間圧延する圧延工程とを1
又は複数回繰り返し、得られた圧延材を400〜550
℃に2分〜2時間保持して析出硬化させ、この析出硬化
処理により生成した酸化膜を除去した後、平坦化加工及
び歪取り焼鈍をこの順に又は逆の順に実施することを特
徴とするリードフレーム用銅合金の製造方法。
1. A solution treatment step of heating a copper alloy containing Be and Ni with the balance consisting of Cu and unavoidable impurities to 850 to 950°C and then cooling at a cooling rate of 10 to 200°C/sec; The rolling process of cold rolling after that is 1.
Or repeat multiple times and roll the obtained rolled material to 400 to 550
℃ for 2 minutes to 2 hours for precipitation hardening, and after removing the oxide film generated by this precipitation hardening treatment, flattening and strain relief annealing are performed in this order or in the reverse order. A method of manufacturing copper alloy for frames.
JP5063591A 1991-02-22 1991-02-22 Manufacture of copper alloy for lead frame Pending JPH04268055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5063591A JPH04268055A (en) 1991-02-22 1991-02-22 Manufacture of copper alloy for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5063591A JPH04268055A (en) 1991-02-22 1991-02-22 Manufacture of copper alloy for lead frame

Publications (1)

Publication Number Publication Date
JPH04268055A true JPH04268055A (en) 1992-09-24

Family

ID=12864422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5063591A Pending JPH04268055A (en) 1991-02-22 1991-02-22 Manufacture of copper alloy for lead frame

Country Status (1)

Country Link
JP (1) JPH04268055A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824167A (en) * 1994-01-06 1998-10-20 Ngk Insulators, Ltd. Beryllium-copper alloy excellent in strength, workability and heat resistance and method for producing the same
EP1574327A3 (en) * 2004-03-13 2006-01-11 Wieland-Werke AG Method of making a semi-finished composite product consisting of copper alloy and use of the semi-finished product
JP2006104420A (en) * 2004-10-08 2006-04-20 Nippon Oil Corp Cold rolling oil composition and cold rolling method
US7174626B2 (en) * 1999-06-30 2007-02-13 Intersil Americas, Inc. Method of manufacturing a plated electronic termination

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824167A (en) * 1994-01-06 1998-10-20 Ngk Insulators, Ltd. Beryllium-copper alloy excellent in strength, workability and heat resistance and method for producing the same
US7174626B2 (en) * 1999-06-30 2007-02-13 Intersil Americas, Inc. Method of manufacturing a plated electronic termination
EP1574327A3 (en) * 2004-03-13 2006-01-11 Wieland-Werke AG Method of making a semi-finished composite product consisting of copper alloy and use of the semi-finished product
JP2006104420A (en) * 2004-10-08 2006-04-20 Nippon Oil Corp Cold rolling oil composition and cold rolling method
JP4578925B2 (en) * 2004-10-08 2010-11-10 Jx日鉱日石エネルギー株式会社 Cold rolling oil composition and cold rolling method

Similar Documents

Publication Publication Date Title
JP4857395B1 (en) Cu-Ni-Si alloy and method for producing the same
US20100000637A1 (en) Cu-ni-si system alloy
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
TWI452152B (en) Electronic-based copper alloy strip material Cu-Co-Si and manufacturing method thereof
TWI422692B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP6533402B2 (en) Cu-Ni-Si copper alloy sheet, method for producing the same, and lead frame
JP6696769B2 (en) Copper alloy plate and connector
JP5140045B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP2010007174A (en) Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
JP2007039804A (en) Copper alloy for electronic apparatus and method of producing the same
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
TWI628407B (en) Copper alloy plate and coil for heat dissipation parts
US5424030A (en) Copper alloy for fine pattern lead frame
JP5135914B2 (en) Manufacturing method of high-strength copper alloys for electrical and electronic parts
JP4642119B2 (en) Copper alloy and method for producing the same
JPH04268055A (en) Manufacture of copper alloy for lead frame
JP6533401B2 (en) Cu-Ni-Si copper alloy sheet, method for producing the same, and lead frame
JP2003286527A (en) Copper or copper alloy with low shrinkage percentage, and manufacturing method therefor
JP2011246740A (en) Cu-Co-Si BASED ALLOY SHEET OR STRIP FOR ELECTRONIC MATERIAL
WO2018061530A1 (en) METHOD FOR PRODUCING Fe-Ni-BASED ALLOY THIN PLATE AND Fe-Ni-BASED ALLOY THIN PLATE
JP4550148B1 (en) Copper alloy and manufacturing method thereof
TWI412611B (en) Copper alloy material for electric and electronic instruments and method of producing the same
JP7294336B2 (en) Fe-Ni alloy sheet
KR20210149830A (en) Copper alloys having high strength and high conductivity and methods for producing such copper alloys