JPH04268005A - Method for operating fine powdered coal blowing blast furnace - Google Patents

Method for operating fine powdered coal blowing blast furnace

Info

Publication number
JPH04268005A
JPH04268005A JP2987691A JP2987691A JPH04268005A JP H04268005 A JPH04268005 A JP H04268005A JP 2987691 A JP2987691 A JP 2987691A JP 2987691 A JP2987691 A JP 2987691A JP H04268005 A JPH04268005 A JP H04268005A
Authority
JP
Japan
Prior art keywords
pulverized coal
dust
amount
powdered coal
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2987691A
Other languages
Japanese (ja)
Inventor
Hiromitsu Ueno
上野浩光
Kazuyoshi Yamaguchi
山口一良
Kenji Tamura
田村健二
Tokuji Yamaguchi
山口徳二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2987691A priority Critical patent/JPH04268005A/en
Publication of JPH04268005A publication Critical patent/JPH04268005A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To maintain the replacing ratio of coke, to improve the productivity and to reduce a fuel ratio by quickly detecting the lowering of reaction efficiency to fine powdered coal and controlling the blowing quantity of the fine powdered coal and blasting condition according to the lowered quantity in the large quantity of fine powdered coal blowing operation in a blast furnace. CONSTITUTION:In the operating method for blowing the fine powdered coal from a tuyere part in the blast furnace, existence ratio of unburnt char from the fine powdered coal to carbon contained in dust is measured by microscopic observation of the dust in exhaust gas at a furnace top and the dust in the furnace core, and any one kind among blowing quantity of the fine powdered coal and/or blasting temp., oxygen quantity in blasting or blasting humidity is adjusted so as to be in the preset reference value or lower. The inferior condition of the blast furnace operation due to lowering of reaction efficiency to the fine powdered coal can be avoided and a molten iron can stably be supplied.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高炉の羽口部から微粉
炭を多量に吹込み、その反応性を確保してコークスとの
置換率を高く維持し、生産性を向上させて燃料比を低下
させた高炉操業方法に関する。
[Industrial Application Field] The present invention injects a large amount of pulverized coal from the tuyere of a blast furnace, ensures its reactivity, maintains a high replacement rate with coke, improves productivity, and improves fuel ratio. This invention relates to a blast furnace operating method that reduces the

【0002】0002

【従来の技術】高炉操業における羽口部からの補助燃料
吹込みは、溶銑製造コスト低減や生産性向上を目的とし
て特公昭40−23763号にその技術が開示されてい
る。とくに、高炉羽口部からの微粉炭吹込みは高炉操業
安定化の手段となるだけでなく、高価なコークスの一部
を安価な微粉炭に代替することによるコスト低減の手段
として有効であり、最近は多くの高炉で実施されるよう
になってきた。また、コークス炉の老朽化対策や資源・
エネルギー選択の自由度の拡大という観点からも微粉炭
の吹込み量の一層の増加が要請されている。
BACKGROUND OF THE INVENTION A technique for injecting auxiliary fuel through the tuyeres in blast furnace operation is disclosed in Japanese Patent Publication No. 40-23763 for the purpose of reducing hot metal manufacturing costs and improving productivity. In particular, the injection of pulverized coal from the blast furnace tuyeres is not only a means of stabilizing blast furnace operation, but also an effective means of reducing costs by substituting a portion of expensive coke with inexpensive pulverized coal. Recently, it has been implemented in many blast furnaces. In addition, we will take countermeasures against the aging of coke ovens and
A further increase in the amount of pulverized coal injected is also required from the perspective of expanding the degree of freedom in energy selection.

【0003】羽口部から吹込まれた微粉炭は高炉内で一
部のコークスの代りに反応し、その反応性と発熱量の高
さから高温で多量の還元ガスを生成するため、高炉の炉
熱を高く維持できるだけでなく鉄鉱石の還元反応を効率
よくする。したがって、羽口部から微粉炭を吹込むこと
で高炉の経済性や生産性向上の効果を享受することがで
きる。
The pulverized coal injected from the tuyeres reacts in place of some of the coke in the blast furnace, and because of its reactivity and high calorific value, it generates a large amount of reducing gas at high temperatures. Not only can heat be maintained at a high level, but it also makes the reduction reaction of iron ore more efficient. Therefore, by injecting pulverized coal from the tuyeres, it is possible to enjoy the effects of improving the economic efficiency and productivity of the blast furnace.

【0004】0004

【発明が解決しようとする課題】ところで、従来の高炉
操業においては微粉炭の吹込み量が多くないため、吹込
んだ微粉炭は高炉内で全量反応していたが、吹込み量の
増加に伴い高炉内で微粉炭が全量反応しない可能性がで
てきた。微粉炭が全量反応しない場合、一部未燃チャー
が発生する。この未燃チャーは上昇ガス流に乗って炉頂
より排出されるため、微粉炭のコークスに対する置換率
が低下し、燃料比の上昇、生産量の低下を引き起こす。 また、この未燃チャーが高炉下部の中心のコークス層(
炉芯と称する)に捕捉されて堆積することにより、この
部分を流下する溶銑滓の通液性およびこの部分のガスの
通気性を阻害することになり、送風圧力の上昇やスリッ
プ等の発生により装入物降下が不安定となり生産量はさ
らに低下する。このように微粉炭が全量反応しない場合
は、前記の微粉炭吹込み操業の効果が享受できないばか
りでなく、安定した高炉の操業が達成できない。
[Problem to be solved by the invention] By the way, in conventional blast furnace operation, the amount of pulverized coal injected is not large, so all of the injected pulverized coal reacts in the blast furnace. As a result, there is a possibility that not all of the pulverized coal will react in the blast furnace. If all of the pulverized coal does not react, some unburned char will be generated. Since this unburned char is discharged from the top of the furnace along with the rising gas flow, the substitution rate of pulverized coal for coke decreases, causing an increase in the fuel ratio and a decrease in production. In addition, this unburned char forms a layer of coke in the center of the lower part of the blast furnace (
When trapped and deposited in the furnace core (called the furnace core), it impedes the liquid permeability of the hot metal slag flowing down this area and the gas permeability of this area, resulting in an increase in blast pressure and the occurrence of slips. The fall of the burden becomes unstable and the production volume decreases further. If the entire amount of pulverized coal does not react as described above, not only the effects of the pulverized coal injection operation described above cannot be enjoyed, but also stable operation of the blast furnace cannot be achieved.

【0005】微粉炭の反応効率は、微粉炭のコークスに
対する置換率の変化で判定する方法が一般的であり、置
換率が低下すると燃料比が上昇して生産量が低下するの
で、置換率を維持できる範囲で微粉炭の吹込み量の増加
を行う。しかしながら、この置換率の低下が検知される
に至ったときには、炉芯の通液性および通気性の悪化を
示す送風圧力の上昇や高炉内の装入物降下の不良を示す
スリップ・ドロップの発生回数の増加を伴うことが多く
、大幅なアクションを長期間実施しなければ回復せず、
生産量の低下による損失がさらに大きくなる。これは、
この置換率が微粉炭の反応効率を直接的に示すものでは
ないこと、すなわち、他の変動要因を含んだ指数である
ことから、未燃チャーの発生に起因する前記の操業変動
を早期に検知および予測できるものではないことによる
。したがって、微粉炭の反応効率を直接的に検知し、か
つ、即効性のアクションを取る方法が必要である。
[0005] The reaction efficiency of pulverized coal is generally judged by the change in the substitution rate of pulverized coal for coke.If the substitution rate decreases, the fuel ratio increases and the production volume decreases. Increase the amount of pulverized coal injected to the extent that it can be maintained. However, when this decrease in replacement rate is detected, an increase in blast pressure indicates a deterioration in the liquid permeability and air permeability of the furnace core, and slip/drop occurs, indicating a failure in the descent of the charge inside the blast furnace. It is often accompanied by an increase in the number of cases, and it will not recover unless significant action is taken over a long period of time.
Losses due to lower production will become even greater. this is,
Since this substitution rate does not directly indicate the reaction efficiency of pulverized coal; in other words, it is an index that includes other fluctuation factors, it is possible to detect the aforementioned operational fluctuations caused by the generation of unburned char at an early stage. and by being unforeseeable. Therefore, there is a need for a method that can directly detect the reaction efficiency of pulverized coal and take immediate action.

【0006】そこで、本発明は、微粉炭を多量に吹き込
んだときに炉頂排ガスに含まれるダストまたは炉芯内の
ダスト中のカーボンに占める未燃チャーの存在比率を測
定し、微粉炭の吹込み量および/または送風条件を変更
することにより、燃料比上昇や通気不良による生産量低
下を回避することを目的とする。
Therefore, the present invention measures the proportion of unburned char in the dust contained in the exhaust gas at the top of the furnace or the carbon in the dust in the furnace core when a large amount of pulverized coal is blown into the furnace. The purpose is to avoid a decrease in production volume due to an increase in fuel ratio or poor ventilation by changing the amount of air flow and/or air blowing conditions.

【0007】[0007]

【課題を解決するための手段および作用】本発明の操業
方法は、その目的を達成するために、高炉の羽口部から
微粉炭を吹込む操業方法において、炉頂排ガスに含まれ
るダストまたは炉芯内のダスト中のカーボンに占める微
粉炭由来の未燃チャーの存在比率を測定し、前記存在比
率があらかじめ設定した値以下になるように微粉炭の吹
込み量および/または送風温度、送風中の酸素量、送風
湿度のいずれか一種を調整することを特徴とする。以下
に、本発明による未燃チャー検出方法および微粉炭の吹
込み量と送風条件を変更する方法を説明する。
[Means and effects for solving the problems] In order to achieve the object, the operating method of the present invention is an operating method in which pulverized coal is injected from the tuyere of a blast furnace. The presence ratio of unburned char derived from pulverized coal to the carbon in the dust in the core is measured, and the amount of pulverized coal injected and/or the blowing temperature is adjusted so that the presence ratio is below a preset value. It is characterized by adjusting either the amount of oxygen or the humidity of the air. Below, a method for detecting unburned char and a method for changing the amount of pulverized coal injected and the blowing conditions according to the present invention will be explained.

【0008】炉頂排ガスに含まれるダストまたは炉芯内
のダストは微粉炭由来の未燃チャー、粉コークスおよび
鉱石粉を含んでおり、通常の化学分析では未燃チャーと
粉コークスはダスト中のカーボンとして存在しており、
両者の判別は不可能である。そこで、採取したダストか
らあらかじめ鉱石粉をできるだけ除去した1mm以下の
ダストを樹脂に埋込み、表面を研磨した試料を作製し、
顕微鏡観察により光学的に識別する。羽口部より吹込ま
れた微粉炭は急激な熱分解により多量の揮発分をガスと
して放出し、チャーを生成する。高炉内で全量反応せず
に未燃チャーとして残留した場合の粒子形態は、そのチ
ャーの生成条件からも推察されるように、球形に近い丸
みを帯びた形状で気孔構造の発達した多孔質粒子である
。一方、粉コークスはレースウェイでのコークスの旋回
による機械的な衝撃により発生し、急激な熱衝撃を受け
てもコークス自体の気孔構造はあまり変化しないため、
角張った気孔の少ない粒子形態を示す。したがって、埋
込み研磨した試料を顕微鏡観察し、前記の両者の粒子形
態の差に基づきそれぞれの個数をカウントすることで未
燃チャーの存在比率を測定する。測定方法としては、通
常のポイントカウンターによる方式でも、数十点の視野
を選択してその一視野中の未燃チャーと粉コークスのそ
れぞれの個数をカウントして合計する方式でもよいが、
いずれの方式でも両者の個数の和が100以上であるこ
とが望ましい。また、個数をカウントする時にその粒子
径を併せて測定しておけば、ダスト中のカーボンに占め
る未燃チャーの重量比率を推定することもできる。なお
、炉頂より採取するダストは、操業中に炉頂排ガスから
直接採取するか乾式の集塵機中のダストを採取すればよ
く、炉芯内のダストは操業中または休風中に羽口より高
炉内へプローブを挿入して採取する方法が一般的である
。また、ダスト採取は微粉炭の吹込み条件や送風条件の
変更時だけでなく、日常の操業管理の一つとして定期的
に行うことが望ましい。
[0008] The dust contained in the furnace top exhaust gas or the dust in the furnace core contains unburned char derived from pulverized coal, fine coke, and ore powder, and in ordinary chemical analysis, unburned char and fine coke are found in the dust. Exists as carbon,
It is impossible to distinguish between the two. Therefore, we created a sample by removing as much ore powder as possible from the collected dust, embedding it in resin, and polishing the surface.
Optically identified by microscopic observation. The pulverized coal injected through the tuyere undergoes rapid thermal decomposition, releasing a large amount of volatile matter as gas and producing char. When the entire amount of char does not react in the blast furnace and remains as unburned char, the shape of the particles is porous particles with a rounded shape close to a spherical shape and a developed pore structure, as can be inferred from the char generation conditions. It is. On the other hand, coke powder is generated by mechanical shock due to swirling of coke in a raceway, and the pore structure of the coke itself does not change much even when subjected to sudden thermal shock.
It exhibits an angular, less-porous particle morphology. Therefore, the abundance ratio of unburned char is measured by observing the embedded and polished sample under a microscope and counting the number of particles based on the difference in particle form between the two. The measurement method may be a method using a normal point counter, or a method in which several dozen points of view are selected and the number of unburnt char and coke breeze is counted and totaled in each field of view.
In either method, it is desirable that the sum of both numbers is 100 or more. Furthermore, if the particle diameter is also measured when counting the number of particles, it is also possible to estimate the weight ratio of unburned char to the carbon in the dust. The dust to be collected from the top of the furnace can be collected directly from the exhaust gas at the top during operation or from the dry dust collector, and the dust in the furnace core can be collected from the tuyere during operation or during a break. A common method is to insert a probe into the body and collect the sample. Furthermore, it is desirable to collect dust not only when changing pulverized coal injection conditions or air blowing conditions, but also periodically as part of daily operational management.

【0009】さて、微粉炭の反応効率を判断して操作の
基準とする炉頂排ガスまたは炉芯内のダスト中のカーボ
ンに占める未燃チャーの存在比率の基準値は、微粉炭の
炭種によって異るし、同じ炭種でもその高炉の装入条件
によっても異る。また、炉芯内のダストに比較して炉頂
排ガス中のダストの場合の基準値は、ダストの高炉内で
の滞留時間が大きいことや粉コークスよりも未燃チャー
の反応性が高いことを考慮して設定する必要がある。通
常は炉頂排ガス中のダストで3〜6%、炉芯内のダスト
で8〜12%程度に設定するが、その高炉における微粉
炭のコークスに対する置換率などの操業実績から最適値
を決定すればよい。そして、炉頂排ガスまたは炉芯内の
ダスト中のカーボンに占める未燃チャーの存在比率がそ
の基準値より大きい場合は、基準値以下になるように微
粉炭の吹込み量および/または送風条件を変更する。
Now, the standard value of the proportion of unburned char in the carbon in the furnace top exhaust gas or the dust in the furnace core, which is used as a reference for operation by determining the reaction efficiency of pulverized coal, depends on the type of pulverized coal. Even for the same type of coal, it varies depending on the charging conditions of the blast furnace. In addition, the standard value for dust in the furnace top exhaust gas compared to dust in the furnace core is based on the fact that the residence time of dust in the blast furnace is longer and the reactivity of unburned char is higher than that of coke breeze. It is necessary to take this into consideration when setting. Normally, the dust in the furnace top exhaust gas is set at 3 to 6%, and the dust in the furnace core is set at around 8 to 12%, but the optimum value should be determined based on the operating results such as the replacement rate of pulverized coal for coke in the blast furnace. Bye. If the ratio of unburned char to the carbon in the furnace top exhaust gas or the dust in the furnace core is greater than the standard value, the amount of pulverized coal injected and/or the blowing conditions are adjusted so that it is below the standard value. change.

【0010】微粉炭の吹込み量を低減すると次に示す空
気比が上昇し、微粉炭の反応効率が上昇して未燃チャー
の発生が抑制される。
[0010] When the amount of pulverized coal injected is reduced, the following air ratio increases, the reaction efficiency of the pulverized coal increases, and the generation of unburned char is suppressed.

【0011】(空気比)=(羽口部より吹込まれる空気
、純酸素、微粉炭中の酸素量)/(微粉炭中のC,Hを
CO2 ,H2Oまで燃焼するのに必要な酸素量)よっ
て、図1に示すように炉頂排ガスまたは炉芯内のダスト
中のカーボンに占める未燃チャーの存在比率の基準値に
対する増加量に応じて微粉炭の吹込み量を低下する。
(Air ratio) = (Air blown from the tuyeres, pure oxygen, amount of oxygen in pulverized coal)/(Amount of oxygen required to burn C and H in pulverized coal to CO2 and H2O) ) Therefore, as shown in FIG. 1, the amount of pulverized coal injected is reduced in accordance with the amount of increase in the proportion of unburned char in the carbon in the furnace top exhaust gas or the dust in the furnace core relative to the reference value.

【0012】炉頂排ガスに含まれるダスト中のカーボン
に占める未燃チャーの存在比率の低下には微粉炭の吹込
み量や送風条件を単独に調整するだけでも効果があるが
、前記のように炉芯内に未燃チャーが多量に堆積して通
気不良や炉芯内温度の低下が起きた場合などはそれらを
複合した方がより効果的である。すなわち、未燃チャー
の発生を抑制するだけでなく、炉芯内に捕捉された未燃
チャーを消失させて通気性不良の解消および炉芯内温度
の上昇を図る方法である。
[0012]In order to reduce the proportion of unburned char in the carbon in the dust contained in the furnace top exhaust gas, it is effective to simply adjust the amount of pulverized coal injected and the blowing conditions, but as mentioned above, In cases where a large amount of unburned char accumulates in the furnace core, resulting in poor ventilation or a drop in temperature within the furnace core, it is more effective to combine them. That is, this method not only suppresses the generation of unburned char, but also eliminates the unburned char trapped in the furnace core to eliminate poor ventilation and increase the temperature inside the furnace core.

【0013】送風温度または送風中の酸素濃度を増加す
ると、羽口部よりレースウェイ内に吹込まれるガス温度
(フレーム温度)が上昇するため、微粉炭の反応性が向
上して未燃チャーの発生を抑制できるとともに炉芯内温
度も上昇する。また、送風中の蒸気を増加すると、レー
スウェイ内およびその近傍の還元性雰囲気でチャーの反
応量が増加して未燃チャーの発生を抑制できるとともに
炉芯内に捕捉された未燃チャーを消失できる。よって、
図2、図3、図4に示すように炉頂排ガスまたは炉芯内
のダスト中のカーボンに占める未燃チャーの存在比率の
基準値に対する増加量に応じて送風温度、送風中の酸素
濃度、送風中の蒸気のいずれか一種を増加する。したが
って、顕微鏡観察に基づく炉頂排ガスまたは炉芯内のダ
スト中のカーボンに占める未燃チャーの存在比率がその
基準値より大きい場合には、図1〜図4にしたがって微
粉炭の吹込み量の低下および/または送風温度、送風中
の酸素量、送風湿度のいずれか一種の増加によって基準
値以下にすることができ、高炉操業が安定する。
[0013] When the air blowing temperature or the oxygen concentration in the air is increased, the temperature of the gas blown into the raceway from the tuyeres (flame temperature) increases, so the reactivity of the pulverized coal improves and unburnt char is removed. This can suppress the occurrence and also increase the temperature inside the furnace core. In addition, by increasing the amount of steam being blown, the amount of char reaction increases in the reducing atmosphere in and around the raceway, suppressing the generation of unburned char, and eliminating unburned char trapped in the furnace core. can. Therefore,
As shown in FIGS. 2, 3, and 4, the blowing temperature, oxygen concentration during blowing, Increase any kind of steam during blowing. Therefore, if the proportion of unburned char in the carbon in the furnace top exhaust gas or the dust in the furnace core based on microscopic observation is larger than the standard value, the amount of pulverized coal injected should be adjusted according to Figures 1 to 4. By lowering and/or increasing any one of the blowing temperature, the amount of oxygen during blowing, and the blowing humidity, the blast furnace operation can be made below the standard value, and the blast furnace operation becomes stable.

【0014】[0014]

【実施例】以下実施例により本発明の特徴を具体的に説
明する。第1表に示すように、実施例1は炉頂排ガスに
含まれるダスト中のカーボンに占める未燃チャーの存在
比率が5%の基準値より増加して8%になったため微粉
炭の吹込み量を低下して5%にした操業例である。
[Examples] The features of the present invention will be explained in detail with reference to Examples below. As shown in Table 1, in Example 1, the proportion of unburned char in the carbon in the dust contained in the furnace top exhaust gas increased from the standard value of 5% to 8%, so pulverized coal was injected. This is an example of operation in which the amount was reduced to 5%.

【0015】実施例2は炉頂排ガスに含まれるダスト中
のカーボンに占める未燃チャーの存在比率が5%の基準
値より増加して9%になったため送風温度を上昇して5
%にした操業例である。
In Example 2, since the proportion of unburned char in the carbon in the dust contained in the furnace top exhaust gas increased from the standard value of 5% to 9%, the blowing temperature was increased to 5%.
This is an example of operation in %.

【0016】実施例3は炉頂排ガスに含まれるダスト中
のカーボンに占める未燃チャーの存在比率が5%の基準
値より増加して8%になったため送風中の酸素量を増加
して5%にした操業例である。
In Example 3, the proportion of unburned char in the carbon in the dust contained in the furnace top exhaust gas increased from the standard value of 5% to 8%, so the amount of oxygen in the blast was increased to 5%. This is an example of operation in %.

【0017】実施例4は炉頂排ガスに含まれるダスト中
のカーボンに占める未燃チャーの存在比率が5%の基準
値より増加して8%になったため送風中の蒸気を増加し
て5%にした操業例である。
In Example 4, the proportion of unburned char in the carbon in the dust contained in the furnace top exhaust gas increased from the standard value of 5% to 8%, so the steam being blown was increased to 5%. This is an example of operation.

【0018】実施例5は炉頂排ガスに含まれるダスト中
のカーボンに占める未燃チャーの存在比率が5%の基準
値より増加して11%になったため微粉炭の吹込み量を
低下し、送風温度を上昇して5%にした操業例である。
In Example 5, the proportion of unburned char in the carbon in the dust contained in the furnace top exhaust gas increased from the standard value of 5% to 11%, so the amount of pulverized coal injected was reduced. This is an example of operation in which the air temperature was increased to 5%.

【0019】実施例6は炉頂排ガスに含まれるダスト中
のカーボンに占める未燃チャーの存在比率が5%の基準
値より増加して10%になったため微粉炭の吹込み量を
低下し、送風中の酸素量を増加して5%にした操業例で
ある。
In Example 6, the proportion of unburned char in the carbon in the dust contained in the furnace top exhaust gas increased from the standard value of 5% to 10%, so the amount of pulverized coal injected was reduced. This is an example of operation in which the amount of oxygen during blowing was increased to 5%.

【0020】実施例7は炉頂排ガスに含まれるダスト中
のカーボンに占める未燃チャーの存在比率が5%の基準
値より増加して9%になったため微粉炭の吹込み量を低
下し、送風中の蒸気を増加して5%にした操業例である
In Example 7, the proportion of unburned char in the carbon in the dust contained in the furnace top exhaust gas increased from the standard value of 5% to 9%, so the amount of pulverized coal injected was reduced. This is an example of operation in which the amount of steam being blown was increased to 5%.

【0021】実施例8は炉芯内ダスト中のカーボンに占
める未燃チャーの存在比率が10%の基準値より増加し
て13%になったため微粉炭の吹込み量を低下して10
%にした操業例である。
In Example 8, the proportion of unburned char in the carbon in the dust in the furnace core increased from the standard value of 10% to 13%, so the amount of pulverized coal injected was reduced to 10%.
This is an example of operation in %.

【0022】実施例9は炉芯内ダスト中のカーボンに占
める未燃チャーの存在比率が10%の基準値より増加し
て15%になったため送風温度を上昇して10%にした
操業例である。
Example 9 is an operation example in which the proportion of unburned char in the carbon in the dust in the furnace core increased from the standard value of 10% to 15%, so the blowing temperature was increased to 10%. be.

【0023】実施例10は炉芯内ダスト中のカーボンに
占める未燃チャーの存在比率が10%の基準値より増加
して14%になったため送風中の酸素量を増加して10
%にした操業例である。
In Example 10, the proportion of unburned char in the carbon in the dust in the furnace core increased from the standard value of 10% to 14%, so the amount of oxygen in the blast was increased to 10%.
This is an example of operation in %.

【0024】実施例11は炉芯内ダスト中のカーボンに
占める未燃チャーの存在比率が10%の基準値より増加
して13%になったため送風中の蒸気を増加して10%
にした操業例である。
In Example 11, since the proportion of unburned char in the carbon in the dust in the furnace core increased from the standard value of 10% to 13%, the steam being blown was increased to 10%.
This is an example of operation.

【0025】実施例12は炉芯内ダスト中のカーボンに
占める未燃チャーの存在比率が10%の基準値より増加
して17%になったため微粉炭の吹込み量を低下し、送
風温度を上昇して10%にした操業例である。
In Example 12, the proportion of unburned char in the carbon in the dust in the furnace core increased from the standard value of 10% to 17%, so the amount of pulverized coal injected was lowered and the blowing temperature was lowered. This is an example of an operation in which the amount increased to 10%.

【0026】実施例13は炉芯内ダスト中のカーボンに
占める未燃チャーの存在比率が10%の基準値より増加
して15%になったため微粉炭の吹込み量を低下し、送
風中の酸素量を増加して10%にした操業例である。
In Example 13, the proportion of unburned char in the carbon in the dust in the furnace core increased from the standard value of 10% to 15%, so the amount of pulverized coal injected was reduced, and the This is an example of operation in which the amount of oxygen was increased to 10%.

【0027】実施例14は炉芯内ダスト中のカーボンに
占める未燃チャーの存在比率が10%の基準値より増加
して14%になったため微粉炭の吹込み量を低下し、送
風中の蒸気を増加して10%にした操業例である。
In Example 14, the proportion of unburned char in the carbon in the dust in the furnace core increased from the standard value of 10% to 14%, so the amount of pulverized coal injected was reduced, and the This is an example of operation in which steam was increased to 10%.

【0028】いずれも場合も、比較例に対比して燃料比
が低く、出銑量が多い。
In either case, the fuel ratio is lower and the pig iron output is larger than in the comparative example.

【0029】比較例は微粉炭の反応効率が低下してコー
クスに対する置換率が低下したと想定される場合であり
、炉頂からの装入鉄鉱石量/装入コークス量の比(O/
C)を低下させており、燃料比が高く、出銑量が少ない
The comparative example is a case in which it is assumed that the reaction efficiency of pulverized coal is reduced and the replacement rate for coke is reduced, and the ratio of the amount of iron ore charged from the furnace top/the amount of charged coke (O/
C), the fuel ratio is high, and the amount of iron output is low.

【0030】[0030]

【表1】[Table 1]

【0031】[0031]

【表2】[Table 2]

【0032】[0032]

【発明の効果】以上説明したように、本発明においては
微粉炭の反応効率の低下を炉頂排ガスに含まれるダスト
または炉芯内ダスト中のカーボンに占める微粉炭由来の
未燃チャーの存在比率の測定により検出し、前記存在比
率の増加量に対して微粉炭の吹込み量および/または送
風温度、送風中の酸素量、送風湿度のいずれか一種を調
整することにより、微粉炭のコークスに対する置換率の
低下と炉芯の通気不良を回避して、生産性の向上と燃料
比低下をはかり、安定した溶銑供給が可能である。
As explained above, in the present invention, the reduction in the reaction efficiency of pulverized coal is caused by the proportion of unburned char derived from pulverized coal in the dust contained in the top exhaust gas or the carbon in the dust in the furnace core. The amount of pulverized coal blown into coke and/or the blowing temperature, the amount of oxygen in the blowing, and the blowing humidity are adjusted according to the amount of increase in the abundance ratio. By avoiding a decrease in replacement rate and poor ventilation in the furnace core, it is possible to improve productivity, lower the fuel ratio, and provide a stable supply of hot metal.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の炉頂排ガスに含まれるダストまたは炉
芯内ダスト中のカーボンに占める微粉炭由来の未燃チャ
ーの存在比率(以下、未燃チャーの存在比率と称する)
の基準値に対する増加量と微粉炭の吹込み量の低下量と
の関係を示す図である。
[Figure 1] Existence ratio of unburned char derived from pulverized coal to carbon in dust contained in the furnace top exhaust gas or dust in the furnace core of the present invention (hereinafter referred to as the existence ratio of unburned char)
FIG. 3 is a diagram showing the relationship between the amount of increase in the amount of pulverized coal and the amount of decrease in the amount of pulverized coal injected with respect to the reference value.

【図2】未燃チャーの存在比率の基準値に対する増加量
と送風温度の増加量との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the amount of increase in the abundance ratio of unburned char with respect to a reference value and the amount of increase in blowing temperature.

【図3】未燃チャーの存在比率の基準値に対する増加量
と送風中の酸素増加量との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the amount of increase in the abundance ratio of unburned char with respect to a reference value and the amount of increase in oxygen during blowing.

【図4】未燃チャーの存在比率の基準値に対する増加量
と送風中の蒸気増加量との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the amount of increase in the abundance ratio of unburned char with respect to a reference value and the amount of increase in steam during blowing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  高炉の羽口部から微粉炭を吹込む操業
方法において、炉頂排ガスに含まれるダストまたは炉芯
内のダスト中のカーボンに占める微粉炭由来の未燃チャ
ーの存在比率を測定し、前記存在比率があらかじめ設定
した値以下になるように微粉炭の吹込み量および/また
は送風温度、送風中の酸素量、送風湿度のいずれか一種
を調整することを特徴とする高炉操業方法。
Claim 1: In an operating method in which pulverized coal is injected from the tuyere of a blast furnace, the abundance ratio of unburned char derived from pulverized coal to the dust contained in the top exhaust gas or the carbon in the dust in the furnace core is measured. and adjusting any one of the amount of pulverized coal injected and/or the temperature of the pulverized coal, the amount of oxygen in the blast, and the humidity of the blast so that the abundance ratio is equal to or less than a preset value. .
JP2987691A 1991-02-25 1991-02-25 Method for operating fine powdered coal blowing blast furnace Withdrawn JPH04268005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2987691A JPH04268005A (en) 1991-02-25 1991-02-25 Method for operating fine powdered coal blowing blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2987691A JPH04268005A (en) 1991-02-25 1991-02-25 Method for operating fine powdered coal blowing blast furnace

Publications (1)

Publication Number Publication Date
JPH04268005A true JPH04268005A (en) 1992-09-24

Family

ID=12288181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2987691A Withdrawn JPH04268005A (en) 1991-02-25 1991-02-25 Method for operating fine powdered coal blowing blast furnace

Country Status (1)

Country Link
JP (1) JPH04268005A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100385138B1 (en) * 1998-12-21 2003-08-25 주식회사 포스코 Fast Amplification Method by Maintaining Pulverized Coal Density in Re-blowing Operation
KR100431871B1 (en) * 2000-12-22 2004-05-20 주식회사 포스코 Operation method for solving immunity of reactor core in the furnace operation with a large quantity of pulverized coal
CN102296132A (en) * 2010-06-24 2011-12-28 上海梅山钢铁股份有限公司 Blast furnace coal injection system and dehumidification method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100385138B1 (en) * 1998-12-21 2003-08-25 주식회사 포스코 Fast Amplification Method by Maintaining Pulverized Coal Density in Re-blowing Operation
KR100431871B1 (en) * 2000-12-22 2004-05-20 주식회사 포스코 Operation method for solving immunity of reactor core in the furnace operation with a large quantity of pulverized coal
CN102296132A (en) * 2010-06-24 2011-12-28 上海梅山钢铁股份有限公司 Blast furnace coal injection system and dehumidification method thereof

Similar Documents

Publication Publication Date Title
EP2871247B1 (en) Method for operating blast furnace
JPH04268005A (en) Method for operating fine powdered coal blowing blast furnace
EP2410065B1 (en) Blast furnace operation method
CN111304386A (en) Method for promoting zinc in blast furnace
CN107119156A (en) A kind of method for improving blast furnace top gas temperature
CN111895778B (en) Method and device for reducing ring formation in pyrogenic process treatment of zinc-containing dust and sludge
JP2004263258A (en) Method for operating blast furnace
JP3964963B2 (en) Pulverized coal injection method in blast furnace
JP4061135B2 (en) Blast furnace operation method with pulverized coal injection
JP3562506B2 (en) Blast furnace operation method
JP2608505B2 (en) Blast furnace operation method
JP5064086B2 (en) Blast furnace operation method
JP7310858B2 (en) Blast furnace operation method
CN115572779B (en) Method for rapidly treating blast furnace wall adhesion
JP2002105517A (en) Method for operating blast furnace
JP7265161B2 (en) Blast furnace operation method
JP4328001B2 (en) Blast furnace operation method
KR100356156B1 (en) A method for promoting combustibility in balst furnace
JP7167652B2 (en) Blast furnace operation method
JPH0417606A (en) Method for operating blast furnace
JPH09170008A (en) Operation method for blowing large amount of pulverized coat in blast furnace
JPH07278623A (en) Operation of blast furnace
JP3230421B2 (en) Waste treatment method
CN115637302A (en) Blast furnace smelting method of vanadium titano-magnetite suitable for high zinc, high lead and high alkali conditions
KR100518275B1 (en) Improved heat-transfer technology at higher pulverized coal injection operation in blast furnace

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514