JPH0426799A - Method for removing iron from plating solution containing zinc - Google Patents

Method for removing iron from plating solution containing zinc

Info

Publication number
JPH0426799A
JPH0426799A JP13151490A JP13151490A JPH0426799A JP H0426799 A JPH0426799 A JP H0426799A JP 13151490 A JP13151490 A JP 13151490A JP 13151490 A JP13151490 A JP 13151490A JP H0426799 A JPH0426799 A JP H0426799A
Authority
JP
Japan
Prior art keywords
zinc
plating solution
oxidation
plating
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13151490A
Other languages
Japanese (ja)
Other versions
JP2852692B2 (en
Inventor
Tatsuyuki Kasai
河西 達之
Yoshimasa Kawami
佳正 川見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP13151490A priority Critical patent/JP2852692B2/en
Publication of JPH0426799A publication Critical patent/JPH0426799A/en
Application granted granted Critical
Publication of JP2852692B2 publication Critical patent/JP2852692B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To reduce the load of a solid-liq. separator such as a filter by partially oxidizing a plating soln. before adding zinc to enhance the settling property and filterability of an iron hydroxide slurry. CONSTITUTION:A plating soln. contg. zinc is firstly partially oxidized with H2O2 or by contact with ozone at 10-75% oxidation rate with respect to the equivalent of Fe. Zinc is added during or after the partial oxidation to increase its pH. The soln. is then oxidized until >100% total oxidation rate, and the formed iron hydroxide is removed. This process is appropriate especially in Ni-Zn plating, and loss of Ni is reduced as compared with the conventional process in which a chelate resin is used. Incidentally, as is clear in the following example, loss of Ni is controlled to about 1/7 of the amt. of Fe removed. As a result, Fe is efficiently removed, the loss of Ni is reduced in the case of an Ni-Zn alloy plating soln., and the settling property and filterability of the slurry are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、亜鉛または亜鉛系メッキ液、特にNiZnメ
ッキ液から鉄を除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for removing iron from zinc or zinc-based plating solutions, particularly NiZn plating solutions.

〔従来の技術〕[Conventional technology]

製鉄所における亜鉛系メッキ液には、主に鋼材に由来す
る鉄分が溶出している。このためメッキ操業を続けてい
ると、メッキ液中の鉄分量が順次増大して、メッキ性状
の阻害要因となる。したがって、可能な限りFe分を除
去するのが好ましい。
Zinc-based plating solutions used at steel mills mainly contain iron derived from steel materials. Therefore, as plating operations continue, the amount of iron in the plating solution gradually increases, which becomes a factor that inhibits the plating properties. Therefore, it is preferable to remove the Fe content as much as possible.

このFe分の除去に当たり、従来は、メッキ液をキレー
ト樹脂に通すことで、Fe分をキレート樹脂に吸着させ
るようにしていた。
In order to remove this Fe content, conventionally, the plating solution was passed through a chelate resin so that the Fe content was adsorbed by the chelate resin.

他方、本出願人は、先に特開昭62−27599号およ
び同62−89899号公報において、メッキ液の炭酸
亜鉛およびまたは金属亜鉛を添加し、亜鉛の濃度の高い
スラリーを得、次いで酸化し、生成するスラリーから固
形分を除去することを提案した。
On the other hand, the present applicant has previously disclosed in JP-A-62-27599 and JP-A-62-89899 that zinc carbonate and/or metallic zinc is added to the plating solution to obtain a slurry with a high concentration of zinc, and then oxidized. , proposed to remove solids from the resulting slurry.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、キレート樹脂を用いる方法は、キレート樹脂の
価格が高いにもかかわらず、Fe分の除去性が高くなく
、さらに除去するFe分の数倍のNiのロスが発生し、
高価なNiを捨てることになるので、処理コストの増大
をもたらし、しかも一定時間処理したならば、硫酸や水
による洗浄を行う必要があり、ランニングコストが高く
なる。
However, in the method using chelate resin, although the price of the chelate resin is high, the removal of Fe content is not high, and the loss of Ni is several times the amount of Fe removed.
Since expensive Ni is discarded, the processing cost increases, and furthermore, after a certain period of processing, it is necessary to perform cleaning with sulfuric acid or water, which increases running costs.

一方、本出願人が提案した先行法は、きわめて有効であ
るものの、特にN 1−Znメッキ液の場合、Niロス
が少ないなどの利点があるものの、得られる水酸化鉄ス
ラリーの沈降性および濾過性が悪く、したがって、大型
の濾過機にて処理することを必要とし、設備費の高騰を
招くことが最大の難点である。
On the other hand, although the prior method proposed by the present applicant is extremely effective, especially in the case of N1-Zn plating solution, it has advantages such as low Ni loss, but it has poor settling properties and filtration of the resulting iron hydroxide slurry. The biggest drawback is that it has poor properties and therefore requires treatment using a large filtration machine, leading to a rise in equipment costs.

よって、本発明の課題は、水酸化鉄スラリーの沈降性お
よび濾過性を′高めることにより、濾過機などの固液分
離装置の負担を軽くすることにある。
Therefore, an object of the present invention is to reduce the burden on a solid-liquid separation device such as a filter by increasing the sedimentation and filterability of iron hydroxide slurry.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、亜鉛を含むメッキ液を、まずli’ eの
当量に対して10〜75%の酸化率をもって1−120
2にJ:る部分酸化またはオゾンとの接触による部分酸
化を行い、この部分酸化過程でまたはその後亜鉛分の添
加を行いI) Hを上昇を図り、続いて後酸化を行い全
酸化率を100%超とし、生成する水酸化鉄分を除去す
ることで解決できる。
The above problem was solved by first using a plating solution containing zinc at an oxidation rate of 1-120% with an oxidation rate of 10-75% relative to the equivalent of
Part 2: partial oxidation or partial oxidation by contact with ozone, adding zinc during or after this partial oxidation process to increase I) H, followed by post-oxidation to bring the total oxidation rate to 100. This can be solved by increasing the iron hydroxide content to more than % and removing the generated iron hydroxide.

〔作用〕[Effect]

本発明にしたがって、亜鉛分の添加に先立って部分酸化
を行うと、後記実施例にも示すように、沈降性および濾
過性が向上する。したがって、たとえば濾過機の負担が
軽くなり、濾過面積の小さい小型の濾過機で充分処理で
きるようになる。
According to the present invention, when partial oxidation is performed prior to the addition of zinc, sedimentation properties and filterability are improved, as shown in Examples below. Therefore, for example, the load on the filter is reduced, and a small filter with a small filtration area can perform sufficient treatment.

〔発明の具体的構成〕[Specific structure of the invention]

以下本発明をさらに詳説する。 The present invention will be explained in more detail below.

本発明は亜鉛を含むメッキ液、特に鋼材のメッキ液を対
象とする。この種の亜鉛を含むメッキ液としては、純Z
nメッキのほか、Ni−Zn。
The present invention is directed to a plating solution containing zinc, particularly a plating solution for steel materials. As a plating solution containing this kind of zinc, pure Z
In addition to n plating, Ni-Zn.

Fe−Znなどの合金メッキも含まれる。メッキ形態は
、溶融メッキおよび電気メッキの両者が含まれる。
It also includes alloy plating such as Fe-Zn. Plating forms include both hot dip plating and electroplating.

本発明は、特にNi−Znメッキにおいて好適であり、
これによって、従来のキレ−1・樹脂を用いる場合にお
けるNiロス量が多いとの問題を解消できる。ちなみに
、たとえば後記実施例でも明らかなように、Niロス量
はFe除去量に対して約1/7である。
The present invention is particularly suitable for Ni-Zn plating,
This makes it possible to solve the problem of a large amount of Ni loss when using the conventional Kire-1 resin. Incidentally, for example, as is clear from the examples described later, the amount of Ni loss is about 1/7 of the amount of Fe removed.

」1記のメッキ液は、過酸化水素によってFe当量に対
して10〜75%の酸化率をもって、より好ましくは2
0〜50%の酸化率をもって部分酸化される。
The plating solution described in ``1'' has an oxidation rate of 10 to 75% based on Fe equivalent with hydrogen peroxide, and more preferably 2
It is partially oxidized with an oxidation rate of 0 to 50%.

ここにいう酸化率とは、Feの酸化に必要なH2O2理
論量に対する添加率の意味である。
The oxidation rate here means the addition rate relative to the theoretical amount of H2O2 necessary for oxidizing Fe.

この部分酸化過程で、またはその後亜鉛分の添加が行わ
れpHの上昇が図られる。添加する亜鉛分としては、酸
化亜鉛ZnOのほか、炭酸亜鉛ZnCO5または金属亜
鉛でもよい。溶解性が他のものより高い点で、酸化亜鉛
が好ましい。上記亜鉛分材料は2種以」二混合して添加
することができるとともに、添加過程で経時的に亜鉛分
材料の種類を変えることもできる。
During or after this partial oxidation process, zinc is added to increase the pH. As the zinc component to be added, in addition to zinc oxide ZnO, zinc carbonate ZnCO5 or metallic zinc may be used. Zinc oxide is preferred because it has higher solubility than others. Two or more types of the above-mentioned zinc-containing materials can be added as a mixture, and the type of zinc-containing material can also be changed over time during the addition process.

Zn分材料の添加によってp Hは徐々に増加し、pH
が3.8〜4,0付近よりFeの析出が始まる。
The pH gradually increases with the addition of Zn-containing material, and the pH
Precipitation of Fe starts from around 3.8 to 4.0.

通常pHが4.0〜4.2程度以下で溶存Feは1mg
/l以下となる。他方、メッキ液は亜鉛分材料の過大な
投入によって、ZnCO3でpH:4.8〜5.3、Z
nOでpH:5.0〜5.9程度まで上昇するが、未溶
解のZn化合物を避けるとともに、Zn分材料の使用量
を過多とさせないためには、ZnCO3でpH: 4.
0〜4.7、ZnOでpH=4.2〜4.9とするのが
好ましい。
Normally, the dissolved Fe is 1 mg when the pH is below about 4.0 to 4.2.
/l or less. On the other hand, the plating solution has a pH of 4.8 to 5.3 with ZnCO3 due to the excessive addition of zinc material.
When using nO, the pH increases to approximately 5.0 to 5.9, but in order to avoid undissolved Zn compounds and to avoid using too much Zn-containing material, it is necessary to use ZnCO3 to raise the pH to about 4.0 to 5.9.
0 to 4.7, and preferably pH=4.2 to 4.9 with ZnO.

かくしてp Hを調整したメッキ液スラリーに対して、
過酸化水素または酸素やエア等との接触による後酸化が
行われる。この場合、Feの当量に対して、全酸化率(
部分酸化率十後酸化率)が100%超であればよいが、
好ましくは完全酸化を図るために110%以上であるこ
とが望まれる。逆に、全酸化率が150%以上としても
実質的な意味はない。
For the plating solution slurry whose pH has been adjusted in this way,
Post-oxidation is performed by contact with hydrogen peroxide, oxygen, air, etc. In this case, the total oxidation rate (
It is sufficient if the partial oxidation rate (post-oxidation rate) exceeds 100%,
Preferably, it is desired to be 110% or more in order to achieve complete oxidation. Conversely, even if the total oxidation rate is 150% or more, there is no practical meaning.

部分酸化の場合、■120□またはオゾン以外であると
、酸化が難しいのに対して、後酸化については手法は問
われるものではない。
In the case of partial oxidation, it is difficult to oxidize using anything other than ■120□ or ozone, whereas for post-oxidation, the method does not matter.

後酸化によって、メッキ液中のFe分は全量水酸化鉄F
e(OH)xとして沈降する。この沈降した水酸化鉄分
は、水酸化スラリーを濾過機、シックナーなどの適宜の
固液分離手段によって、除去される。他方、鉄分除去処
理済のメッキ液は、メッキ工程に再利用される。
By post-oxidation, the entire amount of Fe in the plating solution is reduced to iron hydroxide F.
Precipitates as e(OH)x. The precipitated iron hydroxide content is removed from the hydroxide slurry by an appropriate solid-liquid separation means such as a filter or a thickener. On the other hand, the plating solution that has been subjected to iron removal treatment is reused in the plating process.

本発明は、たとえば第1図および第2図の態様として具
体化される。
The invention is embodied, for example, in the embodiments of FIGS. 1 and 2.

すなわち、メッキ工程のメッキ液は、第1酸化槽(部分
酸化槽)■に導かれ、ここに過酸化水素貯槽2からの過
酸化水素■1202が第1ポンプ3により添加され、部
分酸化がなされる。部分酸化清液は、中和槽(p H調
整槽)4に供給され、ここに酸化亜鉛ZnOポツパー5
内の酸化亜鉛6が定量切出し装置を介して投入され、p
 Hの調整が図られる。
That is, the plating solution in the plating process is led to the first oxidation tank (partial oxidation tank) (2), where hydrogen peroxide (1202) from the hydrogen peroxide storage tank (2) is added by the first pump (3) to undergo partial oxidation. Ru. The partially oxidized liquid is supplied to a neutralization tank (pH adjustment tank) 4, where a zinc oxide ZnO popper 5 is supplied.
Zinc oxide 6 in the p
Adjustment of H is attempted.

続いて、pH調整済液は第2酸化槽(後酸化槽)7に導
かれ、ポンプ8を介してのI−1、0、、添加が行われ
る。第2酸化槽7でのオーバーフロー液は、シックナー
8に供給され、沈降濃縮がなされ、その沈降スラリーは
濾過機、たとえば図示のような真空濾過機9に供給され
、濾過処理が行なわれ、ケーキ10分は系外に廃棄され
る。濾液は、濾液槽11から、シックナー8のオーバー
フロー液とともに、メッキ工程へメッキ液として再利用
される。I2は真空ポンプである。他方、シックナー8
から真空濾過機9への濃縮スラリーの一部は、必要によ
り図示のように、第1酸化槽1およびまたは第2酸化槽
7へ返送できる。
Subsequently, the pH-adjusted liquid is led to a second oxidation tank (post-oxidation tank) 7, and I-1, 0, etc. are added via a pump 8. The overflow liquid in the second oxidation tank 7 is supplied to a thickener 8, where it is sedimented and concentrated, and the sedimented slurry is supplied to a filter, for example, a vacuum filter 9 as shown in the figure, where a filtration process is performed, and a cake 10 portion is discarded outside the system. The filtrate is reused from the filtrate tank 11 together with the overflow liquid of the thickener 8 as a plating solution in the plating process. I2 is a vacuum pump. On the other hand, thickener 8
A part of the concentrated slurry from the vacuum filter 9 can be returned to the first oxidation tank 1 and/or the second oxidation tank 7, as shown, if necessary.

〔実施例〕〔Example〕

次に実施例を示し、本発明の効果を明らかにする。 Next, Examples will be shown to clarify the effects of the present invention.

(実施例1) 第3図に示すように、Z n =33.2g/ (1、
N i78.5g/ff、 F e =]000mg/
IF e S 04=203g/β)、N a = 1
7.8g/ lのメッキ液に対して、硫酸を添加してp
 H= 2.03とし、このメッキ液について各200
m 1分取して、同図の操作を行った。
(Example 1) As shown in FIG. 3, Z n =33.2 g/ (1,
N i78.5g/ff, F e =]000mg/
IF e S 04 = 203g/β), N a = 1
Add sulfuric acid to 7.8 g/l of plating solution to
H = 2.03, and each 200
1 aliquot was taken and the operation shown in the figure was performed.

その後、各々得られたスラリーについて、沈降速度試験
、濾過試験、ケーキおよび濾液の分析試験を行ったとこ
ろ、それぞれ第4図、第5図および第1表に示す結果が
得られた。
Thereafter, a sedimentation rate test, a filtration test, and a cake and filtrate analysis test were conducted on each of the obtained slurries, and the results shown in FIG. 4, FIG. 5, and Table 1 were obtained, respectively.

なお、沈降速度は100mj2のメスシリンダーを使用
した。濾過速度はスラリーの50mβをグラスファイバ
ー濾紙を用いて、−700mm1gで吸引濾過すること
により行った。
Note that a graduated cylinder with a sedimentation rate of 100 mj2 was used. The filtration rate was determined by suction filtering 50 mβ of the slurry at −700 mm 1 g using glass fiber filter paper.

」−記の結果によると、たとえば実験りとAおよびFと
の比較から明らかなように、本発明にかかる二段酸化法
によると、沈降速度および濾過速度か著しく高まり、た
とえば約6.7倍(260/39)濾過速度が向」ニす
る。このことは、原理的には濾過機として1. / 6
.7の濾過面積のもので足りることを示している。
According to the results described above, for example, as is clear from the experiment and the comparison with A and F, the two-stage oxidation method according to the present invention significantly increases the sedimentation rate and filtration rate, for example, by about 6.7 times. (260/39) Filtration speed improves. This means that, in principle, 1. / 6
.. This shows that a filter with a filtration area of 7 is sufficient.

他方、第1表におけるケーキ組成および濾液の欄から判
るように、特にNroスおよびFe量について各実験間
で有意差がなく、しかもF eの除去性がきわめて高い
ものである。
On the other hand, as can be seen from the columns of cake composition and filtrate in Table 1, there were no significant differences between the experiments, particularly in the amounts of Nros and Fe, and moreover, the removability of Fe was extremely high.

(実施例2) 純Znメッキ液について、炭酸亜鉛Z n C03を順
次添加しながらp Hを」二げて行くと、第6図のよう
に、通常p Hが約4.3でFeの沈澱が生じることが
判った。したがって、部分酸化後、Zn分材料はp )
(が4.3近傍になるまで投入するのが望まれることが
判った。
(Example 2) When the pH of a pure Zn plating solution is increased while sequentially adding zinc carbonate ZnC03, as shown in Figure 6, Fe precipitates at a pH of about 4.3. It was found that this occurs. Therefore, after partial oxidation, the Zn content material is p)
It has been found that it is desirable to add the liquid until the value becomes around 4.3.

〔発明の効果〕〔Effect of the invention〕

以」二の通り、本発明によれば、Feの除去性が高いと
ともに、N 1−Zn合金メッキ液の場合には、Niロ
スが少なくなるとともに、沈降性および濾過性が優れた
ものとなる。
As described in Part 2 below, according to the present invention, not only is Fe removability high, but also Ni loss is reduced in the case of a N1-Zn alloy plating solution, and sedimentation and filtration properties are excellent. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明法の具体化例の概要図、第
3図は実験の手順図、第4図〜第6図は実験結果を示す
グラフである。 1・・・第1酸化槽、4・・・中和槽 7・・・第2酸化槽、8・・・シックナー9・・・真空
濾過機。
1 and 2 are schematic diagrams of embodiments of the method of the present invention, FIG. 3 is a procedural diagram of an experiment, and FIGS. 4 to 6 are graphs showing experimental results. 1... First oxidation tank, 4... Neutralization tank 7... Second oxidation tank, 8... Thickener 9... Vacuum filtration machine.

Claims (1)

【特許請求の範囲】[Claims] (1)亜鉛を含むメッキ液を、まずFeの当量に対して
10〜75%の酸化率をもってH_2O_2による部分
酸化またはオゾンとの接触による部分酸化を行い、この
部分酸化過程でまたはその後亜鉛分の添加を行いpHを
上昇を図り、続いて後酸化を行い全酸化率を100%超
とし、生成する水酸化鉄分を除去することを特徴とする
亜鉛を含むメッキ液からの鉄の除去方法。
(1) A plating solution containing zinc is first partially oxidized with H_2O_2 or by contact with ozone at an oxidation rate of 10 to 75% based on the equivalent amount of Fe, and during or after this partial oxidation process, zinc is removed. A method for removing iron from a plating solution containing zinc, the method comprising: increasing the pH by adding zinc, followed by post-oxidation to achieve a total oxidation rate of over 100%, and removing generated iron hydroxide.
JP13151490A 1990-05-22 1990-05-22 Method of removing iron from plating solution containing zinc Expired - Lifetime JP2852692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13151490A JP2852692B2 (en) 1990-05-22 1990-05-22 Method of removing iron from plating solution containing zinc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13151490A JP2852692B2 (en) 1990-05-22 1990-05-22 Method of removing iron from plating solution containing zinc

Publications (2)

Publication Number Publication Date
JPH0426799A true JPH0426799A (en) 1992-01-29
JP2852692B2 JP2852692B2 (en) 1999-02-03

Family

ID=15059823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13151490A Expired - Lifetime JP2852692B2 (en) 1990-05-22 1990-05-22 Method of removing iron from plating solution containing zinc

Country Status (1)

Country Link
JP (1) JP2852692B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030042797A (en) * 2001-11-24 2003-06-02 주식회사 포스코 Removing method of surface defect in electro galvanizing
CN110776076A (en) * 2019-09-29 2020-02-11 武汉钢铁有限公司 Multi-way electroplating liquid iron removal device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030042797A (en) * 2001-11-24 2003-06-02 주식회사 포스코 Removing method of surface defect in electro galvanizing
CN110776076A (en) * 2019-09-29 2020-02-11 武汉钢铁有限公司 Multi-way electroplating liquid iron removal device and method

Also Published As

Publication number Publication date
JP2852692B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
US4332687A (en) Removal of complexed heavy metals from waste effluents
EP0518871B1 (en) Waste water treatment process using a recycle of high density sludge
JPH0521637B2 (en)
EP0427341B1 (en) Method for selectively separating a non-ferrous metal
JPS6221728B2 (en)
JP3998714B2 (en) Method for removing iron and chromium compounds from aqueous electrolyte solutions and use of this method in electrochemical machining
JPH0426799A (en) Method for removing iron from plating solution containing zinc
TW201700B (en)
JP3382648B2 (en) Method for producing white aluminum hydroxide
US5015458A (en) Method for purifying sulfuric acid solutions
JPS62294491A (en) Treatment of waste water incorporating gallium and arsenic
JP2981903B2 (en) Method for treating solution containing zinc-containing material containing Al
CN108754179A (en) A kind of method of oxidation pre-treatment secondary material containing zinc
JP3762047B2 (en) Method for treating and recovering liquid containing cadmium and zinc
JPH01249187A (en) Method for purifying waste containing gallium and arsenic
JPH085676B2 (en) A method of recovering high-purity iron sulfate from the sulfuric acid pickling waste liquid of stainless steel
JPS63186897A (en) Method for purifying plating liquid
CN112174174B (en) Method for preparing magnesium ammonium sulfate hexahydrate by recycling copper-containing electroplating wastewater
RU2125109C1 (en) Method of producing battery manganese
JP4767444B2 (en) Wastewater treatment method to reduce chlorine content in treated sludge
JP4389301B2 (en) Method for treating trace metal-containing water
JPS6289899A (en) Refining method for plating liquid
JPH057879A (en) Treatment of waste water containing heavy metal
JPS624492A (en) Method for removing copper in waste chemical copper plating liquid
JPH04100600A (en) Dewatering method of sludge water