JPH0426792A - Laminated material for machine structural use excellent in rolling fatigue life and its production - Google Patents
Laminated material for machine structural use excellent in rolling fatigue life and its productionInfo
- Publication number
- JPH0426792A JPH0426792A JP12824990A JP12824990A JPH0426792A JP H0426792 A JPH0426792 A JP H0426792A JP 12824990 A JP12824990 A JP 12824990A JP 12824990 A JP12824990 A JP 12824990A JP H0426792 A JPH0426792 A JP H0426792A
- Authority
- JP
- Japan
- Prior art keywords
- plating
- fatigue life
- layer
- plating layer
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000002648 laminated material Substances 0.000 title abstract 2
- 238000007747 plating Methods 0.000 claims abstract description 83
- 229910001069 Ti alloy Inorganic materials 0.000 claims abstract description 25
- 229910018104 Ni-P Inorganic materials 0.000 claims abstract description 22
- 229910018536 Ni—P Inorganic materials 0.000 claims abstract description 22
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 21
- 238000000576 coating method Methods 0.000 claims abstract description 14
- 239000011248 coating agent Substances 0.000 claims abstract description 13
- 238000011282 treatment Methods 0.000 claims abstract description 10
- 238000007788 roughening Methods 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 44
- 239000002131 composite material Substances 0.000 claims description 17
- 239000002344 surface layer Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 45
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical class F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 abstract description 10
- 238000012360 testing method Methods 0.000 description 15
- 238000005530 etching Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000007772 electroless plating Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- 239000013585 weight reducing agent Substances 0.000 description 5
- 238000005299 abrasion Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005121 nitriding Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000005238 degreasing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000004673 fluoride salts Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 235000011007 phosphoric acid Nutrition 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 1
- OGSYQYXYGXIQFH-UHFFFAOYSA-N chromium molybdenum nickel Chemical compound [Cr].[Ni].[Mo] OGSYQYXYGXIQFH-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- POWFTOSLLWLEBN-UHFFFAOYSA-N tetrasodium;silicate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])[O-] POWFTOSLLWLEBN-UHFFFAOYSA-N 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、各種機械および輸送機等の摩耗部に使用され
る転動疲労寿命に優れた機械構造用複合材およびその製
造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a mechanical structural composite material with excellent rolling fatigue life used for wear parts of various machines and transportation equipment, and a method for manufacturing the same. be.
(従来の技術)
各種金型、機械の摩耗部には、従来から機械構造用炭素
鋼、ニッケルクロムモリブデン鋼、クロムモリブデン鋼
などに、浸炭、焼入れ焼戻し処理あるいは窒化処理また
は軟窒化処理などを施した鋼材が汎用されており、良好
な耐摩耗性を発揮している。しかし、これらの鋼材は比
重か太き(軽量化の動きには、対応が困難である。(Prior technology) For the wear parts of various molds and machines, carbon steel for mechanical structures, nickel chromium molybdenum steel, chromium molybdenum steel, etc., have traditionally been treated with carburizing, quenching and tempering, nitriding, or soft nitriding. This steel material is widely used and exhibits good wear resistance. However, these steel materials have a high specific gravity and are difficult to respond to the trend toward weight reduction.
軽量化の動きに対応できる素材として、チタン合金およ
びアルミ合金か注目され始めている。チタン合金および
アルミ合金は、その優れた耐蝕性、高温比強度か大きい
ことから、これまて、各種化学工業用および航空、宇宙
用輸送機の各種部材として広く使用されてきた。Titanium alloys and aluminum alloys are beginning to attract attention as materials that can respond to the trend toward weight reduction. Due to their excellent corrosion resistance and high specific strength at high temperatures, titanium alloys and aluminum alloys have been widely used for various chemical industries and as various components for aviation and space transport aircraft.
近年、自動車初め、各種輸送機の高級化の要求か増大す
るにつれて、快適走行、安全走行等機能アップを満足さ
せるために各種機能部品の装着を余儀なくされている。In recent years, as the demand for higher-grade automobiles and other types of transportation equipment has increased, it has become necessary to install various functional parts in order to improve functions such as comfortable driving and safe driving.
それに伴い、車体重量の増加の問題か派生してきた。As a result, the problem of increased vehicle weight has arisen.
一方、燃費の低減に対する要求は依然として強く、これ
らの問題を併せて解決するために、これまでの鉄鋼材料
に替わって、チタン合金およびアルミ合金の採用か検討
され始めている。On the other hand, there is still a strong demand for reduced fuel consumption, and in order to solve these problems at the same time, consideration has begun to be given to the use of titanium alloys and aluminum alloys in place of conventional steel materials.
しかし、チタン合金およびアルミ合金は、そのままでは
耐焼付性、耐摩耗性に極めて劣ることか知られており、
これまで、機械の摺動部材または軸材として、使用する
ために、電気メッキ、無電解メッキ、気相メッキ、ガス
窒化および溶射なとの表面処理が試みられている。However, it is known that titanium alloys and aluminum alloys have extremely poor seizure resistance and wear resistance as they are.
Until now, surface treatments such as electroplating, electroless plating, vapor phase plating, gas nitriding, and thermal spraying have been attempted for use as sliding members or shaft members of machines.
このうち、電気メッキ、無電解メッキ等のメッキ手法か
採用できれば、最も簡便にしかも低コストで部材を提供
することかできる。Among these, if a plating method such as electroplating or electroless plating can be adopted, members can be provided most simply and at low cost.
(発明か解決しようとする課題)
しかしなから、水溶液を用いる電気メッキ、無電解メッ
キでは、チタン合金およびアルミ合金は表面に強固な酸
化皮膜を形成するため、メッキ層の良好な密着性か得ら
れない。(Problem to be solved by the invention) However, in electroplating and electroless plating using an aqueous solution, titanium alloys and aluminum alloys form a strong oxide film on the surface, so it is difficult to obtain good adhesion of the plating layer. I can't.
また、気相メッキおよびガス窒化処理では、通常5μm
程度の硬質皮膜しか得られず、高面圧下の摺動摩耗や転
動摩耗に耐えることが不可能である。In addition, in vapor phase plating and gas nitriding treatment, the thickness is usually 5 μm.
Only a moderately hard coating can be obtained, and it is impossible to withstand sliding wear and rolling wear under high surface pressure.
さらに、溶射皮膜は、転動摩耗では高面圧のため、これ
に耐え得る十分な強度を存する皮膜か得られ難いなとの
理由で、何れの表面処理方法ともチタン合金およびアル
ミ合金に十分な耐摩耗性を付与することかできない。Furthermore, since thermal spray coatings are subject to high surface pressure due to rolling wear, it is difficult to obtain coatings with sufficient strength to withstand this, so neither surface treatment method is suitable for titanium alloys and aluminum alloys. It is only possible to impart wear resistance.
例えば、第6図に示すような軸材を例にとると、軸材の
ボールベアリングとロールベアリングの接触部では、総
花的な耐摩耗性ではなく、摺動摩耗とともに転動摩耗特
性が要求される。すなわち、この軸材の点接触部には、
特に耐転動摩耗性か要求され、数100kgf/mtn
2もの最大接触応力=高面圧かかかるとともに、材料の
表面から数lO〜数100μmで最大せん断応力か発生
し、また、この応力か繰り返しかかるために、材料に疲
れ亀裂か発生しフレーキングに至ることがこの種転動摩
耗の最大の特徴である。したがって、このような用途に
対し、通常高耐摩耗性の材料として周知汎用されるよう
なWC,TiN等のセラミック硬質材料では耐摺動摩耗
には優れるものの靭性に乏しく、耐転動摩耗性では劣る
ものである。For example, taking the shaft material shown in Figure 6 as an example, the contact area between the ball bearing and the roll bearing of the shaft material requires not only general wear resistance, but also sliding wear and rolling wear characteristics. Ru. In other words, at the point contact part of this shaft material,
In particular, rolling wear resistance is required, several 100 kgf/mtn
Maximum contact stress of two types = high surface pressure is applied, and the maximum shear stress occurs at several 10 to several 100 μm from the surface of the material, and because this stress is repeatedly applied, fatigue cracks occur in the material and flaking occurs. This is the most important feature of this type of rolling wear. Therefore, for such applications, hard ceramic materials such as WC and TiN, which are commonly known and widely used as highly wear-resistant materials, have excellent sliding wear resistance but lack toughness and poor rolling wear resistance. It is inferior.
そこで、本発明者らは軽量化の動きに対応すべく、軽く
て耐摩耗性に優れたチタン合金およびアルミ合金を母材
とした複合材を提案するものである。(課題を解決する
ための手段)
本発明は、上記に説明した表面処理を施したチタン合金
およびアルミ合金の耐摩耗性の問題点に鑑み、本発明者
らか鋭意研究を行い、検討を重ねた結果完成されたもの
で、その第1発明は、表面をRaO,5μm以上でPP
Iaoが130以上に粗面化したチタン合金またはアル
ミ合金の表面に、直接硬度HV500以上の1−Pメッ
キ層を100μm以上被覆した転動疲労寿命に優れた機
械構造用複合材である。Therefore, in order to respond to the trend toward weight reduction, the present inventors propose a composite material using a titanium alloy and an aluminum alloy as base materials, which are lightweight and have excellent wear resistance. (Means for Solving the Problems) The present invention was developed in view of the above-mentioned problems in wear resistance of surface-treated titanium alloys and aluminum alloys. The first invention was completed by coating the surface with RaO, PP with a thickness of 5 μm or more.
This is a mechanical structural composite material with excellent rolling fatigue life, in which the surface of a titanium alloy or aluminum alloy roughened to an Iao of 130 or more is directly coated with a 1-P plating layer of 100 μm or more with a hardness of HV500 or more.
第2発明は、Ni−Pメッキ層の少なくとも表面層のP
含存量が2〜7重量%である請求項(1)の転動疲労寿
命に優れた機械構造用複合材である。 第3発明は、N
i−Pメッキ層が層の厚み方向にPの濃度差を存する請
求項(1)または(2)の転動疲労寿命に優れた機械構
造用複合材である。The second invention provides P in at least the surface layer of the Ni-P plating layer.
The composite material for mechanical structures having excellent rolling fatigue life according to claim (1), wherein the content is 2 to 7% by weight. The third invention is N
The composite material for mechanical structures having excellent rolling contact fatigue life according to claim 1 or 2, wherein the i-P plating layer has a difference in P concentration in the thickness direction of the layer.
第4発明は、被覆されるチタン合金またはアルミ合金の
表面が、弗酸塩を含む溶液により表面粗化処理を施され
ている請求項(1)の転動疲労寿命に優れた機械構造用
複合材の製造方法である。A fourth invention is a composite for mechanical structures having excellent rolling fatigue life according to claim (1), wherein the surface of the titanium alloy or aluminum alloy to be coated is subjected to surface roughening treatment with a solution containing a fluoride salt. This is a method of manufacturing the material.
(作用) 以下、本発明の作用について説明する。(effect) Hereinafter, the effects of the present invention will be explained.
転動摩耗の疲労破壊に耐えるためには、HV500以」
二の硬質層を少なくとも100μm以上形成させること
が必要である。チタン合金またはアルミ合金の表面に前
記硬質層を強固に密着させるためには強固なアンカー効
果か必要であるが、エツチングまたはショツトブラスト
等によって、表面状態をRa0.5μm以上て、か−’
)PP[5G130以上に調整することによって、強固
なアンカー効果か得られる。ここで、PPI(Peak
s Per Inch)は接触式表面粗さ計の抽出曲線
(測定値)の平均線から正負両方向に一定の基準レベル
Hを設け、負の基準レベルを越えた後、正の基準レベル
を越えたとき、■山と計算し、1インチ当たりの山数を
表示するものである。すなわち、PP15.130は基
準レヘル50μmnnchて、1インチ当たりの山数1
30を示す。これによって、チタン合金またはアルミ合
金界面からの硬質メッキ層の剥離等を抑制することか可
能となる。また、硬質メッキの種類としては、無電解N
i−Pメッキ、硬質Crメッキ、電解Ni−Pメッキ等
か考えられるが、メッキ速度、コストの点から電解Ni
−Pメッキか最も有利と考えられる。In order to withstand fatigue fracture due to rolling wear, HV500 or higher is required.
It is necessary to form the second hard layer with a thickness of at least 100 μm or more. In order to firmly adhere the hard layer to the surface of the titanium alloy or aluminum alloy, a strong anchor effect is required, but the surface condition can be improved by etching or shot blasting to Ra of 0.5 μm or more.
) A strong anchor effect can be obtained by adjusting PP[5G to 130 or higher. Here, PPI (Peak
s Per Inch) is a constant reference level H set in both positive and negative directions from the average line of the extraction curve (measured value) of the contact type surface roughness meter, and when the negative reference level is exceeded and the positive reference level is exceeded. , ■ Mountains and displays the number of mountains per inch. In other words, PP15.130 has a standard level of 50 μm, and the number of ridges per inch is 1.
30 is shown. This makes it possible to suppress peeling of the hard plating layer from the titanium alloy or aluminum alloy interface. In addition, as a type of hard plating, electroless N
Possible options include i-P plating, hard Cr plating, and electrolytic Ni-P plating, but electrolytic Ni
-P plating is considered to be the most advantageous.
転動摩耗の特徴は前記した通り高面圧て、接触応力は数
100kgf/mm2あり、最大剪断応力は、接触面か
ら数10〜数100μmの深さの位置に発生する。さら
に、軸および軸受け、繰り返し転動応力を受けることに
より、軌道に剥離を生して運転不可能となる。この現象
はフレーキングと呼はれ、軸および軸受材料の一種の疲
労破壊であり、これにより軸および軸受の寿命か決めら
れてしまう。As mentioned above, rolling wear is characterized by high surface pressure, contact stress of several 100 kgf/mm2, and maximum shear stress occurring at a depth of several 10 to several 100 μm from the contact surface. Furthermore, when the shaft and bearings are subjected to repeated rolling stress, the raceway may peel off, making it impossible to operate. This phenomenon is called flaking, and is a type of fatigue failure of the shaft and bearing materials, which determines the lifespan of the shafts and bearings.
そこで、発明者らは、被覆材の選定のために、転動摩耗
試験を行った。その結果を以下に説明する。Therefore, the inventors conducted a rolling wear test to select a covering material. The results will be explained below.
第1図は、転動摩耗試験方法の概略図で、図中1は試験
片、2は評価面、3はボールベアリング、4はベアリン
グレース、5は回転軸をそれぞれ示す。試験片lの先端
には評価面2かあり、評価面2はボールベアリング3と
接触するようにテーパか付けである。ボールベアリング
3はベアリングレース4内に必要個数配置しである。ベ
アリングレース4は回転軸5に装着され、回転軸5とと
もに回転する。回転軸5は回転装置(図示せず)に連結
されている。試験は荷重Pを試験片1に加え、回転軸5
を回転させて行う。FIG. 1 is a schematic diagram of the rolling wear test method, in which 1 is a test piece, 2 is an evaluation surface, 3 is a ball bearing, 4 is a bearing race, and 5 is a rotating shaft. There is an evaluation surface 2 at the tip of the test piece 1, and the evaluation surface 2 is tapered so as to come into contact with the ball bearing 3. A required number of ball bearings 3 are arranged within a bearing race 4. The bearing race 4 is attached to the rotating shaft 5 and rotates together with the rotating shaft 5. The rotating shaft 5 is connected to a rotating device (not shown). In the test, a load P is applied to the test piece 1, and the rotating shaft 5
This is done by rotating.
供試材は、Ti−6AI−4Vを母材として、母材にW
Cを溶射したもの、母材に電解Ni−Pメッキを施した
ものおよび母材ままの三種類である。これらを試験片l
の形状に仕上げ転動摩耗試験に供した。試験結果を第2
図および第3図に示す。The sample material was Ti-6AI-4V as a base material, and W was used as the base material.
There are three types: one with carbon sprayed, one with electrolytic Ni-P plating applied to the base material, and one with the base material as is. These test pieces
The shape was finished and subjected to a rolling wear test. Second test result
As shown in FIG.
第2図は供試材の転動疲労寿命を整理したちのて、第3
図は電解Ni−Pメッキ厚さと転動疲労寿命との関係を
整理したものである。Figure 2 shows the rolling contact fatigue life of the test materials.
The figure summarizes the relationship between electrolytic Ni-P plating thickness and rolling fatigue life.
各供試材の寿命は、第2図に示すように、WCを溶射し
たものは5時間程度の寿命である。この原因は、WC皮
膜は摺動摩耗ては良好な耐摩耗性を示すが、転動摩耗で
は高面圧のためWC皮膜か破壊し脱落したためと考えら
れる。勿論、母材ままのT16Al−4Vは5時間以下
の寿命である。As shown in FIG. 2, the lifespan of each sample material is approximately 5 hours for those coated with WC. The reason for this is thought to be that although the WC film exhibits good wear resistance during sliding wear, the WC film breaks and falls off due to high surface pressure during rolling wear. Of course, T16Al-4V as the base material has a lifespan of 5 hours or less.
転動摩耗試験における電解Ni−Pメッキ厚さと転動疲
労寿命との関係を第3図に示す。電解Ni−Pメッキの
転動疲労寿命は、メッキ厚さの増JtDに伴い急激に長
寿命化されることか明らかである。FIG. 3 shows the relationship between electrolytic Ni-P plating thickness and rolling fatigue life in rolling wear tests. It is clear that the rolling fatigue life of electrolytic Ni--P plating is rapidly extended as the plating thickness increases JtD.
この結果から電解Ni−Pメッキの耐転動疲労性帝を向
上させるための被覆材の厚さは、最大剪断応力発生部位
を被覆材の内部に止めさせるためと、被覆材の耐転動疲
労性を可能かつ有効にさせるために、0.1mm以上か
好ましく、耐摩耗性イ、1与の観点からは1mmまてて
十分である。また、被覆材の厚さを厚くすることは本発
明の目的とする軽量化からも好ましいものではない。From this result, the thickness of the coating material to improve the rolling contact fatigue resistance of electrolytic Ni-P plating is determined in order to keep the area where the maximum shear stress occurs inside the coating material, and to improve the rolling contact fatigue resistance of the coating material. In order to make the wear resistance possible and effective, it is preferably 0.1 mm or more, and from the viewpoint of wear resistance, 1 mm is sufficient. Further, increasing the thickness of the covering material is not preferable from the viewpoint of weight reduction, which is the objective of the present invention.
被覆材の硬さは、メッキ条件によって必要な硬さに調整
するが、耐摩耗性付与と転動疲労寿命の点からHV50
0以上に限定する。The hardness of the coating material is adjusted to the required hardness depending on the plating conditions, but from the viewpoint of providing wear resistance and rolling fatigue life, it is recommended to use HV50.
Limited to 0 or more.
第4図にNi−Pメッキ層中のP含有量とメッキ層の硬
さとの関係を示す。本発明ては、Ni−Pメッキ層中の
P含有量が、同図に示すように、2〜7重量%のところ
てメッキ層の硬度か1(V500以上のピークになるこ
とを知見した。勿論、Pの含有量以外にも他の添加剤や
メッキ条件によって、硬度の制御は可能であるが、この
結果は通常のNi−Pメッキにおいては、通常無電解メ
ッキで10重量%以上のP含を量となるNi−Pメッキ
よりも低いレヘルのP量て硬度か高くなることを示して
おり、したがって、本発明でも簡便に高硬度を達成しよ
うとずれば、Ni−Pメッキ中のP含有量を2〜7重量
%にすることか好ましい。FIG. 4 shows the relationship between the P content in the Ni-P plating layer and the hardness of the plating layer. In the present invention, it has been found that the hardness of the plating layer reaches a peak of 1 (V500 or more) when the P content in the Ni--P plating layer is 2 to 7% by weight, as shown in the figure. Of course, the hardness can be controlled by other additives and plating conditions in addition to the P content, but this result shows that in normal Ni-P plating, 10% by weight or more of P is normally used in electroless plating. This shows that the hardness increases with a lower P content than Ni-P plating. Therefore, if we try to easily achieve high hardness in the present invention, the P content in Ni-P plating It is preferable that the content is 2 to 7% by weight.
まTこ、本発明において、前記無電解メッキではP含有
量の制御か難しいので電気メッキの方かメ/キ手法とし
て優れている。However, in the present invention, since it is difficult to control the P content with the electroless plating, electroplating is better as a metallization method.
第5図に転動疲労寿命とメッキ習のP濃度との関係を示
す。母材にはTi−6AI−4Vを用い、脱脂→水洗→
エツチング→水洗→表面活性化処理を行ったのち、電解
Ni−Pメッキを施した。メッキ浴組成は、NlSO4
・6H20:200g/l SN+C12・6H20:
50g/l、H,PO3:4〜40g/l SH*PO
4:5(Ig/lである。なお、表面粗さはRa 1.
32 am 、 PP[50283である。電流密度は
メッキ層の厚みに応じて変化させた。図中、■は15A
/dm2、◆は30A/dm2ていずれもメッキ層の厚
み方向のP濃度を一定にした「単層メッキ」である。メ
ッキ層の厚みは700μmである。Figure 5 shows the relationship between rolling contact fatigue life and P concentration in plating. Using Ti-6AI-4V as the base material, degreasing → washing with water →
After performing etching → water washing → surface activation treatment, electrolytic Ni-P plating was performed. The plating bath composition is NlSO4
・6H20: 200g/l SN+C12・6H20:
50g/l, H, PO3: 4-40g/l SH*PO
4:5 (Ig/l).The surface roughness is Ra 1.
32 am, PP[50283. The current density was varied depending on the thickness of the plating layer. In the diagram, ■ is 15A
/dm2, ◆ is 30A/dm2, and both are "single layer plating" in which the P concentration in the thickness direction of the plating layer is constant. The thickness of the plating layer is 700 μm.
一方、・は下層5A/dm2(201t m厚み形成)
、中層+5A/dm2(500um厚み形成)、上層3
0A/dm2(200μm厚み形成)の3段階に変化さ
せ、ムは下層15A/dm2(200〜300 μm厚
み形成)、上層30A/dm2(200〜300μm厚
み形成)の2段階に変化させメッキ層の厚み方向のP濃
度を変化させた「複層メッキ」である。On the other hand, ・ is lower layer 5A/dm2 (201tm thickness formation)
, middle layer +5A/dm2 (500um thickness formation), upper layer 3
The thickness of the plating layer was changed in three stages: 0 A/dm2 (200 μm thick), and the lower layer was changed in two stages: 15 A/dm2 (200 to 300 μm thick), and 30 A/dm2 (200 to 300 μm thick) for the upper layer. This is "multilayer plating" in which the P concentration in the thickness direction is changed.
メッキ最表層のP濃度は以下のとおりである。The P concentration of the outermost plating layer is as follows.
■は5.2重量%「単層メッキ」
◆は4.9重量%r単層メッキ」
・は2.8重量%「複層メッキ」
ムは2.8重量%「複層メッキA
第5図に示すように、本発明で目的とする転動疲労寿命
はメッキ層のP濃度を変化させた「複層メッキ」の方が
優れている。したかって、メッキ層には厚み方向にPの
濃度差をつけた方か好ましい。■ is 5.2% by weight "single layer plating" ◆ is 4.9% by weight "single layer plating" ・ is 2.8% by weight "double layer plating" Mu is 2.8% by weight "double layer plating A 5th As shown in the figure, "multi-layer plating" in which the P concentration of the plating layer is varied is superior to the rolling contact fatigue life targeted by the present invention. Therefore, it is preferable to provide the plating layer with a difference in P concentration in the thickness direction.
本発明の機械構造用複合材の製造工程は、大路次の如く
である。すなわち、
■母材(チタン合金またはアルミ合金)の機械加工
■アルカリ脱脂(オルソ珪酸ソーダ5%溶液、70°C
)
■水洗
■エツチング(弗酸塩)
■水洗
■活性化処理
■水洗
■電気メッキまたは無電解メッキ
である。The manufacturing process of the composite material for mechanical structures of the present invention is as follows. Namely, ■ Machining of base material (titanium alloy or aluminum alloy) ■ Alkaline degreasing (5% sodium orthosilicate solution, 70°C
) ■Water wash■Etching (fluoride salt) ■Water wash■Activation treatment ■Water wash■Electroplating or electroless plating.
従来法でもメッキの前処理として当然エツチングは行わ
れている。しかし、このエツチングに用いられる酸は、
硝酸、弗酸またはこれらを混合した硝弗酸か主であって
、これら従来使用されている鉱酸類では、本発明で規定
する粗面な表面はできず、単に表面か均一にエツチング
あるいは逆に平滑化されるだけである。Even in the conventional method, etching is naturally performed as a pretreatment for plating. However, the acid used for this etching is
Nitric acid, hydrofluoric acid, or a mixture of these acids, nitric and hydrofluoric acid, are the main ones.These conventionally used mineral acids cannot produce the rough surface defined in the present invention, but simply etching the surface uniformly or vice versa. It is only smoothed.
発明者等の知見によれば、化学的エツチングにより本発
明で規定する粗面を得るには、NH4F −HPNaF
−IP等の弗酸塩か必要であり、他のエツチング剤と
して汎用される硝酸や弗酸は光沢剤としては有効ではあ
るものの、本発明で規定する粗面化のためには好ましい
薬剤ではない。According to the findings of the inventors, in order to obtain the rough surface specified in the present invention by chemical etching, NH4F -HPNaF
- Hydrofluoric acid such as IP is required, and nitric acid and hydrofluoric acid, which are commonly used as other etching agents, are effective as brightening agents, but are not preferred agents for the roughening specified in the present invention. .
また、本発明では必要により粗面化のためのエツチング
のあとて、硬質メッキのまえに、表面のスマット除去の
ための燐酸電解処理や金属面を出すためのクロム酸、弗
酸などの酸による活性化処理を行うことが可能である。In addition, in the present invention, after etching to roughen the surface if necessary, before hard plating, phosphoric acid electrolytic treatment is performed to remove smut from the surface, and acid such as chromic acid or hydrofluoric acid is applied to expose the metal surface. It is possible to perform activation processing.
すなわち、−旦素材表面に粗面を形成したあとのメッキ
までの工程は通常と同し方法か用いられる。このことは
、粗面化エツチングの前処理についても同様である。That is, the steps from forming a rough surface on the surface of the material to plating are the same as usual. This also applies to the pretreatment for surface roughening etching.
さらに、メッキ後の熱処理などの必要性についてである
が、従来技術ではメッキのチタン界面との密着性を向上
させようとして、熱処理によりチタンとメッキ金属とを
相互に拡散させる手法か取り入れられているが、本発明
では逆に熱処理した方がメッキ層が脆くなるような傾向
も知見しており、熱処理かなくても本件のメッキ密着性
か悪くなるものではない。Furthermore, regarding the necessity of heat treatment after plating, conventional technology has adopted a method of mutually diffusing titanium and plating metal through heat treatment in an attempt to improve the adhesion between the plating and the titanium interface. However, in the present invention, it has been found that heat treatment tends to make the plating layer more brittle, and the plating adhesion of the present invention does not deteriorate even without heat treatment.
このようにして得られた、母材(芯材)に軽くて高強度
のチタン合金またはアルミ合金を使用し、表層にHV5
00以上て0.1〜1mmの厚い電解Ni−Pメッキ層
を形成しているため、優れた耐摩耗性を発揮でき得る。The base material (core material) obtained in this way is made of a light and high-strength titanium alloy or aluminum alloy, and the surface layer is made of HV5
Since a thick electrolytic Ni-P plating layer of 0.00 or more and 0.1 to 1 mm is formed, excellent wear resistance can be exhibited.
なお、本複合材の軸材と接触しない部分には、耐摩耗性
付与のための硬質層を要しないことは言うまでもない。It goes without saying that a hard layer for imparting wear resistance is not required in the portion of the composite material that does not come into contact with the shaft material.
軽量化をさらに向上させるためには、必要最小限の部分
のみに被覆材を施すことか有効である。In order to further improve weight reduction, it is effective to apply covering material only to the minimum necessary parts.
(実施例)
以下に、実施例を挙げて本発明を説明するが、本発明は
これら実施例によって、何ら限定されるものではない。(Examples) The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples in any way.
実施例1
まず、供試材の複合材の製造方法について説明する。N
i−Pメッキの母材(芯材)にはチタン合金、Ti−6
AI−4V 、TiTi−6AI−2Sn−42r−2
、Ti−6AI−6V2Snを用いて、前記のように、
脱脂→水洗→エツチンク→水洗→表面活性化処理を行っ
たのち、電解Ni−Pメッキを施した。メッキ浴組成は
、NiSO4・6H20:200g/I 、 NIC
12・6H20:50g/l、H3PO3: 4〜40
g/l 、 H3PO4:5og/l とし、電流密度
は5〜40A/dm2の範囲て適宜選定した。メッキ厚
さは0.02〜0.5mmの範囲内で適宜選定した。こ
れらの供試材について、耐摩耗性とメッキ密着性を調査
した耐摩耗性は先に述へた転動摩耗試験機(第1図)を
用いて調査した。メッキ密着性はメッキ面に1mmクロ
スカットを100個切った後、直径5mm、180°曲
げを行いテープ剥離テストで評価した。Example 1 First, a method for manufacturing a composite material as a test material will be described. N
The base material (core material) of i-P plating is titanium alloy, Ti-6.
AI-4V, TiTi-6AI-2Sn-42r-2
, using Ti-6AI-6V2Sn, as described above.
After degreasing → washing with water → etching → washing with water → surface activation treatment, electrolytic Ni-P plating was performed. The plating bath composition was NiSO4.6H20: 200g/I, NIC
12.6H20: 50g/l, H3PO3: 4-40
g/l, H3PO4: 5 og/l, and the current density was appropriately selected within the range of 5 to 40 A/dm2. The plating thickness was appropriately selected within the range of 0.02 to 0.5 mm. The abrasion resistance and plating adhesion of these test materials were investigated using the rolling abrasion tester (Fig. 1) described above. Plating adhesion was evaluated by a tape peel test after cutting 100 1 mm crosscuts on the plated surface, bending the crosscuts to a diameter of 5 mm and 180°.
その結果を第1−1表および第1−2表に表面粗さ、 メッキ層硬さおよび厚さとともに併記する。The results are shown in Tables 1-1 and 1-2 for surface roughness, It is also written together with the plating layer hardness and thickness.
第1
1表
−16=
第1
2表
第1−1表および第1−2表から明らかなように、本発
明例のチタン合金に電解Ni−Pメッキを施した複合材
は、被覆材厚みが増すとともに耐摩耗性は向上し、被覆
材厚みが0.1mm以上になると安定した耐摩耗性を示
している。勿論、被覆かしてない母材ままのチタン合金
は、耐摩耗性に劣っている。Table 1 1-16 = Table 1 2 As is clear from Tables 1-1 and 1-2, the composite material in which electrolytic Ni-P plating was applied to the titanium alloy of the example of the present invention has a coating material thickness of The abrasion resistance improves as the coating thickness increases, and stable abrasion resistance is shown when the thickness of the coating material is 0.1 mm or more. Of course, uncoated titanium alloy as a base material has poor wear resistance.
また、本発明例のチタン合金に電解Ni−Pメッキを施
した複合材は、テープ剥離テストにおいても剥離は認め
られず、メッキ密着性は良好である。Further, in the composite material in which the titanium alloy of the present invention was electrolytically plated with Ni-P, no peeling was observed in the tape peeling test, and the plating adhesion was good.
一方、比較例は表面粗さか不十分なため、メッキ密着性
が悪く耐摩耗性が劣っている。On the other hand, the comparative example had poor plating adhesion and poor wear resistance due to insufficient surface roughness.
実施例2
実施例1の第1−1表に示すTi−6AI−4V 、表
面粗さRa 1.32 u、m 、 PP[5,283
の母材を用いて、実施例1とおなし電解Ni−Pメッキ
条件で、電流密度のみを変えてメッキを行い、メッキ層
のPの含有量を変化させた。なお、メッキ層の厚みは7
00μmである。これらメッキ層についてP含有量と硬
度を測定した。その結果を第4図に示す。Example 2 Ti-6AI-4V shown in Table 1-1 of Example 1, surface roughness Ra 1.32 u, m, PP[5,283
Using the base material, plating was performed under the same electrolytic Ni-P plating conditions as in Example 1, with only the current density changed, and the P content of the plating layer was changed. The thickness of the plating layer is 7
00 μm. The P content and hardness of these plated layers were measured. The results are shown in FIG.
本発明の複合材で狙いとする転動疲労寿命特性のために
は、勿論、一義的にメッキ層表面硬度か重要てあり、第
4図の結果からP含有量か2〜7重量%のときに、硬度
が高くなることがわかる。Of course, the surface hardness of the plating layer is primarily important for the rolling contact fatigue life characteristics targeted by the composite material of the present invention, and from the results shown in Figure 4, when the P content is 2 to 7% by weight, It can be seen that the hardness increases.
また、Pの含有量か7重量%を超えるとNi−Pメッキ
層自体か脆くなり、靭性か低下し負荷時にメッキ層の割
れか生じる可能性かあり、この点からもPの含有量は2
〜7重量%か好ましい。In addition, if the P content exceeds 7% by weight, the Ni-P plating layer itself becomes brittle, its toughness decreases, and the plating layer may crack under load.From this point of view, the P content should be 2.
~7% by weight is preferred.
(発明の効果)
以上説明したように、本発明に係わる転動疲労寿命に優
れた機械構造用複合材およびその製造方法は上記の構成
であるから、軽くて高強度のチタン合金およびアルミ合
金を母材とし、被覆材にNiPメッキ等を用いた表面硬
化処理を施すことにより、チタン合金およびアルミ合金
に耐摩耗性を付与することかできるという優れた効果を
有するものである。(Effects of the Invention) As explained above, the composite material for mechanical structures with excellent rolling contact fatigue life and the method for manufacturing the same according to the present invention have the above-mentioned configuration, so that lightweight and high-strength titanium alloys and aluminum alloys are used. It has the excellent effect of imparting wear resistance to titanium alloys and aluminum alloys by subjecting the base material to a surface hardening treatment using NiP plating or the like to the coating material.
第1図は転動摩耗試験方法の概略図を示す図である。
第2図は1vC皮膜、電解Ni−Pメッキおよび母、材
の転動疲労寿命を示す図である。
第3図は電解Ni−Pメッキ厚さと転動疲労寿命との関
係を示す図である。
第4図はNi−Pメッキ層中のP含有量とメッキ層の硬
さとの関係を示す図である。
第5図は転動疲労寿命とメッキ層のP濃度との関係を示
す図である。
第6図は転動摩耗のモデルと接触圧、
せん断力
の概念を示す図である。
■ 試験片
評価面
ホールベアリング
ベアリングレース
回転軸FIG. 1 is a diagram showing a schematic diagram of a rolling wear test method. FIG. 2 is a diagram showing the rolling fatigue life of the 1vC coating, electrolytic Ni-P plating, base material, and material. FIG. 3 is a diagram showing the relationship between electrolytic Ni--P plating thickness and rolling fatigue life. FIG. 4 is a diagram showing the relationship between the P content in the Ni--P plating layer and the hardness of the plating layer. FIG. 5 is a diagram showing the relationship between rolling fatigue life and P concentration of the plating layer. Figure 6 is a diagram showing a model of rolling wear and the concept of contact pressure and shear force. ■ Test piece evaluation surface Hall bearing bearing race rotating shaft
Claims (4)
30以上に粗面化したチタン合金またはアルミ合金の表
面に、直接硬度HV500辺上のNi−Pメッキ層を1
00μm以上被覆したことを特徴とする転動疲労寿命に
優れた機械構造用複合材。(1) PPI_5_0 is 1 when the surface Ra is 0.5 μm or more
Directly apply 1 Ni-P plating layer on the side of hardness HV500 to the surface of titanium alloy or aluminum alloy that has been roughened to 30 or higher.
Composite material for mechanical structures with excellent rolling fatigue life characterized by a coating of 00 μm or more.
が2〜7重量%であることを特徴とする請求項(1)の
転動疲労寿命に優れた機械構造用複合材。(2) The composite material for mechanical structures having excellent rolling fatigue life according to claim (1), wherein the P content of at least the surface layer of the Ni--P plating layer is 2 to 7% by weight.
有することを特徴とする請求項(1)または(2)の転
動疲労寿命に優れた機械構造用複合材。(3) The composite material for mechanical structures having excellent rolling contact fatigue life according to claim (1) or (2), wherein the Ni--P plating layer has a difference in P concentration in the thickness direction of the layer.
、弗酸塩を含む溶液により表面粗化処理を施されている
ことを特徴とする請求項(1)の転動疲労寿命に優れた
機械構造用複合材の製造方法。(4) A machine with excellent rolling fatigue life according to claim (1), characterized in that the surface of the titanium alloy or aluminum alloy to be coated has been subjected to surface roughening treatment with a solution containing fluorate. Method of manufacturing structural composites.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12824990A JP2777460B2 (en) | 1990-05-17 | 1990-05-17 | Composite material for mechanical structure excellent in rolling fatigue life and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12824990A JP2777460B2 (en) | 1990-05-17 | 1990-05-17 | Composite material for mechanical structure excellent in rolling fatigue life and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0426792A true JPH0426792A (en) | 1992-01-29 |
JP2777460B2 JP2777460B2 (en) | 1998-07-16 |
Family
ID=14980185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12824990A Expired - Fee Related JP2777460B2 (en) | 1990-05-17 | 1990-05-17 | Composite material for mechanical structure excellent in rolling fatigue life and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2777460B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5496651A (en) * | 1993-02-03 | 1996-03-05 | Kabushiki Kaisha Kobe Seiko Sho | Machine part resistant to rolling friction |
-
1990
- 1990-05-17 JP JP12824990A patent/JP2777460B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5496651A (en) * | 1993-02-03 | 1996-03-05 | Kabushiki Kaisha Kobe Seiko Sho | Machine part resistant to rolling friction |
Also Published As
Publication number | Publication date |
---|---|
JP2777460B2 (en) | 1998-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4571546B2 (en) | Wear resistant parts and power transmission parts | |
US5660482A (en) | Bearings | |
JPH03219098A (en) | Compositely plated film of sliding member | |
US20090321268A1 (en) | Electrodeposited film having sliding function and coated article therewith | |
US20110124535A1 (en) | Method for producing sliding member, sliding member, and substrate material of sliding member | |
JPH10287986A (en) | Magnesium alloy member excellent in adhesion and its production | |
EP0777058A1 (en) | Sliding material and methods of producing same | |
JP4519727B2 (en) | Abrasion resistant titanium | |
US4591536A (en) | Plain bearing and method of manufacture | |
CN102534698B (en) | Coating and have cated cast parts | |
JPH0617831A (en) | Slide bearing | |
JPH0426792A (en) | Laminated material for machine structural use excellent in rolling fatigue life and its production | |
US5712049A (en) | Sliding element and process for producing the same | |
US2741016A (en) | Composite bearing and method of making same | |
US5670265A (en) | Steel component with an electroplated anti-corrosive coating and process for producing same | |
JPH05239690A (en) | Multilayer slide bearing having overlay | |
JP3255862B2 (en) | Sliding member and manufacturing method thereof | |
JP2777468B2 (en) | Composite material for mechanical structure with excellent rolling fatigue life | |
JP4532310B2 (en) | Manufacturing method of glass-coated bolt and electrolytic corrosion prevention structure of metal member | |
US5496651A (en) | Machine part resistant to rolling friction | |
JP6682691B1 (en) | Surface-treated galvanized steel sheet and method for producing the same | |
JPH04331817A (en) | Sliding bearing having composite plating film | |
JP2888953B2 (en) | Method of manufacturing composite material for mechanical structure with excellent rolling fatigue life | |
JPH07122157B2 (en) | Roll surface treatment method | |
JP4466093B2 (en) | WC cermet sprayed roll |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |