JPH0426732A - Hydrogen storage ni-zr series alloy - Google Patents

Hydrogen storage ni-zr series alloy

Info

Publication number
JPH0426732A
JPH0426732A JP2132250A JP13225090A JPH0426732A JP H0426732 A JPH0426732 A JP H0426732A JP 2132250 A JP2132250 A JP 2132250A JP 13225090 A JP13225090 A JP 13225090A JP H0426732 A JPH0426732 A JP H0426732A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
capacity
negative electrode
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2132250A
Other languages
Japanese (ja)
Other versions
JP2762699B2 (en
Inventor
Hidekazu Doi
土井 英和
Tatsumori Yabuki
矢吹 立衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2132250A priority Critical patent/JP2762699B2/en
Publication of JPH0426732A publication Critical patent/JPH0426732A/en
Application granted granted Critical
Publication of JP2762699B2 publication Critical patent/JP2762699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a hydrogen storage Ni-Zr series alloy having an MgZn2, type crystalline structure and excellent in corrosion resistance in an alkaline electrolyte and hydrogen occluding-discharging capacity by specifying the compsn. constituted of Zr, Ti, Mn, Fe, Co, V and Ni. CONSTITUTION:This is a hydrogen storage Ni-Zr series alloy having a compsn. contg., by weight, 10 to 37% Zr, 5 to 25% Ti, 4 to 20% Mn, 0.01 to 5% Fe, 0.5 to 20% Co and 0.1 to 15% V, furthermore contg., at need, 1 to 7% Cu and/or 0.05 to 6% Cr and the balance Ni with inevitable impurities and having an MgZn2 type crystalline structure. The alloy is excellent in capacity and corrosion resistance in an alkaline electrolyte and suitable particularly for the use as the negative active substance of a closed type Ni-hydrogen storage battery.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、MgZn2型結晶構造、すなわち六方晶C
14型結晶構造をもち、特に密閉型N1水素蓄電池の負
極活物質として用いるのに適した水素吸蔵Ni−Zr系
合金に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is based on MgZn2 type crystal structure, that is, hexagonal C
The present invention relates to a hydrogen-absorbing Ni-Zr alloy having a type 14 crystal structure and particularly suitable for use as a negative electrode active material of a sealed N1 hydrogen storage battery.

〔従来の技術〕[Conventional technology]

一般に、密閉型N1−水素蓄電池が、水素吸蔵合金を活
物質として用いてなる負極と、Nj正極と、さらにセパ
レータおよびアルカリ電解液で構成され、かつ前記負極
を構成する水素吸蔵合金には、 (a)  室温付近での水素吸蔵・放出能が大きい。
In general, a sealed N1-hydrogen storage battery is composed of a negative electrode using a hydrogen storage alloy as an active material, an Nj positive electrode, a separator, and an alkaline electrolyte, and the hydrogen storage alloy constituting the negative electrode contains ( a) High hydrogen absorption and release ability near room temperature.

(b)  PCT曲線における室温付近の温度でのプラ
トー圧に相当する平衡水素解離圧が比較的低い(5気圧
以下)。
(b) The equilibrium hydrogen dissociation pressure corresponding to the plateau pressure at a temperature near room temperature in the PCT curve is relatively low (5 atm or less).

(C)  アルカリ電解液中で耐食性および耐久性(耐
劣化性)がある。
(C) Corrosion resistance and durability (deterioration resistance) in alkaline electrolytes.

(d)  水素酸化能(触媒作用)が大きい。(d) High hydrogen oxidation ability (catalytic action).

(e)  水素の吸蔵・放出の繰返しに伴う微粉化が起
り難い。
(e) Pulverization due to repeated absorption and release of hydrogen is unlikely to occur.

(f)無(低)公害である。(f) No (low) pollution.

(g)  低コストである。(g) It is low cost.

以上(a)〜(g)の性質を具備することが望まれ、さ
らにこのような性質を具備した水素吸蔵合金を負極の活
物質として用いてなる密閉型Ni  −水素蓄電池は、
大きな放電容量、長い充・放電サイクル寿命、すぐれた
急速光・放電特性、および低自己放電などの好ましい性
能を発揮するようになることも良く知られるところであ
る。
A sealed Ni-hydrogen storage battery is desired to have the properties (a) to (g) above, and further uses a hydrogen storage alloy having such properties as the active material of the negative electrode.
It is also well known that they exhibit favorable performances such as large discharge capacity, long charge/discharge cycle life, excellent rapid light/discharge characteristics, and low self-discharge.

したがって、特に密閉型Nl  −水素蓄電池の負極を
構成する活物質として用いるのに適した水素吸蔵合金の
開発が盛んに行なわれ、例えば特開昭81−45583
号公報に記載されるM g Z n 2型結晶構造、す
なわち六方晶C14型結晶構造をもった水素吸蔵合金は
じめ、多数の水素吸蔵合金が提案されている。
Therefore, the development of hydrogen storage alloys particularly suitable for use as active materials constituting the negative electrode of sealed Nl-hydrogen storage batteries has been actively carried out.
A large number of hydrogen storage alloys have been proposed, including a hydrogen storage alloy having a M g Z n 2 type crystal structure, that is, a hexagonal C14 type crystal structure, described in the above publication.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、すでに提案されているいずれの水素吸蔵合金も
密閉型N1−水素蓄電池の負極活物質として用いる場合
に要求される上記の性質をすべて満足して具備するもの
ではなく、より一層の開発が望まれているのが現状であ
る。
However, none of the hydrogen storage alloys that have already been proposed satisfies all of the above properties required for use as negative electrode active materials in sealed N1-hydrogen storage batteries, and further development is desired. The current situation is that

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、特に密
閉型N1−水素蓄電池の負極活物質として用いるのに適
した水素吸蔵合金を開発すべく研究を行なった結果、重
量%で(以下%は重量%を示す)、 Zr:10〜37%、  Ti:5〜25%、Mn:4
〜20%、  Fe : 0.01〜5%、Co : 
0.5〜20%、 V  : 0.1〜15%、を含有
し、さらに必要に応じて、 Cu:1〜7%、  Cr : 0.05〜6%、を含
有し、残りがN1と不可避不純物からなる組成を有する
水素吸蔵Ni−Zr系合金は、M g Z n 2型結
晶構造(六方晶C14型結晶構造)をもち、密閉型N1
−水素蓄電池の負極活物質として用いる場合に要求され
る上記(a)〜(g)の性質を十分満足した状態で具備
し、したがってこれを負極活物質として用いた密閉型N
1−水素蓄電池は、大きなエネルギー密度と電気容量を
もち、かつ長いサイクル寿命を示すようになるほか、自
己放電が小さくなり、さらに高率光・放電特性にもすぐ
れ、無公害および低コストと合わせて、すぐれた性能を
発揮するようになるという研究結果を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a hydrogen storage alloy particularly suitable for use as a negative electrode active material of a sealed N1-hydrogen storage battery. % indicates weight%), Zr: 10-37%, Ti: 5-25%, Mn: 4
~20%, Fe: 0.01~5%, Co:
0.5-20%, V: 0.1-15%, further contains Cu: 1-7%, Cr: 0.05-6%, and the rest is N1. A hydrogen-absorbing Ni-Zr alloy with a composition consisting of unavoidable impurities has a M g Z n 2 type crystal structure (hexagonal C14 type crystal structure), and has a closed type N1 type crystal structure.
- A sealed type N that fully satisfies the properties (a) to (g) above required when used as a negative electrode active material in a hydrogen storage battery, and therefore uses it as a negative electrode active material.
1-Hydrogen storage batteries have large energy density and electric capacity, and have a long cycle life. They also have low self-discharge, excellent high-rate light and discharge characteristics, and are non-polluting and low-cost. The research results showed that it can exhibit excellent performance.

この発明は、上記研究結果にもとづいてなされたもので
あって、以下に上記水素吸蔵Ni−Zr系合金の成分組
成を上記の通りに限定した理由を説明する。
This invention has been made based on the above research results, and the reason why the composition of the hydrogen storage Ni-Zr alloy is limited as described above will be explained below.

(a)  ZrおよびTi これらの成分には、共存した状態で合金に望ましい水素
吸蔵・放出特性を具備せしめると共に、室温における平
衡水素解離圧(プラトー圧)を、例えば5気圧以下に低
下させる作用があるが、その含有量がそれぞれZr:1
0%未満およびTi:5%未満では前記作用に所望の効
果が得られず、一方Zrの含有量が37%を越えると、
放電容量の水素解離圧依存の点では問題はないが、水素
吸蔵・放出能が低下するようになり、またTIの含有量
が25%を越えると、平衡水素解離圧が例えば5気圧以
上に上昇するようになり、大きな放電容量を確保するた
めには高い水素解離圧を必要とするようになって蓄電池
として好ましくないものとなることから、その含有量を
、それぞれZr:10〜37%、Ti:5〜25%と定
めた。
(a) Zr and Ti These components, when coexisting, provide the alloy with desirable hydrogen storage and desorption properties, and also have the effect of lowering the equilibrium hydrogen dissociation pressure (plateau pressure) at room temperature to, for example, 5 atm or less. However, the content is Zr:1
When the Zr content is less than 0% and Ti: less than 5%, the desired effect cannot be obtained, while when the Zr content exceeds 37%,
There is no problem in terms of the dependence of the discharge capacity on the hydrogen dissociation pressure, but the hydrogen storage and desorption capacity begins to decline, and when the TI content exceeds 25%, the equilibrium hydrogen dissociation pressure increases to, for example, 5 atm or more. In order to ensure a large discharge capacity, a high hydrogen dissociation pressure is required, making it undesirable as a storage battery. : 5 to 25%.

(b)  Mn Mn成分には、水素吸蔵・放出能を向上させ、かつアル
カリ電解液中での合金の耐食性および耐久性を向上させ
るほか、蓄電池の負極活物質として用いた場合に自己放
電を抑制する作用があるが、その含有量が4%未満では
前記作用に所望の効果が得られず、一方その含有量が2
0%を越えると、水素吸蔵・放出特性が損なわれるよう
になることから、その含有量を4〜20%と定めた。
(b) Mn The Mn component not only improves hydrogen storage and release ability, but also improves the corrosion resistance and durability of the alloy in alkaline electrolytes, and suppresses self-discharge when used as a negative electrode active material in storage batteries. However, if its content is less than 4%, the desired effect cannot be obtained; on the other hand, if its content is less than 2%,
If it exceeds 0%, the hydrogen storage and release characteristics will be impaired, so the content was set at 4 to 20%.

(c)  Fe Fe成分には、蓄電池の負極活物質として用いる場合な
どの粉末化に際して、形成された粉末を整粒化する作用
があるが、その含有量が0.01%未満では前記作用に
所望の効果が得られず、一方その含有量が5%を越える
と耐食性が低下し、蓄電池に適用した場合、これの自己
放電が進行するようになることから、その含有量を01
口l〜5%と定めた。
(c) Fe The Fe component has the effect of sizing the formed powder during powdering when used as a negative electrode active material of a storage battery, but if its content is less than 0.01%, the above effect will not be achieved. If the desired effect is not obtained, and if the content exceeds 5%, the corrosion resistance will decrease, and if applied to a storage battery, self-discharge will progress, so the content should be reduced to 0.1%.
It was set at 1~5%.

(d)  C。(d) C.

Co成分には、水素吸蔵能を一段と増大させ、もってN
i  −水素蓄電池の負極活物質として用いた場合に放
電容量を増加させて、その使用寿命の著しい延命化に寄
与する作用があるが、その含有量が0.5%未満では前
記作用に所望の効果が得られず、一方その含有量が20
%を越えても前記作用により一層の向上効果が見られな
いことから、経済性を考慮して、その含有量を0,5〜
20%と定めた。
The Co component further increases hydrogen storage capacity and
When used as a negative electrode active material in i-hydrogen storage batteries, it has the effect of increasing the discharge capacity and significantly extending its service life, but if its content is less than 0.5%, the desired effect may not be achieved. No effect was obtained, while the content was 20
Even if the content exceeds 0.5%, no further improvement effect is seen due to the above action, so in consideration of economic efficiency, the content should be increased from 0.5% to 0.5%.
It was set at 20%.

(c)  V 上記のように密閉型Ni −水素蓄電池には、室温にお
ける平衡水素解離圧が過度に高くなく(例えば5気圧以
下)、かつ水素吸蔵・放出量ができるだけ大きいことが
望まれるが、■成分には、このような水素吸蔵・放出量
の増大および平衡水素圧の適正化に寄与する作用がある
が、その含有量が0.1%未満では前記作用に所望の効
果が得られず、一方その含有量が15%を越えると、平
衡水素圧が高くなりすぎるようになるほか、電解液中に
溶は出して、自己放電が助長されるようになることから
、その含有量を0.1〜15%と定めた。
(c) V As mentioned above, it is desirable for a sealed Ni-hydrogen storage battery to have an equilibrium hydrogen dissociation pressure at room temperature that is not excessively high (for example, 5 atm or less) and to have as large an amount of hydrogen storage and release as possible. ■Ingredients have the effect of contributing to increasing the amount of hydrogen storage and release and optimizing the equilibrium hydrogen pressure, but if the content is less than 0.1%, the desired effect cannot be obtained. On the other hand, if its content exceeds 15%, the equilibrium hydrogen pressure will become too high, and it will dissolve into the electrolyte, promoting self-discharge. .1 to 15%.

(f’)  Cu Cu成分には、水素吸蔵・放出量の増大および平衡水素
圧の適正化を一段と促進する作用があるので、必要に応
じて含有されるが、その含有量が1%未満では前記作用
に所望の向上効果が得られず、一方その含有量が7%を
越えると、水素吸蔵・放出量の低下を招き、放電容量が
低下するようになることから、その含6−Mを1〜7%
と定めた。
(f') Cu The Cu component has the effect of further increasing the amount of hydrogen storage and release and optimizing the equilibrium hydrogen pressure, so it is included as necessary, but if the content is less than 1%, The desired effect of improving the above action cannot be obtained, and on the other hand, if the content exceeds 7%, the amount of hydrogen storage and desorption will decrease, and the discharge capacity will decrease. 1-7%
It was determined that

(g)  Cr C「成分には、水素吸蔵・放出能を低下させることなく
、アルカリ電解液中での耐食性を一段と向上させる作用
があるので、必要に応じて含有されるが、その含有量が
0.05%未満では前記作用に所望の向上効果が得られ
ず、一方その含有量が6%を越えると、水素吸蔵・放出
能が低下するようになることから、その含有量を0.0
5〜6%と定めた。
(g) CrC component has the effect of further improving corrosion resistance in alkaline electrolyte without reducing hydrogen storage/release ability, so it is included as necessary, but its content is If the content is less than 0.05%, the desired effect of improving the above action cannot be obtained, while if the content exceeds 6%, the hydrogen storage and desorption ability will decrease.
It was set at 5-6%.

〔実 施 例〕〔Example〕

つぎに、この発明の水素吸蔵Ni−Zr系合金を実施例
により具体的に説明する。
Next, the hydrogen-absorbing Ni--Zr alloy of the present invention will be specifically explained with reference to Examples.

通常の高周波誘導溶解炉を用い、Ar雰囲気中にてそれ
ぞれ第1表に示される成分組成をもったNi−Zr系合
金溶湯を調製し、銅鋳型に鋳造してインゴットとした後
、このインゴットをAr雰囲気中、900〜1000℃
の範囲内の所定温度に5時間保持の条件で焼鈍し、つい
でショークラッシャを用い、粗粉砕して直径:2關以下
の粗粒とし、さらにボールミルを用いて微粉砕して35
0mesh以下の粒度とすることによりいずれもMgZ
nz型結晶構造をもった本発明水素吸蔵合金1〜20、
比較水素吸蔵合金1〜9、および従来水素吸蔵合金をそ
れぞれ製造した。
Molten Ni-Zr alloys having the compositions shown in Table 1 are prepared in an Ar atmosphere using a conventional high-frequency induction melting furnace, and cast into a copper mold to form an ingot. 900-1000℃ in Ar atmosphere
Annealed at a predetermined temperature in the range of
By setting the particle size to 0 mesh or less, both MgZ
Hydrogen storage alloys 1 to 20 of the present invention having a nz-type crystal structure,
Comparative hydrogen storage alloys 1 to 9 and conventional hydrogen storage alloys were each manufactured.

ついで、この結果得られた各種の粉末状水素吸蔵合金を
活物質として用い、まず、これにポリビニールアルコー
ル(PVA)の2%水溶液を添加してペースト化した後
、95%の多孔度を有する市販のNjつイスカー不織布
に充填し、乾燥し、さらに加圧して、平面寸法: 42
+++m X 35m+aにして、厚さ: o、eo〜
0,65市の形状(活物質充填量:約2.8g)とし、
これの−辺にリードとなるN1薄板を溶接により取付け
て負極を製造し、一方正極として同寸法のNi焼結板を
2枚用意し、これを前記負極の両側に配置し、30%K
OH水溶液を装入することにより密閉型Nl  −水素
蓄電池を製造した。
Next, various powdered hydrogen storage alloys obtained as a result are used as active materials, and a 2% aqueous solution of polyvinyl alcohol (PVA) is added thereto to form a paste, which has a porosity of 95%. It was filled into a commercially available Nj Iscar nonwoven fabric, dried, and further pressurized to give a flat size of 42
+++m x 35m+a, thickness: o, eo~
0.65 city shape (active material filling amount: approximately 2.8 g),
A negative electrode was manufactured by attaching an N1 thin plate as a lead to the negative side of this by welding, and on the other hand, two Ni sintered plates of the same size were prepared as positive electrodes, and these were placed on both sides of the negative electrode.
A sealed Nl-hydrogen storage battery was manufactured by charging an OH aqueous solution.

なお、この結果得られた各種の蓄電池を、いずれも開放
電池とし、かつ正極の容量を負極の容量より著しく大き
くすることにより負極の容量を測定し易くした。
The various storage batteries obtained as a result were all open batteries, and the capacity of the positive electrode was made significantly larger than the capacity of the negative electrode, thereby making it easier to measure the capacity of the negative electrode.

また、上記比較水素吸蔵合金1〜9は、いずれも構成成
分のうちのいずれかの成分含有量(第1表に※印を付す
)がこの発明の範囲から外れた組成をもつものである。
Moreover, the comparative hydrogen storage alloys 1 to 9 all have compositions in which the content of one of the constituent components (marked with * in Table 1) is outside the scope of the present invention.

つぎに、これらの各種の蓄電池について、充放電速度:
0.2C,充電電気量:負極容量の130%の条件で充
・放電試験を行い、1回の充電と放電を1サイクルとし
、】10サイクル後、220サイクル後、および330
サイクル後における放電容量をそれぞれ測定した。
Next, for these various storage batteries, the charging and discharging speed:
A charge/discharge test was conducted under the conditions of 0.2C, charge amount of electricity: 130% of the negative electrode capacity, one charge and discharge was one cycle, and after 10 cycles, 220 cycles, and 330
The discharge capacity after each cycle was measured.

また、さらに第1表に示される組成をもった各種の粉末
状水素吸蔵合金を用い、平面サイズを90mn+ X 
40mm %厚さ:0.60〜0.85mmとして、容
量=1450〜l 500mAh (活物質充填量:約
6g)とする以外は、上記の充・放電試験で用いた蓄電
池の負極板と同一の条件で負極板を製造し、一方正極板
は、95%の多孔度を有するNiウィスカー不織布に水
酸化ニッケル[N j(OH) 2 ]を活物質として
充填し、乾燥し、さらにプレス加工した後、リ一ドを取
付けて、平面寸法: 70mm X 40rava、厚
さ:0.65〜0.70mmの形状(容量: 1000
〜1050利Ah)とすることにより製造し、この結果
得られた負極板と正極板を、セパレータを介してうす巻
き状にした状態で、電解液と共にケース(これは○端子
と兼用)の中に収容した構造の密閉型Ni −水素蓄電
池とした。なお、この蓄電池においては、正極容量より
負極容量を大きくして正極律則の蓄電池を構成した。
Further, various powdered hydrogen storage alloys having the compositions shown in Table 1 were used, and the planar size was 90mm+
Same as the negative electrode plate of the storage battery used in the charge/discharge test above, except that the thickness was 40mm%, 0.60 to 0.85mm, and the capacity was 1450 to 500mAh (active material filling amount: about 6g). A negative electrode plate was manufactured under the following conditions, while a positive electrode plate was prepared by filling a Ni whisker nonwoven fabric with a porosity of 95% with nickel hydroxide [N j (OH) 2 ] as an active material, drying it, and then pressing it. , with the lead installed, plane dimensions: 70mm x 40rava, thickness: 0.65-0.70mm (capacity: 1000
~1050Ah), and the resulting negative and positive electrode plates are thinly wound with a separator in between, and placed in a case (this also serves as the ○ terminal) together with the electrolyte. This is a sealed Ni-hydrogen storage battery with a structure housed in. In addition, in this storage battery, the negative electrode capacity was made larger than the positive electrode capacity to constitute a positive electrode regulation storage battery.

また、これらの蓄電池に対する自己放電試験は、まず室
温で0.2C(200+nA)で7時間充電し、ついで
蓄電池を45℃に温度セットしである恒温槽中に開路状
態(電池に負荷をかけない状態)で、1週問および2週
間放置し、放置後、とり出して、室温で0.2C(20
0mA)放電を行ない、容量残存率を求めることにより
行なった。
In addition, the self-discharge test for these storage batteries involves first charging them at room temperature at 0.2C (200+nA) for 7 hours, then setting the temperature of the storage battery at 45℃ and placing it in a constant temperature oven in an open circuit state (no load is applied to the battery). After leaving it for one week and two weeks, take it out and heat it at room temperature at 0.2C (20
This was done by performing a discharge (0 mA) and determining the capacity remaining rate.

さらに、同じく第1表に示される成分組成をもった各種
の水素吸蔵合金について、一般にl1uey試験と呼ば
れている方法を用い、試験片を上記のインゴットより切
り出してプラスチック樹脂に埋め込み、腐食面をエメリ
ーペーパー# BUDで研磨仕上げした状態で、コール
ドフィンガー型コンデンサー付三角フラスコに装入し、
沸騰した30%KOH水溶液中に240時間保持の条件
でアルカリ電解液腐食試験を行ない、試験後の腐食減量
を測定した。これらの測定結果を第1表に示した。
Furthermore, for various hydrogen storage alloys having the composition shown in Table 1, test pieces were cut out from the above ingot and embedded in plastic resin using a method generally called the l1uey test, and the corroded surface was removed. After polishing with emery paper #BUD, charge it into an Erlenmeyer flask with a cold finger type condenser.
An alkaline electrolyte corrosion test was conducted under the condition of holding in a boiling 30% KOH aqueous solution for 240 hours, and the corrosion weight loss after the test was measured. The results of these measurements are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明水素吸蔵合金1〜2
0は、いずれも従来水素吸蔵合金に比して、アルカリ電
解液に対してすぐれた耐食性を示し、さらにこれを密閉
型Ni −水素蓄電池の負極活物質として用いた場合、
蓄電池は高容量をもつようになり、従来水素吸蔵合金を
用いた蓄電池に比して充・放電サイクルを繰り返した場
合の容量低下が著しく小さいという好ましい結果を示す
ことが明らかであり、一方比較水索吸蔵合金1〜9に見
られるように、構成成分のうちのいずれかの成分含有量
でもこの発明の範囲から外れると、本発明水素吸蔵合金
に比して、アルカリ電解液に対する耐食性、並びにこれ
を蓄電池の負極活物質とじて用いた場合の蓄電池の放電
容量および自己放電のうちの少なくともいずれかの特性
が劣ったものになることが明らかである。
From the results shown in Table 1, hydrogen storage alloys 1 to 2 of the present invention
0 exhibits superior corrosion resistance to alkaline electrolytes compared to conventional hydrogen storage alloys, and furthermore, when used as a negative electrode active material of a sealed Ni-hydrogen storage battery,
It is clear that storage batteries now have a high capacity, and compared to storage batteries using conventional hydrogen storage alloys, they show favorable results in that capacity loss is significantly smaller when repeated charge/discharge cycles are performed. As seen in Hydrogen Storage Alloys 1 to 9, when the content of any of the constituent components falls outside the scope of the present invention, the corrosion resistance to alkaline electrolytes and this It is clear that when used together with the negative electrode active material of a storage battery, the discharge capacity and/or self-discharge characteristics of the storage battery will be inferior.

上述のように、この発明の水素吸蔵Nl−Zr系合金は
、アルカリ電解液に対する耐食性にすぐれているほか、
特に密閉型Ni  −水素蓄電池の負極活物質として用
いた場合に、負極活物質に要求される特性をすべて十分
満足する状態で具備しているので、蓄電池の自己放電が
著しく低減し、さらに長いサイクル寿命に亘って大きな
放電容量が確保されるようになるなど工業上有用な特性
を有するのである。
As mentioned above, the hydrogen-absorbing Nl-Zr alloy of the present invention has excellent corrosion resistance against alkaline electrolytes, and
In particular, when used as a negative electrode active material in a sealed Ni-Hydrogen storage battery, it fully satisfies all of the characteristics required for a negative electrode active material, significantly reducing self-discharge of the storage battery and resulting in a longer cycle time. It has industrially useful characteristics such as ensuring a large discharge capacity over its lifetime.

Claims (4)

【特許請求の範囲】[Claims] (1)Zr:10〜37%、Ti:5〜25%、Mn:
4〜20%、Fe:0.01〜5%、Co:0.5〜2
0%、V:0.1〜15%、を含有し、残りがNiと不
可避不純物からなる組成(以上重量%)を有することを
特徴とするMgZn_2型結晶構造をもった水素吸蔵N
i−Zr系合金。
(1) Zr: 10-37%, Ti: 5-25%, Mn:
4-20%, Fe: 0.01-5%, Co: 0.5-2
0%, V: 0.1 to 15%, and the remainder is Ni and unavoidable impurities (weight%).
i-Zr alloy.
(2)Zr:10〜37%、Ti:5〜25%、Mn:
4〜20%、Fe:0.01〜5%、Co:0.5〜2
0%、V:0.1〜15%、を含有し、さらに、 Cu:1〜7%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn_2型結
晶構造をもった水素吸蔵Ni−Zr系合金。
(2) Zr: 10-37%, Ti: 5-25%, Mn:
4-20%, Fe: 0.01-5%, Co: 0.5-2
0%, V: 0.1 to 15%, and Cu: 1 to 7%, with the remainder consisting of Ni and unavoidable impurities (weight %). A hydrogen-absorbing Ni-Zr alloy with a MgZn_2 type crystal structure.
(3)Zr:10〜37%、Ti:5〜25%、Mn:
4〜20%、Fe:0.01〜5%、Co:0.5〜2
0%、V:0.1〜15%、を含有し、さらに、 Cr:0.05〜6%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn_2型結
晶構造をもった水素吸蔵Ni−Zr系合金。
(3) Zr: 10-37%, Ti: 5-25%, Mn:
4-20%, Fe: 0.01-5%, Co: 0.5-2
0%, V: 0.1 to 15%, further contains Cr: 0.05 to 6%, and the remainder is Ni and inevitable impurities (weight %). A hydrogen-absorbing Ni-Zr alloy with a MgZn_2 type crystal structure.
(4)Zr:10〜37%、Ti:5〜25%、Mn:
4〜20%、Fe:0.01〜5%、Co:0.5〜2
0%、V:0.1〜15%、を含有し、さらに、 Cu:1〜7%、Cr:0.05〜6%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn_2型結
晶構造をもった水素吸蔵Ni−Zr系合金。
(4) Zr: 10-37%, Ti: 5-25%, Mn:
4-20%, Fe: 0.01-5%, Co: 0.5-2
0%, V: 0.1 to 15%, and further contains Cu: 1 to 7%, Cr: 0.05 to 6%, and the remainder is Ni and unavoidable impurities. %) having a MgZn_2 type crystal structure.
JP2132250A 1990-05-22 1990-05-22 Hydrogen storage Ni-Zr alloy Expired - Lifetime JP2762699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2132250A JP2762699B2 (en) 1990-05-22 1990-05-22 Hydrogen storage Ni-Zr alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2132250A JP2762699B2 (en) 1990-05-22 1990-05-22 Hydrogen storage Ni-Zr alloy

Publications (2)

Publication Number Publication Date
JPH0426732A true JPH0426732A (en) 1992-01-29
JP2762699B2 JP2762699B2 (en) 1998-06-04

Family

ID=15076883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2132250A Expired - Lifetime JP2762699B2 (en) 1990-05-22 1990-05-22 Hydrogen storage Ni-Zr alloy

Country Status (1)

Country Link
JP (1) JP2762699B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278001A (en) * 1992-01-24 1994-01-11 Hitachi Maxell, Ltd. Hydrogen storage alloy, electrode comprising the same and hydrogen storage alloy cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278001A (en) * 1992-01-24 1994-01-11 Hitachi Maxell, Ltd. Hydrogen storage alloy, electrode comprising the same and hydrogen storage alloy cell

Also Published As

Publication number Publication date
JP2762699B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JP2762717B2 (en) Hydrogen storage Ni-Zr alloy
JPH0426732A (en) Hydrogen storage ni-zr series alloy
JP2805994B2 (en) Hydrogen storage Ni-Zr alloy
JP2762715B2 (en) Hydrogen storage Ni-Zr alloy
JP2762667B2 (en) Hydrogen storage Ni-Zr alloy
JP2762663B2 (en) Hydrogen storage Ni-Zr alloy
JP2806011B2 (en) Hydrogen storage Ni-Zr alloy
JP2762713B2 (en) Hydrogen storage Ni-Zr alloy
JPH0466634A (en) Hydrogen storage ni-zr series alloy
JP2762669B2 (en) Hydrogen storage Ni-Zr alloy
JP2762702B2 (en) Hydrogen storage Ni-Zr alloy
JP2762701B2 (en) Hydrogen storage Ni-Zr alloy
JP2762668B2 (en) Hydrogen storage Ni-Zr alloy
JP2806013B2 (en) Hydrogen storage Ni-Zr alloy
JP2762662B2 (en) Hydrogen storage Ni-Zr alloy
JP2762700B2 (en) Hydrogen storage Ni-Zr alloy
JP2762671B2 (en) Hydrogen storage Ni-Zr alloy
JP2806012B2 (en) Hydrogen storage Ni-Zr alloy
JP2847931B2 (en) Hydrogen storage Ni-Zr alloy
JP2806010B2 (en) Hydrogen storage Ni-Zr alloy
JPH02194140A (en) Hydrogen storage ni-based alloy and closed ni-hydrogen battery
JPH02277738A (en) Ni-zr hydrogen storage alloy and hermetically sealed-type ni-hydrogen storage battery
JPH02277739A (en) Ni-zr hydrogen storage alloy and hermetically sealed-type ni-hydrogen storage battery
JPH02263944A (en) Hydrogen storage ni-zr series alloy and closed-type ni-hydrogen storage battery
JPH0639645B2 (en) Hydrogen storage Ni-Zr alloy and sealed Ni-hydrogen storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 13