JPH04265535A - Optical waveguide recording medium reproducing device - Google Patents

Optical waveguide recording medium reproducing device

Info

Publication number
JPH04265535A
JPH04265535A JP3024754A JP2475491A JPH04265535A JP H04265535 A JPH04265535 A JP H04265535A JP 3024754 A JP3024754 A JP 3024754A JP 2475491 A JP2475491 A JP 2475491A JP H04265535 A JPH04265535 A JP H04265535A
Authority
JP
Japan
Prior art keywords
optical waveguide
light
optical
recording medium
medium reproducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3024754A
Other languages
Japanese (ja)
Inventor
Naohiro Tanno
直弘 丹野
Teruo Toma
照夫 當摩
Kiyobumi Chikuma
清文 竹間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP3024754A priority Critical patent/JPH04265535A/en
Priority to US07/800,089 priority patent/US5233582A/en
Priority to EP92301257A priority patent/EP0500286A1/en
Publication of JPH04265535A publication Critical patent/JPH04265535A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical waveguide recording medium reproducing device in which the modulation frequency of a reference light is changed to have a wide band by providing a waveguide light delay reflection element generating a surface elastic wave in the propagating direction of incident light. CONSTITUTION:A waveguide type light wave delay reflection device 37 is adopted in an optical waveguide recording medium reproducing device. The device 37, which is provided with an electrode (transducer) 101 generating the surface wave on a waveguide 100 guiding light, serves to propagate the surface elastic wave in the light propagating direction of the light waveguide 100. A laser beam is guided to the lightwaveguide 100, high frequency drive current which is demodulated in a burst-like form and generates the surface elastic wave is made to flow to the electrode 101, and the shift in light frequency and the phase delay in time of the reference light which permits the information to be reproduced by means of the interaction between the laser beam and the surface elastic light are realized. Thus, the phase shift several times as large as a wavelength can be given by the delay reflection device 37, and the information can be read out through a long waveguide 100.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【技術分野】本発明は、光記憶媒体、特にレーザビーム
(低コヒーレント光ビームも含め総称する)の導波によ
って複数の異なる振幅と位相遅れを持つ反射導波光を生
じる屈折率不連続部を設けた光導波路を有する光導波路
記憶媒体を用い、これにレーザビームを導波し、その一
部の反射導波光とドップラー周波数変移したレーザビー
ムとを光ヘテロダイン検波し、記録された情報を時系列
信号波形として再生する光導波路記憶媒体再生装置に関
する。
[Technical field] The present invention relates to an optical storage medium, in particular, a refractive index discontinuity portion that generates reflected guided light having a plurality of different amplitudes and phase delays by guiding a laser beam (generally referred to as a low-coherent light beam). Using an optical waveguide storage medium having an optical waveguide, a laser beam is guided through the medium, and a part of the reflected guided light and the laser beam with shifted Doppler frequency are optically heterodyne detected, and the recorded information is converted into a time-series signal. The present invention relates to an optical waveguide storage medium reproducing device that reproduces waveforms.

【0002】0002

【背景技術】従来の光記憶媒体としては、記録膜として
円盤基板面に形成された高光反射率の平坦反射膜に複数
の低光反射率凹部を記録情報として線上に配列した光デ
ィスクがある。この光記憶媒体では、凹部列にレーザビ
ームを集束照射し、反射膜及び凹部からの反射光量の差
を記録情報として検出する。他の光記憶媒体としては、
一軸磁気異方性記録膜に複数の微小磁化反転領域を配列
形成して情報を記録する光磁気ディスクもある。この光
記憶媒体では、磁化反転領域列からの反射光の偏光面の
回転角度差を記録情報として検出する。
BACKGROUND OF THE INVENTION Conventional optical storage media include optical discs in which a plurality of low light reflectance recesses are arranged in a line as recorded information on a flat reflective film with high light reflectance formed on the surface of a disk substrate as a recording film. In this optical storage medium, a laser beam is focused and irradiated onto a row of recesses, and the difference in the amount of light reflected from the reflective film and the recesses is detected as recorded information. Other optical storage media include
There is also a magneto-optical disk in which information is recorded by forming a plurality of minute magnetization reversal regions in an array on a uniaxial magnetic anisotropic recording film. In this optical storage medium, the difference in rotation angle of the plane of polarization of the reflected light from the magnetization reversal region array is detected as recorded information.

【0003】これら光記憶媒体においては、記録部とし
ての凹部又は磁化反転領域の列からの反射光によって再
生するため、かかる記録部の面密度には限度がある。こ
れら光記憶媒体の再生時には、レーザビームの合焦点を
光記憶媒体の面振れに追随させるために合焦点を光軸方
向に移動させているが、一点の記録部毎に合焦を必要と
し、さらに反射光の光反射率及び偏光面の回転角度が非
常に小さいので検出される光信号の信号対雑音比は低い
。また、記録部の列の移動によってのみ時系列信号が再
生されるので、光記憶媒体の移動速度によって再生及び
記録のアクセス時間が制限される。
[0003] In these optical storage media, since reproduction is performed using reflected light from a recessed portion or a row of magnetization reversal regions serving as a recording portion, there is a limit to the areal density of such recording portions. When reproducing these optical storage media, the focal point of the laser beam is moved in the optical axis direction in order to follow the surface deflection of the optical storage medium, but this requires focusing for each recording section. Furthermore, since the optical reflectance of the reflected light and the rotation angle of the polarization plane are very small, the signal-to-noise ratio of the detected optical signal is low. Furthermore, since the time-series signal is reproduced only by moving the column of recording units, the access time for reproduction and recording is limited by the moving speed of the optical storage medium.

【0004】特開平第2−210627号に開示された
光導波路記憶媒体及びその再生装置は、これらの問題点
を解消するため開発されている。さらに、光導波路記憶
媒体用の再生装置としてマイケルソン干渉計型光ヘテロ
ダイン検出光学系を有するものが提案されている。かか
る再生装置は、光源からの放射レーザビームを平行光束
にするコリメーションレンズと、光導波記憶媒体上へ導
かれるレーザビームを分岐するハーフミラーと、光導波
記憶導波路に分割レーザビームの一方をカップリングさ
せる為の対物レンズと、分割レーザビームの他方に位相
シフトと周波数シフトを与えて参照光とするための可動
ミラーと、光導波路上に作られた屈折率不連続部で反射
し再び戻ってきた信号光と参照光を干渉させその光出力
をヘテロダイン検出する光検知器とで構成されている。
The optical waveguide storage medium and its reproducing apparatus disclosed in Japanese Patent Laid-Open No. 2-210627 have been developed to solve these problems. Furthermore, as a reproducing device for an optical waveguide storage medium, one having a Michelson interferometer type optical heterodyne detection optical system has been proposed. Such a reproducing device includes a collimation lens that converts the emitted laser beam from a light source into a parallel beam, a half mirror that splits the laser beam guided onto the optical waveguide storage medium, and a cup of one of the split laser beams on the optical waveguide storage waveguide. An objective lens is used to make the laser beam ring, a movable mirror is used to give a phase shift and a frequency shift to the other part of the split laser beam and use it as a reference beam, and the beam is reflected by the refractive index discontinuity created on the optical waveguide and returns again. The sensor is composed of a photodetector that interferes with the signal light and the reference light and heterodyne detects the optical output.

【0005】かかる光導波路記憶媒体再生装置において
は、ヘテロダイン検出のために分割レーザビームに位相
シフトと周波数変調を与える手段として可動ミラーを利
用していたので、変調周波数に制限があり、情報密度の
向上が妨げられてきた。更に、ミラー駆動部の存在のた
め、再生光学系の小型化、信頼性に難があった。
In such an optical waveguide storage medium reproducing device, a movable mirror is used as a means for imparting a phase shift and frequency modulation to the split laser beam for heterodyne detection, so there is a limit to the modulation frequency and the information density is limited. Improvement has been hindered. Furthermore, due to the presence of the mirror drive section, it is difficult to miniaturize and reliability of the reproduction optical system.

【0006】[0006]

【発明の目的】本発明は、この難点に鑑みなされたもの
で、参照光の変調周波数を広帯域化し得る小型化された
光導波路記憶媒体再生装置を提供することを目的とする
OBJECTS OF THE INVENTION The present invention has been made in view of this difficulty, and it is an object of the present invention to provide a miniaturized optical waveguide storage medium reproducing device that can widen the modulation frequency of reference light.

【0007】[0007]

【発明の構成】本発明の光導波路記録媒体再生装置は、
レーザビームを導入する光結合部を有した光導波路と前
記光導波路に配列された複数の屈折率不連続部とを有し
かつ前記屈折率不連続部の形状及び相対位置が記録すべ
き情報の変数となる光導波路記録媒体から記録情報を再
生する装置であって、レーザビームを発生する発光手段
と、該レーザビームを2分割して第1及び第2光ビーム
を生ぜしめる分割手段と、第1光ビームを受光しこれに
周波数変移を与えて変調し参照光を発生する参照光発生
手段と、第2光ビームを前記光結合部へ導出する照射手
段と、前記屈折率不連続部により反射され振幅と位相が
変調され前記光結合部を経て戻る反射信号光と前参照光
とを重畳して干渉光となす光重畳手段と、前記干渉光を
光電変換し電気的出力を生ぜしめる光検出手段とを有し
、前記参照光発生手段は、前記第1光ビームの光軸上に
沿って伸長する光導波路と前記光導波路の近傍に配置さ
れかつ前記光導波路の光伝搬方向に表面弾性波を発生さ
せる表面弾性波電極とを有する導波路光遅延反射素子を
有し、前記表面弾性波電極に間歇的な高周波電力を供給
することを特徴とする。
[Structure of the Invention] The optical waveguide recording medium reproducing device of the present invention includes:
It has an optical waveguide having an optical coupling part for introducing a laser beam, and a plurality of refractive index discontinuities arranged in the optical waveguide, and the shape and relative position of the refractive index discontinuities are information to be recorded. An apparatus for reproducing recorded information from a variable optical waveguide recording medium, the apparatus comprising: a light emitting means for generating a laser beam; a dividing means for dividing the laser beam into two to generate first and second light beams; a reference light generating means that receives one light beam and modulates it by applying a frequency shift to generate a reference light; an irradiation means that guides a second light beam to the optical coupling section; and a second light beam that is reflected by the refractive index discontinuity section. a light superimposing means for superimposing the reflected signal light whose amplitude and phase are modulated and returns through the optical coupling section and the previous reference light to form interference light; and a light detection means for photoelectrically converting the interference light to generate an electrical output. and the reference light generating means has an optical waveguide extending along the optical axis of the first light beam and a surface acoustic wave disposed near the optical waveguide and generates a surface acoustic wave in the optical propagation direction of the optical waveguide. The device is characterized in that it has a waveguide optical delay reflection element having a surface acoustic wave electrode that generates a waveform, and intermittent high-frequency power is supplied to the surface acoustic wave electrode.

【0008】[0008]

【発明の作用】本発明によれば、参照光の変調周波数を
広帯域化したヘテロダイン検出光学系を有する光導波路
記憶媒体再生装置が得られる。
According to the present invention, there can be obtained an optical waveguide storage medium reproducing device having a heterodyne detection optical system in which the modulation frequency of the reference light is widened.

【0009】[0009]

【実施例】以下、本発明による実施例を図面を参照しつ
つ説明する。図1は本発明を説明する原理図である。ま
ず、図1(a)において、光導波路記憶媒体1は、光が
導波するコアの光導波路31がコアより屈折率の低いク
ラッドをなす基板32上に形成された構造を有している
。コア31の上部境界面上には空気又は他のクラッドが
存在する。コア31の端面はレーザビームをコア内部に
導入する光結合部30である。コア内面の上部境界面に
は複数の屈折率不連続部34が伸長方向に配列され記録
されている。屈折率不連続部34は、レーザビームの入
射導波光に対し端面の光結合部30からの相対位置及び
形状に基づく複素反射率によって種々の振幅及び位相を
持つ反射導波光(即ち、振幅と位相が変調された信号光
)を生ずる微小な凹部である。屈折率不連続部34の形
状と位置は、記憶されるべき情報に応じて所定の複素反
射率を得るよう記録される。屈折率不連続部34の凹部
は埋め込み部としてもよく、その埋め込み部の屈折率が
コアの屈折率より小さい空気またはクラッドが用いられ
るの場合、屈折率不連続部34の形状は例えば半円ある
いは反楕円埋め込み型で大きさは光波長の数分の1〜数
倍である。構成材料は例えばコア31には光に透明なポ
リカーボネイトを用い、クラッドにはより屈折率の低い
ポリメタクリル酸メチル等の高分子材料が用いられる。 光導波路記憶媒体1はこの様に、少なくとも光結合部3
0,コア31,基板32,屈折率不連続部34より構成
される。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating the principle of the present invention. First, in FIG. 1(a), the optical waveguide storage medium 1 has a structure in which a core optical waveguide 31 through which light is guided is formed on a substrate 32 forming a cladding having a refractive index lower than that of the core. Air or other cladding is present on the upper boundary surface of the core 31. The end face of the core 31 is an optical coupling part 30 that introduces the laser beam into the core. A plurality of refractive index discontinuities 34 are arranged and recorded in the elongation direction on the upper boundary surface of the inner surface of the core. The refractive index discontinuity portion 34 generates reflected guided light having various amplitudes and phases (i.e., amplitude and phase) based on a complex reflectance based on the relative position and shape from the optical coupling portion 30 on the end face with respect to the incident guided light of the laser beam. This is a minute recess that generates a modulated signal light. The shape and position of the refractive index discontinuities 34 are recorded to obtain a predetermined complex reflectance depending on the information to be stored. The concave portion of the refractive index discontinuity portion 34 may be an embedded portion. If air or cladding is used, the refractive index of the embedded portion being smaller than the refractive index of the core, the shape of the refractive index discontinuity portion 34 may be, for example, a semicircle or a cladding. It is an anti-elliptical embedded type, and its size is a fraction of the wavelength of light to several times the wavelength of light. As for the constituent materials, for example, the core 31 is made of polycarbonate which is transparent to light, and the cladding is made of a polymeric material such as polymethyl methacrylate having a lower refractive index. In this way, the optical waveguide storage medium 1 has at least the optical coupling part 3
0, a core 31, a substrate 32, and a refractive index discontinuous portion 34.

【0010】具体的に図2に示すように光導波路記憶媒
体1には、各々が光結合部30端面をもつ複数のチャネ
ル型リッジ光導波路31を基板32上に並設し、該光導
波路のコア内において複数の異なる振幅と位相の反射導
波光が生じる微小な屈折率不連続部34を、記録すべき
情報に応じて複数個配列したものもある。この実施例で
はリッジ型導波路として説明しているが、ストリップ型
、埋込型等のチャネル型導波路であれば、この様な屈折
率不連続部34は光導波路のコアあるいはクラッドに設
けても同じ効果が得られる。
Specifically, as shown in FIG. 2, in the optical waveguide storage medium 1, a plurality of channel type ridge optical waveguides 31 each having an end face of an optical coupling part 30 are arranged in parallel on a substrate 32, and the optical waveguides are arranged in parallel on a substrate 32. There is also one in which a plurality of minute refractive index discontinuities 34, in which a plurality of reflected guided light beams with different amplitudes and phases are generated within the core, are arranged in accordance with the information to be recorded. Although this embodiment is explained as a ridge type waveguide, in the case of a channel type waveguide such as a strip type or a buried type, such a refractive index discontinuity portion 34 may be provided in the core or cladding of the optical waveguide. The same effect can be obtained.

【0011】図1(a)に示すように、本発明の光導波
路記憶媒体再生装置は、レーザビームを発生する発光手
段としてのSLD(Super Luminescen
t Diode)又は広帯域波長発振レーザダイオード
などの発光素子35と、レーザビームを2分割して第1
及び第2光ビームを生ぜしめる分割手段としてのハーフ
ミラー(ビームスプリッター)36と、第1レーザビー
ムを受光しこれにドップラー周波数変移を与えて変調し
参照光を発生する参照光発生手段としての導波路光遅延
反射素子37と、第2レーザビームを光結合部30へ導
出する照射手段としての対物レンズ42と、屈折率不連
続部34により戻る反射信号光と参照光とを重畳して干
渉光となす光重畳手段としてのハーフミラー36と、干
渉光を光電変換し電気的出力を生ぜしめる光検出手段と
しての光検出器39とを有している。
As shown in FIG. 1(a), the optical waveguide storage medium reproducing apparatus of the present invention uses an SLD (Super Luminescensor) as a light emitting means for generating a laser beam.
A light emitting element 35 such as a broadband wavelength oscillation laser diode or a broadband wavelength oscillation laser diode is used to divide the laser beam into two parts.
and a half mirror (beam splitter) 36 as a splitting means for generating a second light beam, and a guide as a reference light generating means for receiving the first laser beam and modulating it by applying a Doppler frequency shift to it to generate a reference light. The wave path light delay reflection element 37, the objective lens 42 as an irradiation means for guiding the second laser beam to the optical coupling section 30, and the reflected signal light and reference light returned by the refractive index discontinuity section 34 are superimposed to produce interference light. It has a half mirror 36 as a light superimposing means, and a photodetector 39 as a light detection means that photoelectrically converts the interference light to generate an electrical output.

【0012】光導波路記憶媒体1の光結合部30に対向
して配置した発光素子35から発射されたレーザビーム
は、コリメーションレンズ41で概ね平行光束にし、ハ
ーフミラー36により2分割される。直進する一方の第
1レーザビームは、対物レンズ42で集光され光結合部
30より導波し、その一部は複数の屈折率不連続部34
により複数の異なる振幅と位相を持った反射導波光とな
り、これが光結合部30より戻る信号光となる。図1(
a)に示すように、屈折率不連続部34がa,b,c,
dの位置に記録すべき情報として記録された場合、各々
の屈折率不連続部34の形状と相対位置が記録すべき情
報(図では、アナログ情報で説明されている)に応じて
、光導波路31中に屈折率不連続部34を複数個配置す
ることにより、その形状と伝播距離の関数として異なる
振幅と位相情報を持った変調信号光を作ることが出来る
。ハーフミラー36で分割、反射された他方の第2レー
ザビームは、レンズ43で導波路光遅延反射素子37の
光結合部へ集光されドップラー周波数変移を受けて戻る
参照光となる。これら信号光及び参照光は、ハーフミラ
ー36で合波され、レンズ44で集光されて光検出器3
9に光ヘテロダイン干渉入力される。該入力光は光電変
換され、電気信号となり周波数フィルター40を経て、
図1(b)及び(c)に示すように発光素子35からの
レーザビームの一定強度の光入力Iinに対して、時系
列信号波形の電気的出力I(t)が得られる。
A laser beam emitted from a light emitting element 35 disposed opposite to the optical coupling section 30 of the optical waveguide storage medium 1 is converted into a substantially parallel beam by a collimation lens 41 and divided into two by a half mirror 36 . One of the first laser beams traveling straight is focused by the objective lens 42 and guided from the optical coupling section 30, and a part of it is transmitted through the plurality of refractive index discontinuities 34.
This results in a plurality of reflected waveguide lights having different amplitudes and phases, which become signal lights returning from the optical coupling section 30. Figure 1 (
As shown in a), the refractive index discontinuities 34 are a, b, c,
When the information to be recorded is recorded at the position d, the shape and relative position of each refractive index discontinuity portion 34 are determined according to the information to be recorded (explained as analog information in the figure). By arranging a plurality of refractive index discontinuities 34 in the refractive index discontinuous portion 31, it is possible to create modulated signal light having different amplitude and phase information as a function of its shape and propagation distance. The other second laser beam split and reflected by the half mirror 36 is focused by the lens 43 onto the optical coupling portion of the waveguide optical delay reflection element 37, and becomes a reference light that returns after being subjected to Doppler frequency shift. These signal beams and reference beams are multiplexed by a half mirror 36, condensed by a lens 44, and then detected by a photodetector 3.
Optical heterodyne interference is input to 9. The input light is photoelectrically converted into an electrical signal, which passes through a frequency filter 40,
As shown in FIGS. 1(b) and 1(c), an electrical output I(t) in a time-series signal waveform is obtained in response to an optical input Iin of a constant intensity of a laser beam from the light emitting element 35.

【0013】図3に示すように導波路光遅延反射素子3
7は、ハーフミラー36で分割された一方のレーザビー
ムの光軸上に沿って伸長する光導波路100と、該光導
波路の近傍に配置されかつ光導波路の光伝搬方向に表面
弾性波を発生させる表面弾性波電極101とを有する。 表面弾性波電極101は、図4(a)に示すように光導
波路100を挾んで配置された一対の櫛形状電極101
a,101bとして各櫛形状電極の表面弾性波放射軸線
A,Bが光導波路上で交差するように配置されている。 あるいは、図4(b)に示すように表面弾性波電極は光
導波路100上に配置された櫛形状電極101cとして
、櫛形状電極の表面弾性波放射軸線Cが光導波路の伸長
方向に一致するように配置されてもよい。導波路光遅延
反射素子37は基板102をGaAs,SiO2又はT
eO2で作成し、その上にチャネル型の光導波路100
としてTi、Rbなどを拡散させて作成される。これら
表面弾性波電極に間歇的な高周波電力を供給すると、表
面弾性波の伝搬によって光導波路中には波長の間隔で変
化する屈折率の格子状縞が又はその表面には凹凸のしわ
が格子状に生じ、これが伝搬する。光導波路中の導波光
は、伝搬する回折格子によって反射光を生ずるが、反射
面が移動していることからその反射光は移動速度に応じ
たドップラー効果によって、位相及び周波数を与えらる
。この反射光が参照光として用いられる。
As shown in FIG. 3, a waveguide optical delay reflection element 3
7 includes an optical waveguide 100 that extends along the optical axis of one of the laser beams split by the half mirror 36, and an optical waveguide 100 that is disposed near the optical waveguide and generates a surface acoustic wave in the optical propagation direction of the optical waveguide. It has a surface acoustic wave electrode 101. The surface acoustic wave electrode 101 is a pair of comb-shaped electrodes 101 arranged with the optical waveguide 100 in between, as shown in FIG. 4(a).
The surface acoustic wave radiation axes A and B of each comb-shaped electrode are arranged as a and 101b so that they intersect on the optical waveguide. Alternatively, as shown in FIG. 4(b), the surface acoustic wave electrode is a comb-shaped electrode 101c placed on the optical waveguide 100 so that the surface acoustic wave radiation axis C of the comb-shaped electrode coincides with the extension direction of the optical waveguide. may be placed in The waveguide optical delay reflection element 37 uses a substrate 102 of GaAs, SiO2 or T.
made of eO2, and a channel type optical waveguide 100 is placed on it.
It is created by diffusing Ti, Rb, etc. When intermittent high-frequency power is supplied to these surface acoustic wave electrodes, propagation of the surface acoustic waves creates lattice-like stripes with a refractive index that changes at wavelength intervals in the optical waveguide, or uneven wrinkles on the surface. occurs, and this propagates. The guided light in the optical waveguide generates reflected light by the propagating diffraction grating, but since the reflecting surface is moving, the reflected light is given a phase and frequency by the Doppler effect depending on the moving speed. This reflected light is used as reference light.

【0014】このように、本実施例のように、従来の参
照光発生用の可動ミラーを廃止し、その代わり光波遅延
反射装置として、導波路型素子を利用する。この導波路
型光波遅延反射素子は光が導波する導波路の近傍に表面
弾性波を発生させる電極(トランスジューサ)を設け、
光導波路の光伝播方向に表面弾性波が伝播するように設
定されているのである。この様な光導波路に参照光と成
るべき光を導波させ、表面弾性波を発生させる為に、電
極にバースト状に変調された高周波を加えている。
As described above, in this embodiment, the conventional movable mirror for generating reference light is abolished, and instead, a waveguide type element is used as a light wave delay and reflection device. This waveguide-type light wave delay reflection element has an electrode (transducer) that generates a surface acoustic wave near the waveguide through which light is guided.
It is set so that surface acoustic waves propagate in the light propagation direction of the optical waveguide. In order to guide light that is to become a reference light through such an optical waveguide and generate a surface acoustic wave, a burst-like modulated high frequency wave is applied to the electrode.

【0015】更に、この導波路型光波遅延反射素子を用
いれば、導波路記録媒体再生装置のピックアップ部にお
いて、当該素子を形成する同一基板上に光路分岐ミラー
、光導波路記録媒体へのカップリングの為のカプラー、
光検知器を集積することもできる。従来の可動ミラーに
よる光遅延反射装置と同様に小型化が可能となり、従来
の可動ミラーによる光遅延反射装置よりもレーザビーム
波長λの数倍もの位相シフトを与え、光導波路記録媒体
の長い導波路からの情報の読み出しも可能となる。
Furthermore, if this waveguide type optical wave delay reflection element is used, in the pickup section of a waveguide recording medium reproducing device, an optical path branching mirror and a coupling to the optical waveguide recording medium can be installed on the same substrate on which the element is formed. coupler for
Photodetectors can also be integrated. Like the conventional optical delay reflection device using a movable mirror, it can be miniaturized, and it provides a phase shift several times the laser beam wavelength λ compared to the conventional optical delay reflection device using a movable mirror. It is also possible to read information from.

【0016】以下に再生装置の原理を説明する。発光素
子35からのレーザビームの各周波数成分が一つの屈折
率不連続部で同時に反射され一定の振幅と伝播距離に比
例した位相遅れを受け、その位相遅れに相応するドップ
ラー周波数変移した参照光と干渉する。その時各周波数
成分が同相となり、各周波数成分の振幅の合計の振幅を
持った一つのパルスを形成する。さらに位相が遅れる次
の屈折率不連続部からの反射成分については、導波路型
光波遅延反射素子よって生じることになった時間的に遅
れたドップラー変移周波数を与えられた参照光と干渉し
、つぎのパルスを形成する。ここで、図1(a)に示す
直交座標xyzにおいて、光導波路31の伸長z方向を
縦とし、これに直角なy方向を横とすると、各パルス幅
は屈折率不連続部のz軸方向の長短に、各振幅は屈折率
不連続部のx軸及びy軸方向の大きさにそれぞれ依存す
る。
The principle of the playback device will be explained below. Each frequency component of the laser beam from the light-emitting element 35 is simultaneously reflected by one refractive index discontinuity and receives a constant amplitude and a phase delay proportional to the propagation distance, and the reference beam and Doppler frequency shifted corresponding to the phase delay are generated. have a finger in the pie. At that time, each frequency component becomes in phase, forming one pulse having an amplitude that is the sum of the amplitudes of each frequency component. The reflected component from the next refractive index discontinuity whose phase is further delayed interferes with the reference light given the temporally delayed Doppler shift frequency generated by the waveguide-type light wave delay reflection element, and then form a pulse. Here, in the orthogonal coordinate xyz shown in FIG. 1(a), if the z-direction of extension of the optical waveguide 31 is vertical and the y-direction perpendicular to this is horizontal, each pulse width is equal to the z-axis direction of the refractive index discontinuity. Each amplitude depends on the size of the refractive index discontinuity in the x-axis and y-axis directions, respectively.

【0017】かくして、光導波路記録媒体再生装置の構
成により、該光導波路記憶媒体に記録された複数の屈折
率不連続部(図1(a)ではa,b,c,dで示してあ
る)が、時系列信号性の電気的出力に対応し(図1(c
)では、a’,b’,c’,d’がそれぞれ対応する)
、再生される。各パルスは sin(F)/Fのナイキ
ストのサンプリング形をしており、信号波形はこれらの
連なりである。Fは発光素子35の発光スペクトル幅、
伝搬する表面弾性波の回折格子の速度、光導波路の屈折
率分散及び光導波路媒体中の屈折率不連続部の長短及び
位置などの関数である。これらの値を適宜選択すること
により、数KHzから数十MHzまでも、信号変調周波
数を設定出来る。各パルス幅も数十ミリ秒から数十ナノ
秒まで設定可能である。発光素子35には、必ずしもス
ペクトル幅の狭い半導体レーザを必要とせず、むしろス
ペクトル幅の広い低コヒーレント光の半導体発光素子の
方が、該変調周波数を高く設定できる。また、光ヘテロ
ダイン干渉法により、これら時系列信号波形は102〜
104の高い信号対雑音比で再生できる。
[0017] Thus, due to the configuration of the optical waveguide recording medium reproducing apparatus, a plurality of refractive index discontinuities (indicated by a, b, c, and d in FIG. 1(a)) recorded on the optical waveguide recording medium corresponds to the time-series signal electrical output (Fig. 1(c)
), a', b', c', and d' correspond to each other)
, is played. Each pulse has a Nyquist sampling shape of sin(F)/F, and the signal waveform is a series of these. F is the emission spectrum width of the light emitting element 35,
It is a function of the speed of the diffraction grating of the propagating surface acoustic wave, the refractive index dispersion of the optical waveguide, and the length and position of the refractive index discontinuity in the optical waveguide medium. By appropriately selecting these values, the signal modulation frequency can be set from several KHz to several tens of MHz. The width of each pulse can also be set from several tens of milliseconds to several tens of nanoseconds. The light emitting element 35 does not necessarily require a semiconductor laser with a narrow spectrum width; rather, a semiconductor light emitting element that emits low coherent light with a wide spectrum width allows the modulation frequency to be set higher. In addition, by optical heterodyne interferometry, these time-series signal waveforms are
It can be reproduced with a high signal-to-noise ratio of 104.

【0018】図5において具体的に光導波路記憶媒体及
び再生装置を示す。光導波路記憶媒体50は、上記した
チャネル型のリッジ光導波路記憶媒体1の板状体51を
多数並置してドラム状に巻いてなる積層ドラム型の立体
光ディスクである。光導波路記憶媒体再生装置は、上記
した構成要素のほかにさらにフォーカスアクチュエータ
に設置された光ディスク光導波路への結合用集光レンズ
42、トラッキングのために反射光ビームの一部を取り
出すビームスプリッター52、トラッキング用レーザビ
ームを分離する凹レンズ53、並びにトラッキング用光
検出器54,55を有している。発光素子35からのレ
ーザビームの楕円状断面の長軸方向両端部を、コア端面
光結合部を挾んでクラッッド端面に当て、その反射光を
トラッキング用レーザビームとする。光検出器54,5
5は光ヘテロダイン検出により高感度かつ高信号対雑音
比でトラッキング用レーザビームを捕捉する。さらに両
者の誤差検出に従って集光用マイクロレンズ42等を光
軸方向に移動させて光導波路の光結合部に合焦し、かつ
立体光ディスク50の面振れに光再生装置のピックアッ
プ部ヘッド56を追従させている。
FIG. 5 specifically shows an optical waveguide storage medium and a reproducing device. The optical waveguide storage medium 50 is a laminated drum-type three-dimensional optical disk made by arranging a large number of plate-like bodies 51 of the channel-type ridge optical waveguide storage medium 1 described above and winding them into a drum shape. In addition to the above-mentioned components, the optical waveguide storage medium reproducing device further includes a condensing lens 42 for coupling to the optical disk optical waveguide installed in the focus actuator, a beam splitter 52 for taking out a part of the reflected light beam for tracking, It has a concave lens 53 that separates the tracking laser beam, and tracking photodetectors 54 and 55. Both ends in the long axis direction of the elliptical cross section of the laser beam from the light emitting element 35 are applied to the clad end face with the core end face optical coupling part in between, and the reflected light is used as a tracking laser beam. Photodetector 54,5
5 captures the tracking laser beam with high sensitivity and high signal-to-noise ratio by optical heterodyne detection. Further, according to the error detection between the two, the focusing microlens 42 and the like are moved in the optical axis direction to focus on the optical coupling part of the optical waveguide, and the pickup head 56 of the optical reproducing device follows the surface deflection of the three-dimensional optical disk 50. I'm letting you do it.

【0019】さらに図6に示すように、導波路記録媒体
再生装置のピックアップ部において、導波路型光波遅延
反射素子37を形成した同一基板上に、コリメーション
用グレーティング41a、光路分岐ミラーとしてのグレ
ーティング36a及び光導波路記録媒体50へのカップ
リング用グレーティングカプラー42aを形成し、SL
D35a及び光検知器39aとともに集積することもで
きる。
Furthermore, as shown in FIG. 6, in the pickup section of the waveguide recording medium reproducing device, a collimation grating 41a and a grating 36a as an optical path branching mirror are provided on the same substrate on which the waveguide type light wave delay reflection element 37 is formed. A grating coupler 42a for coupling to the optical waveguide recording medium 50 is formed, and the SL
It can also be integrated together with D35a and photodetector 39a.

【0020】本実施例では、矩形横断面2×2μmを備
える導波路長10mmの光導波路を、2μm間隔で厚み
3.2μmのクラッッドに埋め込み並置した板状体を、
ドラム状に巻き積層し、トラッキングピッチ幅3.2μ
mの立体光ディスク50が形成されている。記録された
屈折率不連続部のz軸方向の長さは10〜30μm、x
軸方向の深さは0.1〜0.5μmで、y軸方向の幅は
約0.7μmで、各光導波路毎に平均500個の該不連
続部が記録されている。各該屈折率不連続部の光反射率
は高々10−6〜10−8としてあるので、それらの反
射損失があっても最後の戻りレーザビームの減衰率は1
0%程度である。図では立体光ディスク50の下側の端
面に各光導波路の断面が開口しており、光結合部となっ
ている。光結合部の面は厚み2mmのポリカーボネイト
保護膜がついており、光導波路の屈折率と整合させ光結
合度を高くしてある。 また、該光導波路の終端の端面も同様に保護してあり、
同時に該光導波路中を伝播して来た光が逃げるようにし
てある。この様な立体光ディスク50は直径8インチで
、コンパクトディスク(CD)と同様に回転しつつ記憶
情報が再生される。
In this example, a plate-like body in which optical waveguides each having a rectangular cross section of 2×2 μm and a waveguide length of 10 mm are embedded and juxtaposed in a 3.2 μm thick cladding at 2 μm intervals is used.
Rolled and laminated into a drum shape, tracking pitch width 3.2μ
m three-dimensional optical disks 50 are formed. The length of the recorded refractive index discontinuity in the z-axis direction is 10 to 30 μm, x
The depth in the axial direction is 0.1-0.5 μm, the width in the y-axis direction is approximately 0.7 μm, and an average of 500 such discontinuities are recorded for each optical waveguide. Since the optical reflectance of each of the refractive index discontinuities is at most 10-6 to 10-8, even with these reflection losses, the attenuation rate of the final returning laser beam is 1.
It is about 0%. In the figure, the cross section of each optical waveguide is opened at the lower end surface of the three-dimensional optical disk 50, and serves as an optical coupling section. A polycarbonate protective film with a thickness of 2 mm is attached to the surface of the optical coupling portion, and the degree of optical coupling is increased by matching the refractive index of the optical waveguide. In addition, the end face of the optical waveguide is similarly protected,
At the same time, the light propagating through the optical waveguide is allowed to escape. Such a three-dimensional optical disc 50 has a diameter of 8 inches, and the stored information is reproduced while rotating like a compact disc (CD).

【0021】光導波路記憶媒体再生装置は、[発明の構
成]の欄で説明したように、構成されている。発光素子
35からのレーザビームが、該光導波路記憶媒体51へ
導波され、その一部が振幅と位相が変調された信号反射
レーザビームとなり戻り、他のレーザビームは導波路光
遅延反射素子37を往復し戻り、ハーフミラー36で合
波され、信号光のみを通過させるアイリス58を経て、
光検出器39で光ヘテロダイン検波し、周波数フィルタ
40を経て、電気出力端子57より、図1(c)のI(
t)で示した時系列信号波形の電気的出力を得る。1つ
の光導波路記憶媒体からの再生信号は、バッファメモリ
に一時蓄積し、任意のクロックタイムで転送する。1つ
の光導波路の記憶している情報を読みだした後、立体光
ディスク50の回転と光再生装置ヘッド56のトラッキ
ングにより、次のチャネルの光導波路の記憶情報を逐次
読み出す。
The optical waveguide storage medium reproducing device is constructed as explained in the section [Structure of the Invention]. The laser beam from the light emitting element 35 is guided to the optical waveguide storage medium 51, a part of which returns as a signal reflection laser beam whose amplitude and phase are modulated, and the other laser beam is guided to the waveguide optical delay reflection element 37. The signals go back and forth, are combined by a half mirror 36, and pass through an iris 58 that allows only the signal light to pass.
Optical heterodyne detection is performed by the photodetector 39, and after passing through the frequency filter 40, from the electrical output terminal 57, I(
Obtain the electrical output of the time-series signal waveform shown in t). A reproduced signal from one optical waveguide storage medium is temporarily stored in a buffer memory and transferred at an arbitrary clock time. After reading out the information stored in one optical waveguide, the information stored in the optical waveguide of the next channel is sequentially read out by rotating the stereoscopic optical disk 50 and tracking the optical reproducing device head 56.

【0022】本実施例の諸元は、例えば典型的には、発
光中心波長1.3μmで発光スペクトル幅約2×101
2HzのSLDを発光素子35に用い、音響変調周波数
355MHzを用い、さらに、屈折率分散0.14の光
導波路に屈折率不連続部の長短と相対位置を平均20μ
mで記録した本実施例の光導波路記憶媒体の場合、記憶
再生周波数およそ30MHzが実現できる。このとき最
小パルス幅は約35ナノ秒である。発光素子35の光出
力は約1mWで、各該屈折率不連続部からの反射光と参
照光に基づく光ヘテロダイン干渉出力の信号対雑音比は
104と大きくとれる。総記憶容量をデジタル量で換算
すると現在のコンパクトディスク(1Gbyt:ギガバ
イト)の 500倍でビット当りの機械的アクセスタイ
ムは 500分の1、ビットサイクルタイムは約14倍
が実現できる。
The specifications of this embodiment are, for example, typically, an emission center wavelength of 1.3 μm and an emission spectrum width of approximately 2×10 1
A 2 Hz SLD was used as the light emitting element 35, an acoustic modulation frequency of 355 MHz was used, and an optical waveguide with a refractive index dispersion of 0.14 was used with an average length and relative position of the refractive index discontinuity of 20 μ.
In the case of the optical waveguide storage medium of this embodiment recorded at m, a storage/reproduction frequency of about 30 MHz can be achieved. At this time, the minimum pulse width is about 35 nanoseconds. The light output of the light emitting element 35 is about 1 mW, and the signal-to-noise ratio of the optical heterodyne interference output based on the reflected light from each of the refractive index discontinuities and the reference light is as large as 104. When converted into a digital amount, the total storage capacity is 500 times that of the current compact disk (1 Gbyte: gigabyte), the mechanical access time per bit is 1/500, and the bit cycle time is approximately 14 times faster.

【0023】本実施例では、光導波路記憶媒体のメモリ
ー部を長短大小の屈折率不連続部で構成し、アナログ信
号を記憶再生する例について説明したが、屈折率不連続
部を同じ大きさでかつ等間隔にそれらの屈折率不連続部
の有無を記録すれば、デジタル信号の記憶再生も可能な
ことは明らかである。また、光導波路記憶媒体を立体デ
ィスクに形成する実施例を説明したが、テープに並置し
たり、カード型に並置し積層したものも実現できる。さ
らに、本実施例では光導波路長を10mmとしたが、記
憶媒体である光導波路長は必要なメモリー容量に応じて
長くも短くも作成できる。
In this embodiment, an example was explained in which the memory section of the optical waveguide storage medium is composed of long and short refractive index discontinuous parts, and an analog signal is stored and reproduced. It is clear that if the presence or absence of these refractive index discontinuities is recorded at regular intervals, it is possible to store and reproduce digital signals. Furthermore, although an embodiment has been described in which the optical waveguide storage medium is formed into a three-dimensional disk, it is also possible to realize a structure in which the optical waveguide storage medium is arranged side by side on a tape or in a card type and stacked. Further, in this embodiment, the optical waveguide length was set to 10 mm, but the optical waveguide length as a storage medium can be made longer or shorter depending on the required memory capacity.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
ヘテロダイン検出光学系を有する光導波路記憶媒体再生
装置における参照光発生手段として、入射するレーザビ
ームの光軸上に沿って伸長する光導波路とその近傍に配
置されかつ光導波路の光伝搬方向に表面弾性波を発生さ
せる表面弾性波電極とを有する導波路光遅延反射素子を
有し、表面弾性波電極に間歇的な高周波電力を供給する
ので、参照光の変調周波数を広帯域化した光導波路記憶
媒体再生装置が得られる。
[Effects of the Invention] As explained above, according to the present invention,
As a reference light generation means in an optical waveguide storage medium reproducing device having a heterodyne detection optical system, an optical waveguide extending along the optical axis of an incident laser beam and a surface elastic material disposed near the optical waveguide in the optical propagation direction of the optical waveguide are used. An optical waveguide storage medium reproducing device has a waveguide optical delay reflection element having a surface acoustic wave electrode that generates waves, and intermittent high-frequency power is supplied to the surface acoustic wave electrode, thereby widening the modulation frequency of the reference light. A device is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の光導波路記憶媒体再生装置の原理を説
明する概略図である。
FIG. 1 is a schematic diagram illustrating the principle of an optical waveguide storage medium reproducing device of the present invention.

【図2】本発明にかかる光導波路記憶媒体の斜視図であ
る。
FIG. 2 is a perspective view of an optical waveguide storage medium according to the present invention.

【図3】本発明にかかる導波路光遅延反射素子の斜視図
である。
FIG. 3 is a perspective view of a waveguide optical delay reflection element according to the present invention.

【図4】本発明にかかる導波路光遅延反射素子の平面図
である。
FIG. 4 is a plan view of a waveguide optical delay reflection element according to the present invention.

【図5】本発明による実施例の光導波路記憶媒体再生装
置の概略図である。
FIG. 5 is a schematic diagram of an optical waveguide storage medium reproducing apparatus according to an embodiment of the present invention.

【図6】本発明による他の実施例の光導波路記憶媒体再
生装置ヘッドの概略図である。
FIG. 6 is a schematic diagram of another embodiment of an optical waveguide storage medium reproducing device head according to the present invention.

【符号の説明】[Explanation of symbols]

30……光導波路の結合部 31……光導波路のコア 32……光導波路のクラッド(基板) 34……屈折率不連続部 35……発光素子 36……ハーフミラー 37……導波路光遅延反射素子 39……光検出器 40……周波数フィルタ 41〜44……レンズ 50……積層ドラム型の立体光ディスク51……光導波
路記憶媒体 52……ビームスプリッタ 53……凹レンズ 54,55……トラッキング用光検出器56……光再生
装置ヘッド 57……電気出力端子 58……アイリス 100……光導波路 101……表面弾性波電極 101a,101b,101c……櫛形状電極102…
…基板
30... Optical waveguide coupling portion 31... Optical waveguide core 32... Optical waveguide cladding (substrate) 34... Refractive index discontinuity portion 35... Light emitting element 36... Half mirror 37... Waveguide optical delay Reflection element 39... Photodetector 40... Frequency filters 41 to 44... Lens 50... Laminated drum type three-dimensional optical disk 51... Optical waveguide storage medium 52... Beam splitter 53... Concave lenses 54, 55... Tracking Photodetector 56...Optical reproducing device head 57...Electric output terminal 58...Iris 100...Optical waveguide 101...Surface acoustic wave electrodes 101a, 101b, 101c...Comb-shaped electrode 102...
…substrate

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】  レーザビームを導入する光結合部を有
した光導波路と前記光導波路に配列された複数の屈折率
不連続部とを有しかつ前記屈折率不連続部の形状及び相
対位置が記録すべき情報の変数となる光導波路記録媒体
から記録情報を再生する装置であって、レーザビームを
発生する発光手段と、該レーザビームを2分割して第1
及び第2光ビームを生ぜしめる分割手段と、第1光ビー
ムを受光しこれに周波数変移を与えて変調し参照光を発
生する参照光発生手段と、第2光ビームを前記光結合部
へ導出する照射手段と、前記屈折率不連続部により反射
され振幅と位相が変調され前記光結合部を経て戻る反射
信号光と前記参照光とを重畳して干渉光となす光重畳手
段と、前記干渉光を光電変換し電気的出力を生ぜしめる
光検出手段とを有し、前記参照光発生手段は、前記第1
光ビームの光軸上に沿って伸長する光導波路と前記光導
波路の近傍に配置されかつ前記光導波路の光伝搬方向に
表面弾性波を発生させる表面弾性波電極とを有する導波
路光遅延反射素子を有し、前記表面弾性波電極に間歇的
な高周波電力を供給することを特徴とする光導波路記録
媒体再生装置。
1. An optical waveguide having an optical coupling part for introducing a laser beam, and a plurality of refractive index discontinuities arranged in the optical waveguide, and the shape and relative position of the refractive index discontinuities are different. A device for reproducing recorded information from an optical waveguide recording medium serving as a variable of information to be recorded, comprising a light emitting means for generating a laser beam, and a first for dividing the laser beam into two.
and a splitting means for generating a second light beam, a reference light generation means for receiving the first light beam and modulating it by applying a frequency shift to generate a reference light, and guiding the second light beam to the optical coupling section. a light superimposing means for superimposing the reference light on the reflected signal light that is reflected by the refractive index discontinuity portion, modulated in amplitude and phase, and returned via the optical coupling portion to form interference light; and a light detection means for photoelectrically converting light to produce an electrical output, the reference light generation means being
A waveguide optical delay reflection element having an optical waveguide extending along the optical axis of a light beam and a surface acoustic wave electrode disposed near the optical waveguide and generating a surface acoustic wave in the optical propagation direction of the optical waveguide. 1. An optical waveguide recording medium reproducing device, comprising: an optical waveguide recording medium reproducing device, characterized in that the surface acoustic wave electrode is supplied with intermittent high frequency power.
【請求項2】  前記光検出手段からのビート出力成分
を検出することにより、前記反射信号光の振幅と遅延時
間を時系列電気信号として検出することを特徴とする請
求項1記載の光導波路記録媒体再生装置。
2. The optical waveguide recording according to claim 1, wherein the amplitude and delay time of the reflected signal light are detected as a time-series electric signal by detecting a beat output component from the light detection means. Media playback device.
【請求項3】  前記表面弾性波電極は前記光導波路の
挾んで配置された一対の櫛形状電極であり、前記櫛形状
電極の表面弾性波放射軸線が前記光導波路上で交差する
ように配置されていることを特徴とする請求項1又は2
記載の光導波路記録媒体再生装置。
3. The surface acoustic wave electrodes are a pair of comb-shaped electrodes placed between the optical waveguides, and the surface acoustic wave electrodes are arranged so that surface acoustic wave emission axes of the comb-shaped electrodes intersect on the optical waveguide. Claim 1 or 2 characterized in that
The optical waveguide recording medium reproducing device described above.
【請求項4】  前記表面弾性波電極は前記光導波路上
に配置された櫛形状電極であり、前記櫛形状電極の表面
弾性波放射軸線が前記光導波路の伸長方向に一致するよ
うに配置されていることを特徴とする請求項1又は2記
載の光導波路記録媒体再生装置。
4. The surface acoustic wave electrode is a comb-shaped electrode arranged on the optical waveguide, and the surface acoustic wave radiation axis of the comb-shaped electrode is arranged to coincide with the extending direction of the optical waveguide. 3. The optical waveguide recording medium reproducing apparatus according to claim 1, further comprising: an optical waveguide recording medium reproducing apparatus.
【請求項5】  前記発光手段はスーパールミネッセン
トダイオード又は広帯域波長発振レーザダイオードを有
することを特徴とする請求項1記載の光導波路記録媒体
再生装置。
5. The optical waveguide recording medium reproducing apparatus according to claim 1, wherein the light emitting means includes a superluminescent diode or a broadband wavelength oscillation laser diode.
【請求項6】  前記分割手段はハーフミラー又はビー
ムスプリッターを有することを特徴とする請求項1記載
の光導波路記録媒体再生装置。
6. The optical waveguide recording medium reproducing apparatus according to claim 1, wherein the dividing means includes a half mirror or a beam splitter.
【請求項7】  前記照射手段は対物レンズを有するこ
とを特徴とする請求項1記載の光導波路記録媒体再生装
置。
7. The optical waveguide recording medium reproducing apparatus according to claim 1, wherein the irradiation means has an objective lens.
【請求項8】  前記光重畳手段はハーフミラー又はビ
ームスプリッターを有することを特徴とする請求項1記
載の光導波路記録媒体再生装置。
8. The optical waveguide recording medium reproducing apparatus according to claim 1, wherein the light superimposing means includes a half mirror or a beam splitter.
【請求項9】  前記光検出手段は光検出器を有するこ
とを特徴とする請求項1記載の光導波路記録媒体再生装
置。
9. The optical waveguide recording medium reproducing apparatus according to claim 1, wherein the photodetecting means includes a photodetector.
JP3024754A 1991-02-19 1991-02-19 Optical waveguide recording medium reproducing device Pending JPH04265535A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3024754A JPH04265535A (en) 1991-02-19 1991-02-19 Optical waveguide recording medium reproducing device
US07/800,089 US5233582A (en) 1991-02-19 1991-11-29 Optical waveguide recording medium playing apparatus
EP92301257A EP0500286A1 (en) 1991-02-19 1992-02-17 Optical waveguide recording medium playing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3024754A JPH04265535A (en) 1991-02-19 1991-02-19 Optical waveguide recording medium reproducing device

Publications (1)

Publication Number Publication Date
JPH04265535A true JPH04265535A (en) 1992-09-21

Family

ID=12146934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3024754A Pending JPH04265535A (en) 1991-02-19 1991-02-19 Optical waveguide recording medium reproducing device

Country Status (1)

Country Link
JP (1) JPH04265535A (en)

Similar Documents

Publication Publication Date Title
US5218594A (en) Recording medium with an optical waveguide and player for playing the same
US4963464A (en) Optical medium having pits of different depths, and method and apparatus for reproducing information therefrom
JPH05205486A (en) Optical waveguide recording medium and optical reproducing device
US5233582A (en) Optical waveguide recording medium playing apparatus
JP3229475B2 (en) Near-field optical scanning recording / reproducing device
US5214633A (en) Optical waveguide recording medium playing apparatus
EP0581597B1 (en) An optical information reproducing device
US6269066B1 (en) Electronically translocatable optical stylet
JPH0547897B2 (en)
JP4201929B2 (en) Information recording medium, information reproducing apparatus, and information recording / reproducing apparatus
JPH04265535A (en) Optical waveguide recording medium reproducing device
JP2000030306A (en) Information recording medium and information reproduction device
JPS62137736A (en) Optical head device
JPH04265536A (en) Optical waveguide recording medium reproducing device
JPH04265533A (en) Optical waveguide recording medium reproducing device
US6064785A (en) Optical wave guide path recording medium and optical reproducing apparatus
JPS6047239A (en) Optical head device
JPS61233439A (en) Optical pickup device
JPS61237246A (en) Optical pickup device
JP2513237B2 (en) Optical head device
JPH05250677A (en) Optical waveguide recording medium and its performance device and information recording and reproducing method
JPH01182947A (en) Method and head for reading magneto-optical disk
JPS61258339A (en) Optical recording and reproducing device
JPH0668849B2 (en) Optical playback method
JPH01241027A (en) Optical pickup