JPH04265533A - Optical waveguide recording medium reproducing device - Google Patents

Optical waveguide recording medium reproducing device

Info

Publication number
JPH04265533A
JPH04265533A JP3024751A JP2475191A JPH04265533A JP H04265533 A JPH04265533 A JP H04265533A JP 3024751 A JP3024751 A JP 3024751A JP 2475191 A JP2475191 A JP 2475191A JP H04265533 A JPH04265533 A JP H04265533A
Authority
JP
Japan
Prior art keywords
light
optical waveguide
optical
recording medium
medium reproducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3024751A
Other languages
Japanese (ja)
Inventor
Naohiro Tanno
直弘 丹野
Teruo Toma
照夫 當摩
Kiyobumi Chikuma
清文 竹間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP3024751A priority Critical patent/JPH04265533A/en
Publication of JPH04265533A publication Critical patent/JPH04265533A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the size of the reproducing optical system of an optical waveguide recording medium reproducing device by using an SLD (superluminescent diode) provided with an active area having an outgoing light end face and with a diffraction grid which is arranged on the side facing the outgoing end face of the active area and the intervals of which are gradually increased as a light source. CONSTITUTION:In the optical system reading recorded information out of an optical waveguide recording medium 1 and reproducing it, a diffraction grid 11 whose pitch is demodulated to the other end than a laser emitting end face 10 of an SLD35 of the light source is provided to modulate the frequency of emitting light and to shift the phase between the respective frequency bands. By providing the diffraction grid 11 whose pitch is demodulated to the side other than the light emitting end face 10 of the SLD35, the frequency of the emitting light can be superimposed to allow the delay of a group speed to be caused between the light of the respective oscillated frequencies.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【技術分野】本発明は、光記憶媒体、特にレーザビーム
の導波によって複数の異なる振幅と位相遅れを持つ反射
導波光を生じる屈折率不連続部を設けた光導波路を有す
る光導波路記憶媒体を用い、これにレーザビームを導波
し、その一部の反射導波光とレーザビームとを干渉させ
検波し、記録された情報を時系列信号波形として再生す
る光導波路記憶媒体再生装置に関する。
[Technical Field] The present invention relates to an optical storage medium, particularly an optical waveguide storage medium having an optical waveguide provided with a refractive index discontinuity that generates reflected guided light having a plurality of different amplitudes and phase delays by guiding a laser beam. The present invention relates to an optical waveguide storage medium reproducing device that uses a laser beam to guide a laser beam, detects interference between a part of the reflected guided wave light and the laser beam, and reproduces recorded information as a time-series signal waveform.

【0002】0002

【背景技術】従来の光記憶媒体としては、記録膜として
円盤基板面に形成された高光反射率の平坦反射膜に複数
の低光反射率凹部を記録情報として線上に配列した光デ
ィスクがある。この光記憶媒体では、凹部列にレーザビ
ームを集束照射し、反射膜及び凹部からの反射光量の差
を記録情報として検出する。他の光記憶媒体としては、
一軸磁気異方性記録膜に複数の微小磁化反転領域を配列
形成して情報を記録する光磁気ディスクもある。この光
記憶媒体では、磁化反転領域列からの反射光の偏光面の
回転角度差を記録情報として検出する。
BACKGROUND OF THE INVENTION Conventional optical storage media include optical discs in which a plurality of low light reflectance recesses are arranged in a line as recorded information on a flat reflective film with high light reflectance formed on the surface of a disk substrate as a recording film. In this optical storage medium, a laser beam is focused and irradiated onto a row of recesses, and the difference in the amount of light reflected from the reflective film and the recesses is detected as recorded information. Other optical storage media include
There is also a magneto-optical disk in which information is recorded by forming a plurality of minute magnetization reversal regions in an array on a uniaxial magnetic anisotropic recording film. In this optical storage medium, the difference in rotation angle of the plane of polarization of the reflected light from the magnetization reversal region array is detected as recorded information.

【0003】これら光記憶媒体においては、記録部とし
ての凹部又は磁化反転領域の列からの反射光によって再
生するため、かかる記録部の面密度には限度がある。こ
れら光記憶媒体の再生時には、レーザビームの合焦点を
光記憶媒体の面振れに追随させるために合焦点を光軸方
向に移動させているが、一点の記録部毎に合焦を必要と
し、さらに反射光の光反射率及び偏光面の回転角度が非
常に小さいので検出される光信号の信号対雑音比は低い
。また、記録部の列の移動によってのみ時系列信号が再
生されるので、光記憶媒体の移動速度によって再生及び
記録のアクセス時間が制限される。
[0003] In these optical storage media, since reproduction is performed using reflected light from a recessed portion or a row of magnetization reversal regions serving as a recording portion, there is a limit to the areal density of such recording portions. When reproducing these optical storage media, the focal point of the laser beam is moved in the optical axis direction in order to follow the surface deflection of the optical storage medium, but this requires focusing for each recording section. Furthermore, since the optical reflectance of the reflected light and the rotation angle of the polarization plane are very small, the signal-to-noise ratio of the detected optical signal is low. Furthermore, since the time-series signal is reproduced only by moving the column of recording units, the access time for reproduction and recording is limited by the moving speed of the optical storage medium.

【0004】特開平第2−210627号に開示された
光導波路記憶媒体及びその再生装置は、これらの問題点
を解消するため開発されている。さらに、光導波路記憶
媒体用の再生装置としてマイケルソン干渉計型光ヘテロ
ダイン検出光学系を有するものが提案されている。かか
る再生装置は、光源からの放射レーザビームを平行光束
にするコリメーションレンズと、光導波記憶媒体上へ導
かれるレーザビームを分岐するハーフミラーと、光導波
記憶導波路に分割レーザビームの一方をカップリングさ
せる為の対物レンズと、分割レーザビームの他方に位相
シフトと周波数シフトを与えて参照光とするための可動
ミラーと、光導波路上に作られた屈折率不連続部で反射
し再び戻ってきた信号光と参照光を干渉させその光出力
をヘテロダイン検出する光検知器とで構成されている。
The optical waveguide storage medium and its reproducing apparatus disclosed in Japanese Patent Laid-Open No. 2-210627 have been developed to solve these problems. Furthermore, as a reproducing device for an optical waveguide storage medium, one having a Michelson interferometer type optical heterodyne detection optical system has been proposed. Such a reproducing device includes a collimation lens that converts the emitted laser beam from a light source into a parallel beam, a half mirror that splits the laser beam guided onto the optical waveguide storage medium, and a cup of one of the split laser beams on the optical waveguide storage waveguide. An objective lens is used to make the laser beam ring, a movable mirror is used to give a phase shift and a frequency shift to the other part of the split laser beam and use it as a reference beam, and the beam is reflected by the refractive index discontinuity created on the optical waveguide and returns again. The sensor is composed of a photodetector that interferes with the signal light and the reference light and heterodyne detects the optical output.

【0005】かかる光導波路記憶媒体再生装置において
は、ヘテロダイン検出のために分割レーザビームに位相
シフトと周波数変調を与える手段として可動ミラーを利
用していたので、変調周波数に制限があり、情報密度の
向上が妨げられてきた。更に、ミラー駆動部の存在のた
め、再生光学系の小型化、信頼性に難があった。
In such an optical waveguide storage medium reproducing device, a movable mirror is used as a means for imparting a phase shift and frequency modulation to the split laser beam for heterodyne detection, so there is a limit to the modulation frequency and the information density is limited. Improvement has been hindered. Furthermore, due to the presence of the mirror drive section, it is difficult to miniaturize and reliability of the reproduction optical system.

【0006】[0006]

【発明の目的】本発明は、この難点に鑑みなされたもの
で、小型化された再生光学系を有する光導波路記憶媒体
再生装置を提供することを目的とする。
OBJECTS OF THE INVENTION The present invention has been made in view of this difficulty, and an object of the present invention is to provide an optical waveguide storage medium reproducing apparatus having a miniaturized reproducing optical system.

【0007】[0007]

【発明の構成】本発明の光導波路記録媒体再生装置は、
レーザビームを導入する光結合部を有した光導波路と前
記光導波路に配列された複数の屈折率不連続部とを有し
かつ前記屈折率不連続部の形状及び相対位置が記録すべ
き情報の変数となる光導波路記録媒体から記録情報を再
生する装置であって、レーザビームを発生する発光手段
と、該レーザビームを2分割して第1及び第2光ビーム
を生ぜしめる分割手段と、第1光ビームを受光し参照光
として反射する参照光発生手段と、第2光ビームを前記
光結合部へ導出する照射手段と、前記屈折率不連続部に
より反射され振幅と位相が変調され前記光結合部を経て
戻る反射信号光と前記参照光とを重畳して干渉光となす
光重畳手段と、前記干渉光を光電変換し電気的出力を生
ぜしめる光検出手段とを有し、前記発光手段は出射光端
面を有する活性領域と前記活性領域の前記出射光端面に
対向する側に配置されかつ各々の間隔が漸次増加した回
折格子とを有するスーパールミネッセントダイオードを
含むことを特徴とする。
[Structure of the Invention] The optical waveguide recording medium reproducing device of the present invention includes:
It has an optical waveguide having an optical coupling part for introducing a laser beam, and a plurality of refractive index discontinuities arranged in the optical waveguide, and the shape and relative position of the refractive index discontinuities are information to be recorded. An apparatus for reproducing recorded information from a variable optical waveguide recording medium, the apparatus comprising: a light emitting means for generating a laser beam; a dividing means for dividing the laser beam into two to generate first and second light beams; a reference light generating means for receiving one light beam and reflecting it as a reference light; an irradiation means for guiding a second light beam to the optical coupling section; The light emitting means includes a light superimposing means for superimposing the reflected signal light returning through the coupling part and the reference light to form interference light, and a light detection means for photoelectrically converting the interference light to generate an electrical output, and the light emitting means is characterized in that it includes a superluminescent diode having an active region having an emitting light end face, and a diffraction grating disposed on a side of the active region opposite to the emitting light end face, the distance between each of which is gradually increased.

【0008】[0008]

【発明の作用】本発明によれば、小型化された再生光学
系を有する光導波路記憶媒体再生装置が得られる。
According to the present invention, an optical waveguide storage medium reproducing device having a compact reproducing optical system can be obtained.

【0009】[0009]

【実施例】以下、本発明による実施例を図面を参照しつ
つ説明する。図1は本発明を説明する原理図である。ま
ず、図1(a)において、光導波路記憶媒体1は、光が
導波するコアの光導波路31がコアより屈折率の低いク
ラッドをなす基板32上に形成された構造を有している
。コア31の上部境界面上には空気又は他のクラッドが
存在する。コア31の端面はレーザビームをコア内部に
導入する光結合部30である。コア内面の上部境界面に
は複数の屈折率不連続部34が伸長方向に配列され記録
されている。屈折率不連続部34は、レーザビームの入
射導波光に対し端面の光結合部30からの相対位置及び
形状に基づく複素反射率によって種々の振幅及び位相を
持つ反射導波光(即ち、振幅と位相が変調された信号光
)を生ずる微小な凹部である。屈折率不連続部34の形
状と位置は、記憶されるべき情報に応じて所定の複素反
射率を得るよう記録される。屈折率不連続部34の凹部
は埋め込み部としてもよく、その埋め込み部の屈折率が
コアの屈折率より小さい空気またはクラッドが用いられ
るの場合、屈折率不連続部34の形状は例えば半円ある
いは反楕円埋め込み型で大きさは光波長の数分の1〜数
倍である。構成材料は例えばコア31には光に透明なポ
リカーボネイトを用い、クラッドにはより屈折率の低い
ポリメタクリル酸メチル等の高分子材料が用いられる。 光導波路記憶媒体1はこの様に、少なくとも光結合部3
0,コア31,基板32,屈折率不連続部34より構成
される。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating the principle of the present invention. First, in FIG. 1(a), the optical waveguide storage medium 1 has a structure in which a core optical waveguide 31 through which light is guided is formed on a substrate 32 forming a cladding having a refractive index lower than that of the core. Air or other cladding is present on the upper boundary surface of the core 31. The end face of the core 31 is an optical coupling part 30 that introduces the laser beam into the core. A plurality of refractive index discontinuities 34 are arranged and recorded in the elongation direction on the upper boundary surface of the inner surface of the core. The refractive index discontinuity portion 34 generates reflected guided light having various amplitudes and phases (i.e., amplitude and phase) based on a complex reflectance based on the relative position and shape from the optical coupling portion 30 on the end face with respect to the incident guided light of the laser beam. This is a minute recess that generates a modulated signal light. The shape and position of the refractive index discontinuities 34 are recorded to obtain a predetermined complex reflectance depending on the information to be stored. The concave portion of the refractive index discontinuity portion 34 may be an embedded portion. If air or cladding is used, the refractive index of the embedded portion being smaller than the refractive index of the core, the shape of the refractive index discontinuity portion 34 may be, for example, a semicircle or a cladding. It is an anti-elliptical embedded type, and its size is a fraction of the wavelength of light to several times the wavelength of light. As for the constituent materials, for example, the core 31 is made of polycarbonate which is transparent to light, and the cladding is made of a polymeric material such as polymethyl methacrylate having a lower refractive index. In this way, the optical waveguide storage medium 1 has at least the optical coupling part 3
0, a core 31, a substrate 32, and a refractive index discontinuous portion 34.

【0010】具体的に図2に示すように光導波路記憶媒
体1には、各々が光結合部30端面をもつ複数のチャネ
ル型リッジ光導波路31を基板32上に並設し、該光導
波路のコア内において複数の異なる振幅と位相の反射導
波光が生じる微小な屈折率不連続部34を、記録すべき
情報に応じて複数個配列したものもある。この実施例で
はリッジ型導波路として説明しているが、ストリップ型
、埋込型等のチャネル型導波路であれば、この様な屈折
率不連続部34は光導波路のコアあるいはクラッドに設
けても同じ効果が得られる。
Specifically, as shown in FIG. 2, in the optical waveguide storage medium 1, a plurality of channel type ridge optical waveguides 31 each having an end face of an optical coupling part 30 are arranged in parallel on a substrate 32, and the optical waveguides are arranged in parallel on a substrate 32. There is also one in which a plurality of minute refractive index discontinuities 34, in which a plurality of reflected guided light beams with different amplitudes and phases are generated within the core, are arranged in accordance with the information to be recorded. Although this embodiment is explained as a ridge type waveguide, in the case of a channel type waveguide such as a strip type or a buried type, such a refractive index discontinuity portion 34 may be provided in the core or cladding of the optical waveguide. The same effect can be obtained.

【0011】図1(a)に示すように、本発明の光導波
路記憶媒体再生装置においては、レーザビーム自体を周
波数変調して発生する発光手段としてSLD(Supe
r Luminescent Diode:スーパール
ミネッセントダイオード)の発光素子35を用いている
。さらに、光導波路記憶媒体再生装置は、レーザビーム
を2分割して第1及び第2光ビームを生ぜしめる分割手
段としてのハーフミラー(ビームスプリッター)36と
、第1レーザビームを受光し参照光を発生する参照光発
生手段としての固定ミラー37と、第2レーザビームを
光結合部30へ導出する照射手段としての対物レンズ4
2と、屈折率不連続部34により戻る反射信号光と参照
光とを重畳して干渉光となす光重畳手段としてのハーフ
ミラー36と、干渉光を光電変換し電気的出力を生ぜし
める光検出手段としての光検出器39とを有している。
As shown in FIG. 1(a), in the optical waveguide storage medium reproducing apparatus of the present invention, an SLD (Supe
The light emitting element 35 is a superluminescent diode (luminescent diode). Furthermore, the optical waveguide storage medium reproducing device includes a half mirror (beam splitter) 36 as a splitting means that splits the laser beam into two and generates first and second light beams, and a half mirror (beam splitter) 36 that receives the first laser beam and generates a reference light. A fixed mirror 37 as a reference light generating means, and an objective lens 4 as an irradiation means for guiding the second laser beam to the optical coupling section 30.
2, a half mirror 36 as a light superimposing means that superimposes the reflected signal light and reference light returned by the refractive index discontinuity portion 34 to form interference light, and a photodetector that photoelectrically converts the interference light and generates an electrical output. It has a photodetector 39 as a means.

【0012】ここで、レーザビーム自体を周波数変調し
て発生するSLDの発光素子35は、図3に示すように
、電極1、2に挾まれた接合基板3、4の接合部分に活
性層5が埋め込まれたストライプ型のダブルヘテロ構造
の半導体レーザ素子であって、出射光端面10を有する
活性領域とこの出射光端面に対向する側、図面後部に配
置された回折格子11とを有するものである。
Here, the light emitting element 35 of the SLD, which is generated by frequency modulating the laser beam itself, has an active layer 5 at the bonded portion of the bonded substrates 3 and 4 sandwiched between the electrodes 1 and 2, as shown in FIG. It is a semiconductor laser device with a striped double heterostructure in which is embedded an active region having an emitting light end face 10 and a diffraction grating 11 disposed on the side opposite to this emitting light end face at the rear of the figure. be.

【0013】図4(a)の活性層の境界面に沿った部分
断面平面図に示すように、回折格子11は、接合基板3
又は4の接合部分に接した活性層5の伸長方向に沿って
平行に並べられた溝であって、各々の間隔が漸次増加し
ている。図4(b)の活性層に沿った部分断面図に示す
ように、この回折格子11は、活性領域で励起された光
がこの活性層5の出射光端面に対向する方向に沿って導
波すると、各溝11の間隔に対応した波長の導波光がブ
ラッグ反射して周波数及び位相のシフトを与え出射光端
面へ戻す反射領域としての作用をなす。従って、出射レ
ーザービームは多重縦モードの光となる。かかる溝の間
隔を等間隔として周期的に配置した反射領域を活性領域
に重ねて又はその伸長方向両側に配置した半導体レーザ
素子は、分布帰還型(DFB)又は分布反射型(DBR
)レーザとして知られているが、これらは単一モード光
を得ている。
As shown in the partial cross-sectional plan view along the interface of the active layer in FIG. 4(a), the diffraction grating 11
Alternatively, the grooves are arranged in parallel along the extending direction of the active layer 5 in contact with the joint portion of the active layer 5, and the intervals between the grooves gradually increase. As shown in the partial cross-sectional view along the active layer in FIG. Then, the guided light having a wavelength corresponding to the interval between the grooves 11 is Bragg-reflected, giving a shift in frequency and phase, and acting as a reflection region that returns to the output light end face. Therefore, the emitted laser beam becomes light with multiple longitudinal modes. Semiconductor laser elements in which reflective regions are periodically arranged with grooves arranged at equal intervals, overlapping the active region or on both sides of the active region in the extending direction, are classified as distributed feedback (DFB) or distributed reflection type (DBR).
) These are known as lasers, but these obtain single mode light.

【0014】光導波路記憶媒体1の光結合部30に対向
して配置した発光素子35から発射されたレーザビーム
は、コリメーションレンズ41で概ね平行光束にし、ハ
ーフミラー36により2分割される。一方の直進する一
方の第1レーザビームは、対物レンズ42で集光され光
結合部30より導波し、その一部は複数の屈折率不連続
部34により複数の異なる振幅と位相を持った反射導波
光となり、これが光結合部30より戻る信号光となる。 図1(a)に示すように、屈折率不連続部34がa,b
,c,dの位置に記録すべき情報として記録された場合
、各々の屈折率不連続部34の形状と相対位置が記録す
べき情報(図では、アナログ情報で説明されている)に
応じて、光導波路31中に屈折率不連続部34を複数個
配置することにより、その形状と伝播距離の関数として
異なる振幅と位相情報を持った変調信号光を作ることが
出来る。ハーフミラー36で分割、反射された他方の第
2レーザビームは、固定ミラー37によって参照光とし
て反射されてハーフミラー36に戻る。これら信号光及
び参照光は、ハーフミラー36で合波され、レンズ44
で集光されて光検出器39に光ホモダイン干渉入力され
る。該入力光は光電変換され、電気信号となり周波数フ
ィルター40を経て、図1(b)及び(c)に示すよう
に発光素子35からのレーザビームの一定強度の光入力
Iinに対して、時系列信号波形の電気的出力I(t)
が得られる。
A laser beam emitted from a light emitting element 35 disposed opposite to the optical coupling section 30 of the optical waveguide storage medium 1 is converted into a substantially parallel beam by a collimation lens 41 and divided into two by a half mirror 36 . One of the first laser beams traveling straight is focused by the objective lens 42 and guided from the optical coupling part 30, and a part of it has a plurality of different amplitudes and phases due to the plurality of refractive index discontinuities 34. The reflected waveguide light becomes the signal light that returns from the optical coupling section 30. As shown in FIG. 1(a), the refractive index discontinuity portion 34 is
, c, d, the shape and relative position of each refractive index discontinuity portion 34 is determined according to the information to be recorded (in the figure, explained as analog information). By arranging a plurality of refractive index discontinuities 34 in the optical waveguide 31, it is possible to create modulated signal light having different amplitude and phase information as a function of its shape and propagation distance. The other second laser beam split and reflected by the half mirror 36 is reflected by the fixed mirror 37 as a reference beam and returns to the half mirror 36. These signal lights and reference lights are multiplexed by a half mirror 36, and a lens 44
The light is focused and input into the photodetector 39 as a result of optical homodyne interference. The input light is photoelectrically converted and becomes an electric signal through a frequency filter 40, and as shown in FIGS. Electrical output of signal waveform I(t)
is obtained.

【0015】このように、本実施例では、光導波路記録
媒体から記録情報を読み出し再生する光学系において、
光源のスーパールミネッセントダイオード(SLD)の
レーザビーム出射端面でない方にピッチの変調された回
析格子を設け、発振する光の周波数を変調すると共に各
周波数帯域間の位相をシフトさせる。SLDの光出射端
面ではない側にピッチ変調された回折格子を設けること
により、発振する光の周波数が重畳され、各発振周波数
の光の間に群速度の遅延を生じさせることもできる。
As described above, in this embodiment, in an optical system for reading and reproducing recorded information from an optical waveguide recording medium,
A pitch-modulated diffraction grating is provided on the side other than the laser beam emitting end face of a superluminescent diode (SLD) as a light source, thereby modulating the frequency of the oscillated light and shifting the phase between each frequency band. By providing a pitch-modulated diffraction grating on the side of the SLD that is not the light-emitting end face, the frequencies of the oscillated lights are superimposed, and it is also possible to cause a group velocity delay between the lights of each oscillation frequency.

【0016】具体的に、上記各々の間隔が漸次増加して
いる回折格子を付加したSLDからのレーザビームのス
ペクトルは多重縦モードのスペクトルバンド間に位相差
を生じた様な光になっている。即ち、例えばVrとVr
−1との周波数の光に対して位相差tmを持つことにな
る。この様なレーザビームを光導波路記憶媒体再生装置
の再生光学系に用いるならばその光の電界振幅Eは下記
の数式1のように記述される。
Specifically, the spectrum of a laser beam from an SLD equipped with a diffraction grating in which each of the above spacings is gradually increased is light in which a phase difference occurs between the spectral bands of multiple longitudinal modes. . That is, for example, Vr and Vr
It has a phase difference tm with respect to light having a frequency of -1. If such a laser beam is used in a reproducing optical system of an optical waveguide storage medium reproducing device, the electric field amplitude E of the light can be described as shown in the following equation 1.

【0017】[0017]

【数1】[Math 1]

【0018】この時、光導波路記憶媒体を読んだ時の光
検出器上の参照光と光導波路記憶媒体の光導波路光結合
部からの戻り信号光との干渉光の電界は下記数式2のよ
うに
At this time, the electric field of the interference light between the reference light on the photodetector and the return signal light from the optical waveguide coupling part of the optical waveguide storage medium when reading the optical waveguide storage medium is expressed by the following equation 2. to

【0019】[0019]

【数2】[Math 2]

【0020】書ける。この数式2はやはり広域なスペク
トルのインコヒーレントな重ね合せであり、指数形振幅
変調を受けたパルス列としてピット列再生信号が検出さ
れる。かくして、光導波路記録媒体再生装置の構成によ
り、該光導波路記憶媒体に記録された複数の屈折率不連
続部(図1(a)ではa,b,c,dで示してある)が
、時系列信号性の電気的出力に対応し(図1(c)では
、a’,b’,c’,d’がそれぞれ対応する)、再生
される。発光素子35に上記のような広域なスペクトル
の帯域間に位相のずれのある光源を用いたため、スペク
トル幅の狭い半導体レーザを用いた光学系に比べて、該
変調周波数を高く設定できる。
[0020] I can write. Equation 2 is still an incoherent superposition of wide-range spectra, and the pit train reproduction signal is detected as a pulse train subjected to exponential amplitude modulation. Thus, with the configuration of the optical waveguide recording medium reproducing device, the plurality of refractive index discontinuities (indicated by a, b, c, and d in FIG. 1(a)) recorded on the optical waveguide recording medium can be This corresponds to the electrical output of the sequence signal (in FIG. 1(c), a', b', c', and d' correspond to each other) and is reproduced. Since the light source 35 uses a light source with a phase shift between the wide spectrum bands as described above, the modulation frequency can be set higher than an optical system using a semiconductor laser with a narrow spectrum width.

【0021】図5において具体的に光導波路記憶媒体及
び再生装置を示す。光導波路記憶媒体50は、上記した
チャネル型のリッジ光導波路記憶媒体1の板状体51を
多数並置してドラム状に巻いてなる積層ドラム型の立体
光ディスクである。光導波路記憶媒体再生装置は、上記
した構成要素のほかにさらにフォーカスアクチュエータ
に設置された光導波路への結合用集光レンズ42、トラ
ッキングのために反射ビームの一部を取り出すビームス
プリッター52、トラッキング用レーザビームを分離す
る凹レンズ53、並びにトラッキング用光検出器54,
55を有している。発光素子35からのレーザビームの
楕円状断面の長軸方向両端部を、コア端面光結合部を挾
んでクラッッド端面に当て、その反射光をトラッキング
用レーザビームとする。光検出器54,55は光ホモダ
イン検出でも高感度かつ高信号対雑音比でトラッキング
用レーザビームを捕捉する。さらに両者の誤差検出に従
って集光用マイクロレンズ42等を光軸方向に移動させ
て光導波路の光結合部に合焦し、かつ立体光ディスク5
0の面振れに光再生装置ヘッド56を追従させている。
FIG. 5 specifically shows an optical waveguide storage medium and a reproducing device. The optical waveguide storage medium 50 is a laminated drum-type three-dimensional optical disk made by arranging a large number of plate-like bodies 51 of the channel-type ridge optical waveguide storage medium 1 described above and winding them into a drum shape. In addition to the above-mentioned components, the optical waveguide storage medium reproducing device further includes a condensing lens 42 for coupling to the optical waveguide installed in the focus actuator, a beam splitter 52 for taking out a part of the reflected beam for tracking, and a beam splitter 52 for tracking. a concave lens 53 that separates the laser beam, and a tracking photodetector 54,
It has 55. Both ends in the long axis direction of the elliptical cross section of the laser beam from the light emitting element 35 are applied to the clad end face with the core end face optical coupling part in between, and the reflected light is used as a tracking laser beam. The photodetectors 54 and 55 capture the tracking laser beam with high sensitivity and high signal-to-noise ratio even in optical homodyne detection. Furthermore, according to the error detection between the two, the condensing microlens 42 and the like are moved in the optical axis direction to focus on the optical coupling part of the optical waveguide, and the three-dimensional optical disk 5
The optical reproducing device head 56 is made to follow the surface runout of 0.

【0022】本実施例では、矩形横断面2×2μmを備
える導波路長10mmの光導波路を、2μm間隔で厚み
3.2μmのクラッッドに埋め込み並置した板状体を、
ドラム状に巻き積層し、トラッキングピッチ幅3.2μ
mの立体光ディスク50が形成されている。記録された
屈折率不連続部のz軸方向の長さは10〜30μm、x
軸方向の深さは0.1〜0.5μmで、y軸方向の幅は
約0.7μmで、各光導波路毎に平均500個の該不連
続部が記録されている。各該屈折率不連続部の光反射率
は高々10−6〜10−8としてあるので、それらの反
射損失があっても最後の戻りレーザビームの減衰率は1
0%程度である。図では立体光ディスク50の下側の端
面に各光導波路の断面が開口しており、光結合部となっ
ている。光結合部の面は厚み2mmのポリカーボネイト
保護膜がついており、光導波路の屈折率と整合させ光結
合度を高くしてある。 また、該光導波路の終端の端面も同様に保護してあり、
同時に該光導波路中を伝播して来た光が逃げるようにし
てある。この様な立体光ディスク50は直径8インチで
、コンパクトディスク(CD)と同様に回転しつつ記憶
情報が再生される。
In this example, a plate-like body in which optical waveguides each having a rectangular cross section of 2×2 μm and a waveguide length of 10 mm are embedded and juxtaposed in a 3.2 μm thick cladding at 2 μm intervals is used.
Rolled and laminated into a drum shape, tracking pitch width 3.2μ
m three-dimensional optical disks 50 are formed. The length of the recorded refractive index discontinuity in the z-axis direction is 10 to 30 μm, x
The depth in the axial direction is 0.1-0.5 μm, the width in the y-axis direction is approximately 0.7 μm, and an average of 500 such discontinuities are recorded for each optical waveguide. Since the optical reflectance of each of the refractive index discontinuities is at most 10-6 to 10-8, even with these reflection losses, the attenuation rate of the final returning laser beam is 1.
It is about 0%. In the figure, the cross section of each optical waveguide is opened at the lower end surface of the three-dimensional optical disk 50, and serves as an optical coupling section. A polycarbonate protective film with a thickness of 2 mm is attached to the surface of the optical coupling portion, and the degree of optical coupling is increased by matching the refractive index of the optical waveguide. In addition, the end face of the optical waveguide is similarly protected,
At the same time, the light propagating through the optical waveguide is allowed to escape. Such a three-dimensional optical disc 50 has a diameter of 8 inches, and the stored information is reproduced while rotating like a compact disc (CD).

【0023】光導波路記憶媒体再生装置は、[発明の構
成]の欄で説明したように、構成されている。発光素子
35からのレーザビームが、該光導波路記憶媒体51へ
導波され、その一部が振幅と位相が変調された信号反射
レーザビームとなり戻り、他のレーザビームは固定ミラ
ー37を往復し戻り、ハーフミラー36で合波され、干
渉光のみを通過させるアイリス58を経て、光検出器3
9で光検波し、周波数フィルタ40を経て、電気出力端
子57より、図1(c)のI(t)で示した時系列信号
波形の電気的出力を得る。1つの光導波路記憶媒体から
の再生信号は、バッファメモリに一時蓄積し、任意のク
ロックタイムで転送する。1つの光導波路の記憶してい
る情報を読みだした後、立体光ディスク50の回転と光
再生装置ヘッド56のトラッキングにより、次のチャネ
ルの光導波路の記憶情報を逐次読み出す。
The optical waveguide storage medium reproducing device is constructed as explained in the section [Structure of the Invention]. The laser beam from the light emitting element 35 is guided to the optical waveguide storage medium 51, a part of which returns as a signal reflected laser beam whose amplitude and phase are modulated, and the other laser beam goes back and forth through the fixed mirror 37 and returns. , is multiplexed by a half mirror 36, passes through an iris 58 that allows only the interference light to pass, and is then sent to a photodetector 3.
9 performs optical detection, passes through a frequency filter 40, and obtains an electrical output of a time-series signal waveform shown by I(t) in FIG. 1(c) from an electrical output terminal 57. A reproduced signal from one optical waveguide storage medium is temporarily stored in a buffer memory and transferred at an arbitrary clock time. After reading out the information stored in one optical waveguide, the information stored in the optical waveguide of the next channel is sequentially read out by rotating the stereoscopic optical disk 50 and tracking the optical reproducing device head 56.

【0024】なお、上記本実施例においては、再生光学
系において参照光発生手段として固定ミラー37を用い
た光ホモダイン検波を用いて説明したが、固定ミラー3
7の代わりに、参照光に光周波数変調をなす例えば音響
光学変調器を用いれば光ヘテロダイン検波ををなすこと
ができ、同様な効果を得る。本実施例では、光導波路記
憶媒体のメモリー部を長短大小の屈折率不連続部で構成
し、アナログ信号を記憶再生する例について説明したが
、屈折率不連続部を同じ大きさでかつ等間隔にそれらの
屈折率不連続部の有無を記録すれば、デジタル信号の記
憶再生も可能なことは明らかである。また、光導波路記
憶媒体を立体ディスクに形成する実施例を説明したが、
テープに並置したり、カード型に並置し積層したものも
実現できる。さらに、本実施例では光導波路長を10m
mとしたが、記憶媒体である光導波路長は必要なメモリ
ー容量に応じて長くも短くも作成できる。
In the above embodiment, optical homodyne detection using the fixed mirror 37 was used as a reference light generating means in the reproduction optical system.
If, for example, an acousto-optic modulator that performs optical frequency modulation on the reference light is used instead of 7, optical heterodyne detection can be performed and a similar effect can be obtained. In this embodiment, an example was explained in which the memory part of the optical waveguide storage medium is configured with refractive index discontinuities of different lengths and shorts, and an analog signal is stored and reproduced. It is clear that by recording the presence or absence of those refractive index discontinuities, it is possible to store and reproduce digital signals. In addition, although an example in which an optical waveguide storage medium is formed into a three-dimensional disk has been described,
It is also possible to arrange them on tape or in a card form and stack them. Furthermore, in this example, the optical waveguide length is 10 m.
Although the length of the optical waveguide, which is the storage medium, can be made longer or shorter depending on the required memory capacity.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
再生光学系において光源として、出射光端面を有する活
性領域と前記活性領域の前記出射光端面に対向する側に
配置されかつ各々の間隔が漸次増加した回折格子とを有
するスーパールミネッセントダイオードを用いているの
で、光導波路記憶媒体再生装置の再生光学系の小型化が
達成される。
[Effects of the Invention] As explained above, according to the present invention,
As a light source in the reproduction optical system, a superluminescent diode having an active region having an emitting light end face and a diffraction grating arranged on a side of the active region opposite to the emitting light end face and whose spacing between each grating gradually increases is used. Therefore, the reproducing optical system of the optical waveguide storage medium reproducing device can be miniaturized.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の光導波路記憶媒体再生装置の原理を説
明する概略図である。
FIG. 1 is a schematic diagram illustrating the principle of an optical waveguide storage medium reproducing device of the present invention.

【図2】本発明にかかる光導波路記憶媒体の斜視図であ
る。
FIG. 2 is a perspective view of an optical waveguide storage medium according to the present invention.

【図3】本発明にかかるスーパールミネッセントダイオ
ードの斜視図である。
FIG. 3 is a perspective view of a superluminescent diode according to the invention.

【図4】本発明にかかるスーパールミネッセントダイオ
ードの活性層に沿った回折格子を説明する図である。
FIG. 4 is a diagram illustrating a diffraction grating along the active layer of the superluminescent diode according to the present invention.

【図5】本発明による実施例の光導波路記憶媒体再生装
置の概略図である。
FIG. 5 is a schematic diagram of an optical waveguide storage medium reproducing apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、2……電極 3、4……接合基板 5……活性層 10……出射光端面 11……回折格子 30……光導波路の結合部 31……光導波路のコア 32……光導波路のクラッド(基板) 34……屈折率不連続部 35……発光素子 36……ハーフミラー 37……固定ミラー 39……光検出器 40……周波数フィルタ 41〜44……レンズ 50……積層ドラム型の立体光ディスク51……光導波
路記憶媒体 52……ビームスプリッタ 53……凹レンズ 54,55……トラッキング用光検出器56……光再生
装置ヘッド 57……電気出力端子 58……アイリス
1, 2... Electrodes 3, 4... Bonding substrate 5... Active layer 10... Outgoing light end face 11... Diffraction grating 30... Coupling portion 31 of optical waveguide... Core 32 of optical waveguide... Clad (substrate) 34...Refractive index discontinuity portion 35...Light emitting element 36...Half mirror 37...Fixed mirror 39...Photodetector 40...Frequency filters 41 to 44...Lens 50...Laminated drum type Three-dimensional optical disk 51... Optical waveguide storage medium 52... Beam splitter 53... Concave lenses 54, 55... Tracking photodetector 56... Optical reproducing device head 57... Electrical output terminal 58... Iris

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  レーザビームを導入する光結合部を有
した光導波路と前記光導波路に配列された複数の屈折率
不連続部とを有しかつ前記屈折率不連続部の形状及び相
対位置が記録すべき情報の変数となる光導波路記録媒体
から記録情報を再生する装置であって、レーザビームを
発生する発光手段と、該レーザビームを2分割して第1
及び第2光ビームを生ぜしめる分割手段と、第1光ビー
ムを受光し参照光として反射する参照光発生手段と、第
2光ビームを前記光結合部へ導出する照射手段と、前記
屈折率不連続部により反射され振幅と位相が変調され前
記光結合部を経て戻る反射信号光と前記参照光とを重畳
して干渉光となす光重畳手段と、前記干渉光を光電変換
し電気的出力を生ぜしめる光検出手段とを有し、前記発
光手段は出射光端面を有する活性領域と前記活性領域の
前記出射光端面に対向する側に配置されかつ各々の間隔
が漸次増加した回折格子とを有するスーパールミネッセ
ントダイオードを含むことを特徴とする光導波路記録媒
体再生装置。
1. An optical waveguide having an optical coupling part for introducing a laser beam, and a plurality of refractive index discontinuities arranged in the optical waveguide, and the shape and relative position of the refractive index discontinuities are different. A device for reproducing recorded information from an optical waveguide recording medium serving as a variable of information to be recorded, comprising a light emitting means for generating a laser beam, and a first for dividing the laser beam into two.
and a splitting means for generating a second light beam, a reference light generation means for receiving the first light beam and reflecting it as a reference light, an irradiation means for guiding the second light beam to the optical coupling part, and the refractive index inverter. a light superimposing means for superimposing the reference light on the reflected signal light that is reflected by the continuous section, modulated in amplitude and phase, and returned via the optical coupling section to form interference light; and a light superimposition means for photoelectrically converting the interference light to produce an electrical output. the light emitting means has an active region having an emitting light end face, and a diffraction grating disposed on a side of the active region opposite to the emitting light end face, the distance between each of which gradually increases. An optical waveguide recording medium reproducing device comprising a superluminescent diode.
【請求項2】  前記参照光発生手段は固定ミラーを有
することを特徴とする請求項1記載の光導波路記録媒体
再生装置。
2. The optical waveguide recording medium reproducing apparatus according to claim 1, wherein the reference light generating means has a fixed mirror.
【請求項3】  前記分割手段はハーフミラー又はビー
ムスプリッターを有することを特徴とする請求項1記載
の光導波路記録媒体再生装置。
3. The optical waveguide recording medium reproducing apparatus according to claim 1, wherein the dividing means includes a half mirror or a beam splitter.
【請求項4】  前記照射手段は対物レンズを有するこ
とを特徴とする請求項1記載の光導波路記録媒体再生装
置。
4. The optical waveguide recording medium reproducing apparatus according to claim 1, wherein the irradiation means has an objective lens.
【請求項5】  前記光重畳手段はハーフミラー又はビ
ームスプリッターを有することを特徴とする請求項1記
載の光導波路記録媒体再生装置。
5. The optical waveguide recording medium reproducing apparatus according to claim 1, wherein the light superimposing means includes a half mirror or a beam splitter.
【請求項6】  前記光検出手段は光検出器を有するこ
とを特徴とする請求項1記載の光導波路記録媒体再生装
置。
6. The optical waveguide recording medium reproducing apparatus according to claim 1, wherein the photodetecting means includes a photodetector.
JP3024751A 1991-02-19 1991-02-19 Optical waveguide recording medium reproducing device Pending JPH04265533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3024751A JPH04265533A (en) 1991-02-19 1991-02-19 Optical waveguide recording medium reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3024751A JPH04265533A (en) 1991-02-19 1991-02-19 Optical waveguide recording medium reproducing device

Publications (1)

Publication Number Publication Date
JPH04265533A true JPH04265533A (en) 1992-09-21

Family

ID=12146852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3024751A Pending JPH04265533A (en) 1991-02-19 1991-02-19 Optical waveguide recording medium reproducing device

Country Status (1)

Country Link
JP (1) JPH04265533A (en)

Similar Documents

Publication Publication Date Title
US5218594A (en) Recording medium with an optical waveguide and player for playing the same
EP1001413B1 (en) Optical pickup and optical device
US5285274A (en) Optical waveguide recording medium and apparatus for playing the same
US4963464A (en) Optical medium having pits of different depths, and method and apparatus for reproducing information therefrom
US5233582A (en) Optical waveguide recording medium playing apparatus
US5214633A (en) Optical waveguide recording medium playing apparatus
US6269066B1 (en) Electronically translocatable optical stylet
JPH0547897B2 (en)
JPS62137736A (en) Optical head device
JPH04265533A (en) Optical waveguide recording medium reproducing device
JPS6251045A (en) Optical information reader
US6064785A (en) Optical wave guide path recording medium and optical reproducing apparatus
JPH04265535A (en) Optical waveguide recording medium reproducing device
JPS6047239A (en) Optical head device
JPH04265536A (en) Optical waveguide recording medium reproducing device
US5706263A (en) Method and apparatus for high-density reproduction
JPH05274679A (en) Optical recording medium recording information as independent change of phase and amplitude, and method and device for reproducing it
JPS63255830A (en) Optical information reproducing device
JPH01307934A (en) Optical head
JPH05250677A (en) Optical waveguide recording medium and its performance device and information recording and reproducing method
JP2513237B2 (en) Optical head device
KR100266576B1 (en) Optical pick-up system
JPH0668849B2 (en) Optical playback method
JPH04265539A (en) Optical waveguide recording medium
JPH0758551B2 (en) Optical information reproducing device