JPH04265208A - Aluminum nitride powder for sintered material and its production - Google Patents
Aluminum nitride powder for sintered material and its productionInfo
- Publication number
- JPH04265208A JPH04265208A JP3047435A JP4743591A JPH04265208A JP H04265208 A JPH04265208 A JP H04265208A JP 3047435 A JP3047435 A JP 3047435A JP 4743591 A JP4743591 A JP 4743591A JP H04265208 A JPH04265208 A JP H04265208A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- alumina
- less
- sintering
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 title claims description 11
- 239000000463 material Substances 0.000 title description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 43
- 238000005245 sintering Methods 0.000 claims abstract description 42
- 238000005121 nitriding Methods 0.000 claims abstract description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 21
- 239000002245 particle Substances 0.000 claims abstract description 19
- 238000006243 chemical reaction Methods 0.000 claims abstract description 17
- 230000007704 transition Effects 0.000 claims abstract description 13
- 239000012535 impurity Substances 0.000 claims abstract description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000001301 oxygen Substances 0.000 claims abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 10
- 229910052742 iron Inorganic materials 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 125000002091 cationic group Chemical group 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims abstract description 4
- 239000011575 calcium Substances 0.000 claims description 25
- 239000002994 raw material Substances 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 9
- 239000012298 atmosphere Substances 0.000 claims description 7
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 6
- 238000005261 decarburization Methods 0.000 claims description 6
- 239000006229 carbon black Substances 0.000 claims description 5
- 238000000746 purification Methods 0.000 claims description 5
- 238000000227 grinding Methods 0.000 claims description 4
- 229940043430 calcium compound Drugs 0.000 claims description 3
- 150000001674 calcium compounds Chemical class 0.000 claims description 3
- 239000007791 liquid phase Substances 0.000 claims description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 239000012071 phase Substances 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 1
- 241000872198 Serjania polyphylla Species 0.000 claims 1
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- 150000002894 organic compounds Chemical class 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 abstract description 5
- 229910001424 calcium ion Inorganic materials 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 abstract 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 17
- 238000000034 method Methods 0.000 description 12
- 239000000292 calcium oxide Substances 0.000 description 9
- 238000000465 moulding Methods 0.000 description 8
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 229910052593 corundum Inorganic materials 0.000 description 5
- 229910001845 yogo sapphire Inorganic materials 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 238000007606 doctor blade method Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- NKWPZUCBCARRDP-UHFFFAOYSA-L calcium bicarbonate Chemical compound [Ca+2].OC([O-])=O.OC([O-])=O NKWPZUCBCARRDP-UHFFFAOYSA-L 0.000 description 2
- 229910000020 calcium bicarbonate Inorganic materials 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- PASHVRUKOFIRIK-UHFFFAOYSA-L calcium sulfate dihydrate Chemical compound O.O.[Ca+2].[O-]S([O-])(=O)=O PASHVRUKOFIRIK-UHFFFAOYSA-L 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000009837 dry grinding Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 238000001272 pressureless sintering Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 238000004131 Bayer process Methods 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000000516 activation analysis Methods 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- YWXYYJSYQOXTPL-SLPGGIOYSA-N isosorbide mononitrate Chemical compound [O-][N+](=O)O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 YWXYYJSYQOXTPL-SLPGGIOYSA-N 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- -1 polyphenylene Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、易焼結性で高熱伝導性
の焼結原料用窒化アルミニウム粉末とその製造法に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an easily sinterable and highly thermally conductive aluminum nitride powder for use as a sintering raw material, and a method for producing the same.
【0002】0002
【従来の技術】電子機器材料等に用いられる窒化アルミ
ニウム(以下「AlN」という)焼結体は均一に焼結さ
れ、緻密で且つ高熱伝導性であることが必要である。緻
密な焼結体用原料を得るため、特開昭50ー23441
号では、希土類元素に代えて安価なCaOを0.1〜1
0重量%添加する例が、また特開昭58ー55377号
では、Ca0を0.1〜6重量%添加する例が開示され
、特開平2−160610号では、CaO換算で0.1
〜2重量%をアルミナ還元時に添加する方法が開示され
ている。しかしながら、これらの発明によるCa成分の
添加はAlN粉末に易焼結性を付与出来るが、その反面
、濃度が高いため得られた焼結体に焼結むらを生じ、焼
結体の特性を低下させる虞がある。又、特開昭59ー5
0008号では、得られたAlN粉末中に、Ca元素と
して0.015重量%含有している例が示されているが
、カーボンを1000ppmも含有しており、焼結性や
熱伝導性が悪いものと推察される。2. Description of the Related Art Aluminum nitride (hereinafter referred to as "AlN") sintered bodies used as materials for electronic devices and the like must be uniformly sintered, dense, and highly thermally conductive. In order to obtain raw materials for dense sintered bodies, Japanese Patent Application Laid-Open No. 50-23441
In this issue, 0.1 to 1% of cheap CaO was used instead of rare earth elements.
An example of adding 0% by weight of CaO is disclosed, and an example of adding 0.1 to 6% by weight of CaO is disclosed in JP-A-58-55377, and an example of adding 0.1 to 6% by weight of CaO is disclosed in JP-A-2-160610.
A method is disclosed in which ~2% by weight is added during alumina reduction. However, although the addition of Ca component according to these inventions can impart easy sinterability to AlN powder, on the other hand, the high concentration causes uneven sintering in the obtained sintered body and deteriorates the properties of the sintered body. There is a risk of causing Also, JP-A-59-5
No. 0008 shows an example in which the obtained AlN powder contains 0.015% by weight of Ca element, but it also contains 1000 ppm of carbon, which has poor sinterability and thermal conductivity. It is presumed that this is the case.
【0003】0003
【発明が解決しようとする課題】発明者らは、原料とし
て高純度アルミナでなく普通純度アルミナを用いても高
純度であり、易焼結性で焼結むらを生じなく、且つ高熱
伝導性のAlN粉末を得ることについて研究を進め、上
記目的を達成するためには、Ca添加量を適正にし炭素
量を最小限に抑え、かつ得られたAlN粉末の加圧嵩密
度を所定範囲のものとすることが必要であることを見い
だし本発明を完成した。[Problems to be Solved by the Invention] The inventors have discovered that even if ordinary purity alumina is used instead of high purity alumina as a raw material, it will have high purity, be easily sintered, will not cause uneven sintering, and will have high thermal conductivity. In order to advance research on obtaining AlN powder and achieve the above objectives, it was necessary to add an appropriate amount of Ca, minimize the amount of carbon, and keep the pressed bulk density of the obtained AlN powder within a predetermined range. They discovered that it was necessary to do so and completed the present invention.
【0004】0004
【課題を解決するための手段】本発明によれば、カルシ
ウム化合物をCa元素換算で0.010〜0.030重
量%, 酸素含有量0.6〜1.1重量%を含有すると
共にFe・Si等の不可避的陽イオン不純物が金属元素
として400ppm以下,炭素含有量300ppm以下
で、平均粒径1〜5μm,500kg/cm2での加圧
嵩密度が1.50〜1.90g/cm3であることを特
徴とする焼結原料用窒化アルミニウム粉末及び、上記A
lN粉末の最適の製造法として、実質的にα−アルミナ
を含有せず、カルシウム塩溶液に浸漬しCa元素換算で
0.008〜0.025重量%含有させた遷移アルミナ
を用い、且つカーボン使用量を少量に規制した条件下で
窒化反応を減圧精製処理を経ながら進行させることによ
って達成される。[Means for Solving the Problems] According to the present invention, the calcium compound contains 0.010 to 0.030% by weight in terms of Ca element, the oxygen content is 0.6 to 1.1% by weight, and Fe. Unavoidable cation impurities such as Si as a metal element are 400 ppm or less, carbon content is 300 ppm or less, average particle size is 1 to 5 μm, and the pressurized bulk density at 500 kg/cm2 is 1.50 to 1.90 g/cm3. Aluminum nitride powder for sintering raw material, characterized by the above-mentioned A
The optimal method for producing IN powder is to use transition alumina that does not substantially contain α-alumina, but has been immersed in a calcium salt solution to contain 0.008 to 0.025% by weight in terms of Ca element, and also uses carbon. This is achieved by allowing the nitriding reaction to proceed under reduced pressure purification treatment under conditions where the amount is regulated to a small amount.
【0005】本発明に係る焼結用窒化アルミニウム粉末
の組成としては、全て内割であるが以下の条件を充足す
ることが必要である。
1)カルシウム化合物の含有量がCa元素として 0.
010〜0.030重量%であることが必要で、0.0
10重量%未満では低温焼結性が不十分で、0.030
重量%を超えるとCaの偏在を生じて焼結むらが出易い
。なお、このCa化合物は酸化カルシウム又はアルミン
酸カルシウム等の状態で含有されているものと推定され
る。
2)Fe・Si等の不可避的陽イオン不純物が0.04
0重量%以下で、0.040重量%を超えると、AlN
粉末の焼結性を確保し、焼結体の熱伝導率の低下を抑制
することが困難になるので好ましくない。
3)酸素含有量は、0.6〜1.1重量%の範囲で、0
.6重量%未満では焼結性が悪く焼結温度が高くなり、
1.1重量%を超えると焼結体の熱伝導率の低下を生じ
る。
4)炭素含有量は300ppm以下であることがAlN
粉末の良好な焼結性を確保するために必要であって、着
色が好ましくない場合には出来るだけ少ない方がよい。
即ち、アルミナ還元法によって得られるAlN粉末の場
合、脱炭処理が不十分であるとカーボンが残留する。A
lN粉末の焼結に際して、炭素含有量が300ppmを
超えると、AlN粉末中の酸素が消耗されるため液相焼
結が適切に発生せず焼結が不完全となる。又、焼結体を
着色させるので、用途によっては不適当である。The composition of the aluminum nitride powder for sintering according to the present invention is all internal, but it is necessary to satisfy the following conditions. 1) The content of calcium compounds as Ca element is 0.
It is necessary that the content is 0.010 to 0.030% by weight, and 0.0
If it is less than 10% by weight, low temperature sinterability is insufficient, and 0.030
If it exceeds % by weight, uneven distribution of Ca will occur and uneven sintering will likely occur. Note that this Ca compound is presumed to be contained in the form of calcium oxide, calcium aluminate, or the like. 2) Unavoidable cation impurities such as Fe and Si are 0.04
If it is 0% by weight or less and exceeds 0.040% by weight, AlN
This is not preferable because it becomes difficult to ensure the sinterability of the powder and to suppress a decrease in the thermal conductivity of the sintered body. 3) Oxygen content is in the range of 0.6-1.1% by weight, 0
.. If it is less than 6% by weight, sinterability is poor and the sintering temperature becomes high.
If it exceeds 1.1% by weight, the thermal conductivity of the sintered body will decrease. 4) The carbon content of AlN must be 300 ppm or less.
It is necessary to ensure good sinterability of the powder, and if coloring is undesirable, it is better to use as little as possible. That is, in the case of AlN powder obtained by the alumina reduction method, carbon remains if the decarburization treatment is insufficient. A
When sintering the AIN powder, if the carbon content exceeds 300 ppm, the oxygen in the AIN powder is consumed, so liquid phase sintering does not occur properly and sintering becomes incomplete. Moreover, since it colors the sintered body, it is unsuitable for some uses.
【0006】次に、本窒化アルミニウム粉末の具備すべ
きその他の特性値としては、以下の条件を充足すること
が必要である。
1)平均粒径範囲が1〜5μmで、1μm未満ではAl
N粉末の酸素吸着量が大きくなり焼結体の熱伝導率を低
下させ、5μmを超えると焼結性が悪くなり、焼結温度
が高くなる。
2)加圧嵩密度(500kg/cm2)が1.50〜1
.90g/cm3で、1.50 g/cm3未満では成
形時のグリーン密度が小さく、焼結温度が高くなり、1
.90g/cm3を超えると成形時のグリーン密度が大
きくなり過ぎ脱脂等が困難になり、焼結むらが生じ易く
、焼結ソリ,焼結クラック等が発生し易くなる。Next, as for other characteristic values that the present aluminum nitride powder should have, it is necessary to satisfy the following conditions. 1) If the average particle size range is 1 to 5 μm, and less than 1 μm, Al
The amount of oxygen adsorbed by the N powder increases, reducing the thermal conductivity of the sintered body, and if it exceeds 5 μm, the sinterability deteriorates and the sintering temperature increases. 2) Pressure bulk density (500 kg/cm2) is 1.50 to 1
.. 90 g/cm3, and if it is less than 1.50 g/cm3, the green density during molding will be low, the sintering temperature will be high, and 1.
.. If it exceeds 90 g/cm3, the green density during molding becomes too large, making degreasing difficult, making sintering unevenness more likely, and sintering warpage, sintering cracks, etc. more likely to occur.
【0007】以下に、上記組成及び特性値を有する焼結
用窒化アルミニウムの製造法を説明する。
A.原料
1)アルミナ
実質的にα−アルミナを含有しない純度99.9重量%
以上であって、
a)ソーダ分がNa2Oとして0.90重量%以下Al
N粉末製造プロセスでの精製過程にてアルミナ中から気
化し除去されたNa2O分が、その処理炉の内壁を短時
間で汚染することになる。そこで、0.90重量%を超
えないものを使用することが作業サイクル上好ましい。
b)不可避的金属不純物が酸化物として単独で400p
pm以下、合計で1,000ppm以下
この上限を超えると精製除去するのに高温でしかも長時
間の減圧加熱処理が必要となり、経済的でない。又、得
られる焼結体も着色するようになり用途によっては好ま
しくない。
c)含浸被覆されたカルシウム分の含有量がCa元素と
して0.008〜0.025重量%
上記範囲が生成するAlN粉末の低温焼結性や、その焼
結体での焼結むらの発生防止を確保するのに必要な範囲
である。ここで、“含浸被覆された”とは、CaOが遷
移アルミナとは分離・独立して存在することなく、遷移
アルミナ粒子中に含浸状又は被覆状に一体的に存在する
状態をいう。
d)粒径 0.2〜5μm
粒径が5μmを超えると生成AlNの粒径が大きくなり
焼結性が悪くなる。一方、0.2μm未満のものでは、
コスト的にみて好ましくない。
e)BET比表面積 30m2/g以上30m2/g
未満ではAlN化への反応性が悪く、反応条件(温度、
時間)が悪化する。
上記遷移アルミナの製法の一例を次に示す。バイヤー法
ジプサイト型微粒水酸化アルミニウム(純度99重量%
以上、粒径3μm以下のもの)を炭酸水素カルシウム,
塩化カルシウム,硝酸カルシウム,酢酸カルシウムから
選ばれたカルシウム塩の50〜500mg/l水溶液中
に浸漬処理(洗浄手段も含む)した後、例えば50℃/
hr程度の昇温速度で昇温させた後、酸化雰囲気で50
0〜800℃で焼成することによってCaOが含浸被覆
された遷移アルミナを得ることが出来る。なお、コスト
的には劣るが遷移アルミナを前述と同様な水溶液に浸漬
した後、乾燥する方法も採り得る。
2)カーボンブラック
純度99.7%以上、灰分0.3 重量%以下で、粒径
としては0.3μm以下が好ましく、0.3μmを超え
るとアルミナに対する表面被覆効果が不十分となる。ア
ルミナ:カーボン=1:0.36〜0.45(重量比)
で、0.36未満では窒化が不十分となる虞があり、0
.45を超えると脱炭処理が長時間となり、AlN中の
酸素濃度が増加し、燃料コスト等も上昇する。
3)有機高分子化合物
有機高分子化合物としては、1000℃以下で、液相を
経ることなく固相のまま、又は気相を経由して炭素化す
るもので、粒径10μm以下で、例えばフェノールホル
ムアルデヒド樹脂,ポリフェニレン,ポリ塩化ビニリデ
ン,セルロース等が好ましく用いられる。添加量として
はアルミナとカーボンブラックとの総量に対して0.1
〜5重量%で、0.1重量%未満では生成するAlN粉
末の微粒化効果が不十分であり、一方、5重量%を超え
ると、脱炭処理後のAlN粉末中に残存するカーボン量
が多くなり、不適当である。
4)有機粉砕助剤
通常使用されるもので良く、プロピレングリコール,高
級脂肪酸例えばパルミチン酸,ステアリン酸,オレイン
酸等、及び高級脂肪酸のMg,Ca,Ba塩等が用いら
れ、添加量は0.5〜3重量%で、0.5重量%未満で
は使用効果が不十分で、又、3重量%を超えても、コス
トが上がる割には粉砕効率は良くならない。[0007] Below, a method for producing aluminum nitride for sintering having the above composition and characteristic values will be explained. A. Raw material 1) Alumina: 99.9% purity by weight, containing virtually no α-alumina
or more, wherein a) the soda content is 0.90% by weight or less as Na2O, Al;
Na2O vaporized and removed from alumina during the purification process in the N powder production process will contaminate the inner wall of the processing furnace in a short time. Therefore, it is preferable to use a content not exceeding 0.90% by weight in view of the work cycle. b) Unavoidable metal impurities are 400p alone as oxides
pm or less, and 1,000 ppm or less in total.If this upper limit is exceeded, purification and removal requires high-temperature and long-term reduced-pressure heat treatment, which is not economical. Moreover, the obtained sintered body also becomes colored, which is undesirable depending on the application. c) The calcium content of the impregnated coating is 0.008 to 0.025% by weight as Ca element.The above range improves the low-temperature sinterability of the AlN powder produced and prevents uneven sintering in the sintered body. This is the range necessary to ensure that. Here, "impregnated and coated" refers to a state in which CaO does not exist separately or independently from transition alumina, but instead exists integrally in transition alumina particles in an impregnated or coated manner. d) Particle size: 0.2 to 5 μm When the particle size exceeds 5 μm, the particle size of the AlN produced becomes large and the sinterability deteriorates. On the other hand, for those less than 0.2 μm,
Not desirable from a cost standpoint. e) BET specific surface area 30m2/g or more 30m2/g
If it is less than
time) gets worse. An example of the method for producing the above transition alumina is shown below. Bayer method gypsite type fine aluminum hydroxide (purity 99% by weight)
Calcium hydrogen carbonate,
After immersion treatment (including cleaning means) in a 50 to 500 mg/l aqueous solution of a calcium salt selected from calcium chloride, calcium nitrate, and calcium acetate,
After raising the temperature at a rate of approximately 500 hr,
CaO-impregnated transition alumina can be obtained by firing at 0 to 800°C. Note that a method of immersing transition alumina in the same aqueous solution as described above and then drying it may also be used, although it is inferior in terms of cost. 2) The carbon black should have a purity of 99.7% or more, an ash content of 0.3% by weight or less, and a particle size of 0.3 μm or less, and if it exceeds 0.3 μm, the surface coating effect on alumina will be insufficient. Alumina: Carbon = 1:0.36-0.45 (weight ratio)
If it is less than 0.36, there is a risk that nitriding will be insufficient;
.. If it exceeds 45, the decarburization process will take a long time, the oxygen concentration in AlN will increase, and the fuel cost will also increase. 3) Organic polymer compounds Organic polymer compounds are those that are carbonized at 1000°C or lower as a solid phase without passing through a liquid phase or through a gas phase, and have a particle size of 10 μm or less, such as phenol. Formaldehyde resin, polyphenylene, polyvinylidene chloride, cellulose, etc. are preferably used. The amount added is 0.1 based on the total amount of alumina and carbon black.
~5% by weight, and if it is less than 0.1% by weight, the atomization effect of the generated AlN powder will be insufficient, while if it exceeds 5% by weight, the amount of carbon remaining in the AlN powder after decarburization will decrease. There are too many and it is inappropriate. 4) Organic grinding aids Any commonly used organic grinding aids may be used, such as propylene glycol, higher fatty acids such as palmitic acid, stearic acid, oleic acid, Mg, Ca, and Ba salts of higher fatty acids, and the amount added is 0. If the amount is 5 to 3% by weight, and if it is less than 0.5% by weight, the effect of use is insufficient, and if it exceeds 3% by weight, the pulverization efficiency will not be improved although the cost will increase.
【0008】B.AlN粉末の製造方法本発明のAlN
粉末は上述の原料を所定量混合した後、次の1)〜4)
の工程順序により製造される。
1)乾式粉砕混合
粉砕混合機としては、ボールミル,回転ボールミル,ア
トライター等が用いられる。粉砕混合により、軽装嵩密
度を0.3〜0.6g/cm3の範囲に調整する。0.
6g/cm3を超えると、反応に必要なN2ガスの通気
が悪くなり反応効率が低下する。
2)窒化反応
混合反応原料をトレーに入れて窒化反応炉内に配置した
後、窒素雰囲気中で、以下以下の加熱、窒化反応を順次
行なう。
2−1)予備加熱:常温から最高1100℃まで、適宜
の昇温速度で加熱する。
2−2)減圧精製処理:800〜1100℃の温度で3
0トール以下の減圧下で加熱することによって、遷移ア
ルミナ中のNa2O,Fe2O3,SiO2,MgO等
の不純物を気化分離しながら窒化反応の開始温度近傍ま
で昇温させる。この際焼結に有利なCa分だけは残留さ
せることが出来る。好ましくは、1〜20トールで10
分〜5時間処理を行う。
2−3)優先窒化処理:次いで、1気圧の窒素雰囲気と
した後、最高1600℃までの昇温過程を20℃/hr
以下、好ましくは10〜17℃/hrの昇温速度とする
ことによって、遷移アルミナ粒の表面のみをまず優先窒
化させることにより、Al2O3粒の結晶成長を抑制し
、延いては生成AlN粒子の粗粒化を抑制する。
2−4)本格窒化処理:次いで、同様な窒素雰囲気中で
1500〜1700℃で10〜70時間処理して、窒化
反応を完結させる。
3)所望による解砕処理
窒化反応終了後の残留カーボンが存在する状態で解砕す
ることによって、AlN粉末中の酸素含有量の増加を適
切に防止しつつ解砕できる。
4)脱炭処理
乾燥空気の流通加熱炉で、500〜600℃で5〜10
時間処理して残留カーボンを除去する。B. Method for producing AlN powder AlN of the present invention
After mixing the above-mentioned raw materials in a predetermined amount, the powder is prepared using the following methods 1) to 4).
Manufactured using the following process sequence. 1) Dry grinding/mixing As the grinding/mixing machine, a ball mill, a rotary ball mill, an attritor, etc. are used. By pulverization and mixing, the light bulk density is adjusted to a range of 0.3 to 0.6 g/cm3. 0.
If it exceeds 6 g/cm3, the ventilation of N2 gas necessary for the reaction will become poor and the reaction efficiency will decrease. 2) Nitriding reaction After the mixed reaction raw materials are placed in a tray and placed in a nitriding reactor, the following heating and nitriding reactions are performed in sequence in a nitrogen atmosphere. 2-1) Preheating: Heating from room temperature to a maximum of 1100°C at an appropriate temperature increase rate. 2-2) Vacuum purification treatment: 3 at a temperature of 800 to 1100°C
By heating under reduced pressure of 0 torr or less, the temperature is raised to near the starting temperature of the nitriding reaction while vaporizing and separating impurities such as Na2O, Fe2O3, SiO2, MgO, etc. in the transition alumina. At this time, only the Ca component, which is advantageous for sintering, can remain. Preferably 10 to 20 torr
Treat for minutes to 5 hours. 2-3) Prioritized nitriding treatment: Next, after creating a nitrogen atmosphere of 1 atm, the temperature is raised to a maximum of 1600°C at 20°C/hr.
Hereinafter, by preferentially nitriding only the surface of the transition alumina grains at a heating rate of preferably 10 to 17°C/hr, the crystal growth of Al2O3 grains is suppressed, and the resulting roughness of the AlN grains is suppressed. Suppresses granulation. 2-4) Full-scale nitriding treatment: Next, treatment is performed at 1500 to 1700° C. for 10 to 70 hours in a similar nitrogen atmosphere to complete the nitriding reaction. 3) Desired Crushing Treatment By crushing in the presence of residual carbon after the nitriding reaction, it is possible to crush the AlN powder while appropriately preventing an increase in oxygen content. 4) Decarburization treatment In a dry air circulation heating furnace, at 500 to 600°C for 5 to 10 minutes.
Remaining carbon is removed by time treatment.
【0009】C.AlN焼結体の製造プロセスAlN粉
末100重量部,焼結助剤1〜5重量部,成形用バイン
ダー7〜15重量部、及びドクターブレード法による成
形の場合には溶媒50〜70重量部を加え混合物の粘度
が100〜200ポイスになるように調整する。上記焼
結助剤としては、汎用されている希土類元素の酸化物(
Y2O3等),アルカリ土類金属酸化物(例えばCaO
,BaO,SrO)が用いられ、所望の焼結条件に応じ
て例えばY2O31〜5部,CaO1〜3部添加される
。成形用バインダーとしては、ポリビニルブチラール,
パラフィン,ステアリン酸等が、溶媒としてはブタノー
ル,メチルエチルケトン,トルエン,エタノール等の単
独またはこれらの混合溶媒が用いられる。以上のものは
、例えばドクターブレード法で成形する場合、ナイロン
製ポット中での20〜48時間のボールミル湿式粉砕を
伴う湿式混合後、減圧下で攪拌処理を行う。0.1気圧
以下で10分〜5時間処理し脱泡と粘度調整を行なう。
次いで、ドクターブレード法によってシート状に成形し
、乾燥後、所望の大きさに切断加工する。次いで空気中
では400〜600℃,N2ガス中では700〜800
℃で脱脂処理を行ない溶媒を揮散させ乾燥グリーン成形
体を得る。なお、常法の金型プレスや静水圧プレス等の
成形加工も適用出来ることは勿論である。次に、焼結反
応炉により常圧焼結を行ないAlN焼結体を得る。常圧
焼結の条件は、N2ガスの1気圧雰囲気(流量1〜10
l/min)下、焼結温度1800℃以下(1700
〜1800℃),焼結時間2〜10時間である。なお、
同様に通常のホットプレス焼結法によってもよいことは
勿論である。C. Manufacturing process of AlN sintered body Add 100 parts by weight of AlN powder, 1 to 5 parts by weight of sintering aid, 7 to 15 parts by weight of binder for molding, and 50 to 70 parts by weight of solvent in the case of molding by doctor blade method. Adjust the viscosity of the mixture to 100-200 points. As the above-mentioned sintering aid, oxides of rare earth elements (
Y2O3, etc.), alkaline earth metal oxides (e.g. CaO
, BaO, SrO), and for example 1 to 5 parts of Y2O and 1 to 3 parts of CaO are added depending on the desired sintering conditions. As a molding binder, polyvinyl butyral,
Paraffin, stearic acid, etc. are used, and as the solvent, butanol, methyl ethyl ketone, toluene, ethanol, etc. alone or in a mixture thereof are used. When molding the above materials by, for example, a doctor blade method, the mixture is wet mixed with ball mill wet pulverization in a nylon pot for 20 to 48 hours, and then stirred under reduced pressure. It is treated for 10 minutes to 5 hours at a pressure of 0.1 atm or less to defoam and adjust the viscosity. Next, it is formed into a sheet by a doctor blade method, dried, and then cut into a desired size. Then 400-600℃ in air and 700-800℃ in N2 gas.
A degreasing treatment is performed at ℃ to volatilize the solvent and obtain a dry green molded body. It goes without saying that conventional molding processes such as mold pressing and isostatic pressing can also be applied. Next, pressureless sintering is performed in a sintering reactor to obtain an AlN sintered body. The conditions for pressureless sintering are a 1 atm atmosphere of N2 gas (flow rate of 1 to 10
l/min) at a sintering temperature of 1800°C or less (1700°C
~1800°C), and the sintering time was 2 to 10 hours. In addition,
Of course, a common hot press sintering method may also be used.
【0010】0010
【作用】[1]AlN粉末の製造法
1)遷移アルミナの段階で、Ca分が含浸被覆により担
持されると、Ca分が粒に均一に分散され、窒化反応時
の各昇温加熱過程で、他の陽イオン不純物が揮散分離さ
れる中でCa分がAl2O3粒子表面側に拡散濃縮され
るので、生成したAlN粉末に於いても、その粒の中心
部よりも表面側にCa分が濃縮され、焼結助剤との濡れ
性を良好として、易焼結性になると思われる。
2)乾式粉砕混合により、軽装嵩密度を所定範囲にする
とアルミナ粒子表面をカーボン粒が均一に覆うことにな
り、更に例えばカーボンを発生する固相炭素花有機高分
子化合物の使用と共働して、少量のカーボン量でも均一
な窒化反応が発現される。又、生成するAlN粒の粒成
長を抑制する作用も同時に発現される。
3)「減圧加熱処理」に於いて、加熱温度を従来提案さ
れている条件より200℃程度低い800〜1100℃
での適度の減圧下で処理する事によって、不要な不純物
であるNa2O,Fe2O3,SiO2等を除去しつつ
、焼結に有効なCa分を残留させることが出来る。
4)窒化反応温度への昇温過程で、昇温速度を規制した
段階を経ることによって、Al2O3粒の粒子成長を抑
制しつつ、その表面の優先窒化反応をさせることが出来
、従って生成するAlN粒の粗粒化並びに残存α−アル
ミナの発生等を防止出来る。
[2]AlN粉末
上述の製造法によって得られたAlN粉末はその粒の表
面側にCa分が均一に拡散濃縮されていることから、そ
の含有分の絶対値が少ないにも拘らず、焼結助剤とのな
じみ性が良好で、加圧嵩密度も所定の範囲にあることと
相まって焼結性が改善されるものと推察される。[Function] [1] AlN powder manufacturing method 1) At the transition alumina stage, when Ca content is supported by the impregnated coating, the Ca content is uniformly dispersed in the grains, and during each heating process during the nitriding reaction. As other cationic impurities are volatilized and separated, Ca content is diffused and concentrated on the surface side of the Al2O3 particles, so in the generated AlN powder, Ca content is concentrated on the surface side rather than the center of the particle. It is thought that this improves wettability with the sintering aid and facilitates sintering. 2) By dry grinding and mixing, the surface of the alumina particles is uniformly covered with carbon particles when the light bulk density is set within a predetermined range. , a uniform nitriding reaction occurs even with a small amount of carbon. Moreover, the effect of suppressing the grain growth of the generated AlN grains is also expressed at the same time. 3) In "reduced pressure heat treatment", the heating temperature is 800 to 1100 degrees Celsius, which is about 200 degrees Celsius lower than the conventionally proposed conditions.
By processing under moderately reduced pressure, unnecessary impurities such as Na2O, Fe2O3, SiO2, etc. can be removed, while Ca content, which is effective for sintering, can remain. 4) In the process of raising the temperature to the nitriding reaction temperature, by going through a stage in which the temperature raising rate is regulated, it is possible to suppress the particle growth of Al2O3 grains while allowing the preferential nitriding reaction on the surface of the grains, thus reducing the AlN produced. It is possible to prevent grain coarsening and generation of residual α-alumina. [2] AlN powder The AlN powder obtained by the above-mentioned manufacturing method has Ca content uniformly diffused and concentrated on the surface side of the grains, so it is difficult to sinter even though the absolute value of the content is small. It is presumed that the compatibility with the auxiliary agent is good and the pressurized bulk density is within a predetermined range, which together improve the sinterability.
【0011】[0011]
【実施例】以下に実施例,比較例により本発明を具体的
に説明する。
(1)遷移アルミナの調製
バイヤー法ジプサイト型の微粒水酸化アルミニウム[A
](実施例1)、及び[B](実施例2)を用いた。
[A] [B]
Al2O3としての純度 99.5重量
% 99.6重量% Na2O
0.40 〃
0.15 〃 MgO
0.001 〃
0.001 〃 Fe2O3
0.020 〃 0.0
18 〃 SiO2
0.015 〃 0.019
〃 CaO
0.013 〃 0.025 〃
平均粒径 0.
5 μm 2 μm上記
水酸化アルミニウムを、炭酸水素カルシウムをCaCO
3換算で300〜1000ppm含有する水溶液中に適
宜浸漬して含浸被覆されるCa濃度を調整した。次いで
、ロータリーキルンで上記処理した水酸化アルミニウム
を空気雰囲気下で700℃,5時間のか焼処理し、α−
アルミナを含有しない遷移アルミナを得た。次に、カー
ボンブラック(新日鉄化学社製,商品名ニテロン#20
0),フェノールフォルムアルデヒド樹脂粉末(旭有機
材工業社製,商品名AVライト)及びプロピレングリコ
ールを所定量配合し、所定の軽装嵩密度まで乾式混合粉
砕した。[Examples] The present invention will be specifically explained below with reference to Examples and Comparative Examples. (1) Preparation of transition alumina Bayer process gypsite type fine-grained aluminum hydroxide [A
] (Example 1) and [B] (Example 2) were used.
[A] [B]
Purity as Al2O3 99.5% by weight 99.6% by weight Na2O
0.40 〃
0.15 MgO
0.001 〃
0.001 〃 Fe2O3
0.020 〃 0.0
18 〃 SiO2
0.015 〃 0.019
〃CaO
0.013 〃 0.025 〃
Average particle size 0.
5 μm 2 μm The above aluminum hydroxide, calcium hydrogen carbonate, CaCO
The Ca concentration to be impregnated and coated was adjusted by appropriately immersing the sample in an aqueous solution containing 300 to 1000 ppm in terms of Ca concentration. Next, the aluminum hydroxide treated above was calcined in a rotary kiln at 700°C for 5 hours in an air atmosphere to give α-
Transition alumina containing no alumina was obtained. Next, carbon black (manufactured by Nippon Steel Chemical Co., Ltd., trade name Niteron #20)
0), phenol formaldehyde resin powder (manufactured by Asahi Yokuzai Kogyo Co., Ltd., trade name: AV Light) and propylene glycol were blended in predetermined amounts and dry mixed and pulverized to a predetermined light bulk density.
【0012】上記混合原料をトレー内に薄層状に収納し
、そのトレーを棚段状に窒化反応炉中に配置し、950
℃までN2ガスを流しながら250℃/hrの昇温速度
で昇温させ、950℃に保持したまま、N2ガス雰囲気
中15トールまで減圧し、15分間保持した。次いで、
1気圧のN2ガス雰囲気に戻し、1100℃まで50℃
/hrで昇温した後、1500℃まで17℃/hrの昇
温速度で昇温させ、優先窒化処理をした。さらに、16
00℃で40時間保持し、窒化反応を完結させた。次い
で、実施例2の場合、別途解砕処理として常温まで冷却
した後、ボールミルで30分間行なった。さらに、ステ
ンレス皿内に反応混合物を移して電気炉内に装入し、乾
燥空気の流気下で600℃,6時間の脱炭処理を行なっ
た。
上記により得られたAlN粉末の原料組成,化学分析値
,及び得られたAlN粉末の特性値等を表1に示す。[0012] The above-mentioned mixed raw materials are stored in a thin layer in a tray, and the tray is arranged in a tiered manner in a nitriding reactor.
The temperature was raised to 250° C./hr while flowing N2 gas to 950° C., and while the temperature was maintained at 950° C., the pressure was reduced to 15 torr in a N2 gas atmosphere and held for 15 minutes. Then,
Return to 1 atm N2 gas atmosphere and heat at 50℃ to 1100℃
After raising the temperature at a rate of 17°C/hr, the temperature was raised to 1500°C at a rate of 17°C/hr to perform preferential nitriding treatment. Furthermore, 16
The temperature was maintained at 00°C for 40 hours to complete the nitriding reaction. Next, in the case of Example 2, a separate crushing treatment was performed for 30 minutes in a ball mill after cooling to room temperature. Further, the reaction mixture was transferred into a stainless steel dish, placed in an electric furnace, and decarburized at 600° C. for 6 hours under a stream of dry air. Table 1 shows the raw material composition, chemical analysis values, and characteristic values of the obtained AlN powder.
【0013】[0013]
【表1】[Table 1]
【0014】また比較例として本発明AlN粉末と原料
組成範囲等の異なるものを調製し上記実施例と同一並び
に異なる場合は表2に示す条件にてそれぞれ処理した。
その原料組成,化学分析値,及び得られたAlN粉末の
特性値等を表2に示す。As a comparative example, AlN powders having different raw material composition ranges from the present invention were prepared and treated under the same conditions as in the above examples, and in cases where they were different, under the conditions shown in Table 2. Table 2 shows the raw material composition, chemical analysis values, and characteristic values of the obtained AlN powder.
【0015】[0015]
【表2】[Table 2]
【0016】上記表1,表2の化学分析値,物性値の測
定方法について説明する。
(1)Na,Ca,Fe,Si,Mgは蛍光X線分析(
理化電機工業(株)製システム3070)に拠った。
(2)カーボンは、燃焼赤外検出法(堀場製EMIA−
110)に拠った。
(3)BET比表面積は、比表面積自動測定装置(カウ
ンタークロム社製モノソーブMS15型)で測定した。
(4)平均粒径はセディグラフ(島津−マイクロメリテ
ィックス社製5000ET)により測定した。
(5)α−アルミナ量はX線回折により求めた。
(6)酸素含有量は放射化分析法(東芝製放射化分析装
置NAT−200型)により求めた。
(7)加圧嵩密度は40mm×20mmの型に、AlN
粉を15g入れ、500 kg/cm2に加圧し、圧粉
体の大きさ,重量を測定して求めた。The method for measuring the chemical analysis values and physical property values shown in Tables 1 and 2 above will be explained. (1) Na, Ca, Fe, Si, and Mg are determined by fluorescent X-ray analysis (
Based on System 3070 manufactured by Rika Denki Kogyo Co., Ltd. (2) Carbon is detected using combustion infrared detection method (Horiba EMIA-
110). (3) The BET specific surface area was measured with an automatic specific surface area measuring device (Monosorb MS15 type manufactured by Counterchrome Co., Ltd.). (4) The average particle size was measured using a Sedigraph (5000ET, manufactured by Shimadzu-Micromeritics). (5) The amount of α-alumina was determined by X-ray diffraction. (6) Oxygen content was determined by activation analysis method (activation analyzer model NAT-200 manufactured by Toshiba). (7) Pressure bulk density is 40 mm x 20 mm mold, AlN
This was determined by adding 15 g of powder, pressurizing it to 500 kg/cm2, and measuring the size and weight of the compact.
【0017】
(2)実施例(得られたAlN粉末の特性評価)
AlN粉末:前項(1)で得られたもの
100重量部 焼結助剤:イットリア
2重量部 成形バインダー:ポリビニルブ
チラール 10重量部 溶
媒:ブタノール
60重量部 以上のもの
をナイロン製ポット中で24時間湿式混合後、減圧下で
攪拌しながら脱泡処理し、ドクターブレード法によって
50mm角で1mm厚の試験片を成形した。これを50
0℃の乾燥炉内で脱脂処理し、焼結反応炉でN2ガス雰
囲気下で450℃/hrの昇温速度で焼結温度まで昇温
し、その焼結温度で2時間焼結させ焼結体の密度が理論
密度の99%以上と成る焼結温度を求めた。結果を次の
表3に示す。(2) Example (characteristic evaluation of obtained AlN powder)
AlN powder: obtained in the previous section (1)
100 parts by weight Sintering aid: Yttria
2 parts by weight Molding binder: polyvinyl butyral 10 parts by weight Solvent: butanol
After wet-mixing 60 parts by weight or more in a nylon pot for 24 hours, the mixture was defoamed while stirring under reduced pressure, and a test piece of 50 mm square and 1 mm thick was formed by the doctor blade method. 50 of this
Degreased in a drying oven at 0°C, heated to sintering temperature in a sintering reactor at a rate of 450°C/hr under N2 gas atmosphere, and sintered at that sintering temperature for 2 hours. The sintering temperature at which the density of the body becomes 99% or more of the theoretical density was determined. The results are shown in Table 3 below.
【0018】[0018]
【表3】[Table 3]
【0019】[0019]
【発明の効果】(1)焼結用窒化アルミニウム粉末自体
として、焼結体とした時に高熱伝導性が得られると共に
、
1)少量のCa濃度でありながら充填性も改善されてい
るので、焼結温度を低下することが出来る。これにより
焼結助剤の使用量も削減することが出来、焼結コストを
節減出来る。
2)炭素含有量を低くすることにより、焼結むらが発生
しないなどの焼結性を安定させ着色化も防止することが
出来る。Effects of the Invention: (1) As the aluminum nitride powder itself for sintering, high thermal conductivity is obtained when made into a sintered body, and (1) the filling property is improved despite the small Ca concentration. The freezing temperature can be lowered. This makes it possible to reduce the amount of sintering aid used and reduce sintering costs. 2) By lowering the carbon content, it is possible to stabilize the sintering properties, such as preventing uneven sintering, and prevent coloring.
【0020】(2)焼結用窒化アルミニウム粉末の製造
法として
1)普通純度のアルミナ源より高純度のAlN粉末が得
られる。
2)減圧処理温度を800〜1100℃とすることによ
って、有害不純物であるSi,Fe,Na等の陽イオン
不純物を除去しながら、有用成分であるCa分は残存さ
せることが出来る。
3)微粒化剤やカーボン量を少量化することによって、
微粒化効果を上げつつ製品AlN粉末中のカーボン量を
安定的に減らし、又、脱炭処理が容易になるので酸素含
有量も低レベルに規制することができる。
4)窒化反応時の1100℃以降の昇温速度を遅くする
ことによって、生成AlN粉末の粗粒化やAl2O3粒
の粗粒化に起因する残存α−アルミナの発生等を防止で
きる。(2) Method for producing aluminum nitride powder for sintering: 1) AlN powder of high purity can be obtained from an alumina source of ordinary purity. 2) By setting the reduced pressure treatment temperature to 800 to 1100° C., Ca, which is a useful component, can remain while removing harmful impurities such as Si, Fe, Na, and other cationic impurities. 3) By reducing the amount of atomizing agent and carbon,
While increasing the atomization effect, the amount of carbon in the product AlN powder can be stably reduced, and since decarburization becomes easy, the oxygen content can also be regulated to a low level. 4) By slowing down the rate of temperature increase after 1100° C. during the nitriding reaction, it is possible to prevent the generation of residual α-alumina caused by coarsening of the AlN powder and coarsening of the Al2O3 grains.
Claims (2)
.010〜0.030重量%, 酸素含有量0.6〜1
.1重量%を含有すると共にFe・Si等の不可避的陽
イオン不純物が金属元素として400ppm以下,炭素
含有量300ppm以下で、平均粒径1〜5μm,50
0kg/cm2での加圧嵩密度が1.50〜1.90g
/cm3であることを特徴とする焼結原料用窒化アルミ
ニウム粉末。[Claim 1] Calcium compound as Ca element 0
.. 010-0.030% by weight, oxygen content 0.6-1
.. 1% by weight, unavoidable cationic impurities such as Fe and Si as metal elements are 400ppm or less, carbon content is 300ppm or less, average particle size is 1 to 5μm, 50
Pressure bulk density at 0kg/cm2 is 1.50-1.90g
An aluminum nitride powder for use as a sintering raw material, characterized in that: /cm3.
度99.0重量%以上であって、ソーダ分がNa2Oと
して0.90重量%以下、不可避的金属不純物が酸化物
として単独で400ppm以下,合計で1000ppm
以下、含浸被覆されたCaOがCa元素として0.00
8〜0.025重量%であり、且つ粒径が0.2〜5μ
mでBET比表面積が30m2/g以上である遷移アル
ミナに、 b)■平均粒径がアルミナより微粒で且つ0.3μm以
下であり灰分が0.3重量%以下のカーボンブラックを
アルミナに対して、アルミナ:カーボン=1:0.36
〜0.45の重量比で、■生成AlNの微粒化剤として
1000℃以下で液相を経ることなく固相のまま又は気
相を経由して炭素化する有機化合物をアルミナとカーボ
ンブラックとの総量に対して1〜5重量%、及び■有機
粉砕助剤をアルミナに対して0.5〜3重量%添加した
後、 c)上記混合物を軽装嵩密度が0.3〜0.6g/cm
3になるように乾式混合粉砕し、 d)次いで、窒化反応炉内で窒素ガス雰囲気にて、順次
■常温から最高1100℃まで適宜昇温させ、■800
〜1100℃の温度帯域にて30トール以下の減圧下で
減圧精製処理し、■次いで最高1600℃まで、20℃
/hr以下の昇温速度でアルミナの表面を優先窒化反応
させた後、■1500℃以上で窒化反応を完結させ、e
)所望により、解砕処理した後に、酸化性雰囲気中で脱
炭処理することを特徴とする焼結原料用窒化アルミニウ
ム粉末の製造方法。Claim 2: a) Purity of 99.0% by weight or more that does not substantially contain α-alumina, soda content is 0.90% by weight or less as Na2O, and unavoidable metal impurities are 400 ppm alone as oxides. Below, total 1000ppm
Below, the impregnated CaO is 0.00 as Ca element.
8 to 0.025% by weight, and the particle size is 0.2 to 5μ
b) Carbon black with an average particle size of 0.3 μm or less and an ash content of 0.3% by weight or less is added to transition alumina with a BET specific surface area of 30 m2/g or more. , alumina: carbon = 1:0.36
At a weight ratio of ~0.45, (1) an organic compound that is carbonized as an atomizing agent for the produced AlN without passing through a liquid phase or through a gas phase at temperatures below 1000°C is combined with alumina and carbon black; After adding 1 to 5% by weight of the total amount and (1) 0.5 to 3% of an organic grinding aid to the alumina, c) The above mixture has a light bulk density of 0.3 to 0.6 g/cm.
d) Then, in a nitrogen gas atmosphere in a nitriding reactor, the temperature was raised appropriately from room temperature to a maximum of 1100°C, and
Vacuum purification treatment under reduced pressure of 30 torr or less in a temperature range of ~1100°C, followed by 20°C up to a maximum of 1600°C.
After performing a preferential nitriding reaction on the alumina surface at a heating rate of /hr or less,
) A method for producing aluminum nitride powder for sintering raw material, which comprises subjecting it to decarburization in an oxidizing atmosphere after crushing if desired.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3047435A JPH04265208A (en) | 1991-02-21 | 1991-02-21 | Aluminum nitride powder for sintered material and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3047435A JPH04265208A (en) | 1991-02-21 | 1991-02-21 | Aluminum nitride powder for sintered material and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04265208A true JPH04265208A (en) | 1992-09-21 |
Family
ID=12775079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3047435A Pending JPH04265208A (en) | 1991-02-21 | 1991-02-21 | Aluminum nitride powder for sintered material and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04265208A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012121742A (en) * | 2010-12-06 | 2012-06-28 | Tokuyama Corp | Method for producing spherical aluminum nitride powder |
JP2013107805A (en) * | 2011-11-23 | 2013-06-06 | Tokuyama Corp | Aluminum nitride powder and method for producing the same |
JP2014080362A (en) * | 2013-12-06 | 2014-05-08 | Tokuyama Corp | Aluminum nitride powder |
WO2021131407A1 (en) * | 2019-12-23 | 2021-07-01 | 日本碍子株式会社 | Aluminum nitride particles |
WO2021161883A1 (en) | 2020-02-10 | 2021-08-19 | 株式会社トクヤマ | Aluminum nitride powder and method of producing same |
-
1991
- 1991-02-21 JP JP3047435A patent/JPH04265208A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012121742A (en) * | 2010-12-06 | 2012-06-28 | Tokuyama Corp | Method for producing spherical aluminum nitride powder |
JP2013107805A (en) * | 2011-11-23 | 2013-06-06 | Tokuyama Corp | Aluminum nitride powder and method for producing the same |
JP2014080362A (en) * | 2013-12-06 | 2014-05-08 | Tokuyama Corp | Aluminum nitride powder |
WO2021131407A1 (en) * | 2019-12-23 | 2021-07-01 | 日本碍子株式会社 | Aluminum nitride particles |
WO2021161883A1 (en) | 2020-02-10 | 2021-08-19 | 株式会社トクヤマ | Aluminum nitride powder and method of producing same |
KR20220138379A (en) | 2020-02-10 | 2022-10-12 | 가부시끼가이샤 도꾸야마 | Aluminum nitride powder and manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI268916B (en) | Method for producing aluminum magnesium titanate sintered product | |
US5314850A (en) | Aluminum nitride sintered body and production thereof | |
US5077245A (en) | Aluminum nitride-based sintered body and process for the production thereof | |
WO2022156637A1 (en) | Method for preparing silicon nitride ceramic material | |
KR960016070B1 (en) | Sintered aluminium nitride and its production | |
JP2018030771A (en) | Method for producing porous alumina particle material | |
US6544917B1 (en) | Si3N4 ceramic, Si-base composition for its production, and method for its production | |
JP2017178752A (en) | Spherical ain particles, spherical ain filler and manufacturing method of spherical ain particles | |
JPH04265208A (en) | Aluminum nitride powder for sintered material and its production | |
JP3636370B2 (en) | Aluminum nitride powder and method for producing the same | |
JPH0428645B2 (en) | ||
JPH05330807A (en) | Aluminum nitride powder for sintering and its production | |
JPS60171270A (en) | Aluminum nitride composition | |
JP2006248858A (en) | Yttria-stabilized zirconia sintered compact and its manufacturing method | |
JP4615873B2 (en) | Aluminum nitride sintered body and manufacturing method thereof | |
JPH1017367A (en) | Aluminum nitride sintered compact and its production | |
JP4773744B2 (en) | Method for producing aluminum nitride sintered body | |
JP2786719B2 (en) | Method for producing rare earth oxide sintered body | |
JPH0543209A (en) | Aluminum nitride powder for sintering and production thereof | |
JP3900589B2 (en) | Magnesium siliconitride powder and method for producing the same | |
JP4065589B2 (en) | Aluminum nitride sintered body and manufacturing method thereof | |
JPH013075A (en) | Method for manufacturing aluminum nitride sintered body | |
JP2528300B2 (en) | Aluminum nitride sintered body | |
JPH0512299B2 (en) | ||
JPS62297205A (en) | Production of aluminum nitride powder |