JPH04265017A - Rubidium atom oscillator - Google Patents

Rubidium atom oscillator

Info

Publication number
JPH04265017A
JPH04265017A JP2651191A JP2651191A JPH04265017A JP H04265017 A JPH04265017 A JP H04265017A JP 2651191 A JP2651191 A JP 2651191A JP 2651191 A JP2651191 A JP 2651191A JP H04265017 A JPH04265017 A JP H04265017A
Authority
JP
Japan
Prior art keywords
photodetector
output
inputted
resonance signal
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2651191A
Other languages
Japanese (ja)
Inventor
Yoshibumi Nakajima
義文 中島
Yoshito Furuyama
義人 古山
Kazuharu Chiba
千葉 一治
Hideo Sumiyoshi
秀夫 住吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2651191A priority Critical patent/JPH04265017A/en
Publication of JPH04265017A publication Critical patent/JPH04265017A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PURPOSE:To obtain an LD exciting type rubidium atom oscillator of having higher stability by improving the ratio of a level of a resonance signal for detecting a photodetector and a noise level, and detecting the phase inversion point of an exacter resonance signal. CONSTITUTION:Light from a laser diode LD 1 is split into spectral components by a spectral means 5. Subsequently, one is inputted to a light/microwave resonance part 2 and the resonance signal of an output of a first photodetector 3 is inputted to a differential amplifier 7. On the other hand, the other is inputted to a second photodetector 6, and an output is inputted to the amplifier 7. The output of the amplifier 7 decreases a noise and is inputted to a control electronic circuit 4. In such a manner, the ratio of the level of a resonance signal and the level of a noise is improved, and the LD exciting type rubidium atom oscillator having higher stability can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は通信,航法,放送等の分
野に利用されるルビジウム原子発振器の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in rubidium atomic oscillators used in fields such as communications, navigation, and broadcasting.

【0002】ルビジウム原子発振器としては、ランプ励
起型に替わりレーザダイオード(以下LDと称す)励起
型とすると、光源のコヒーレント性が高くなり、従来に
比し高安定なルビジウム原子発振器が得られることが判
り、LD励起型ルビジウム原子発振器が開発されている
が、更に高安定なルビジウム原子発振器の提供が望まれ
ている。
As for the rubidium atomic oscillator, if a laser diode (hereinafter referred to as LD) pumping type is used instead of a lamp pumping type, the coherence of the light source becomes higher and a rubidium atomic oscillator that is more stable than the conventional one can be obtained. Although an LD-excited rubidium atomic oscillator has been developed, it is desired to provide an even more stable rubidium atomic oscillator.

【0003】0003

【従来の技術】図3は従来例のLD励起型ルビジウム原
子発振器のブロック図である。図3では、制御用電子回
路4の、電圧制御水晶発振器10の出力周波数を、変調
器11にて低周波発振器17の出力信号で変調し、変調
された信号を周波数合成器12にて逓倍合成してマイク
ロ波とし、光・マイクロ波共鳴部2に加えており、又L
D1よりのルビジウム87の0.78ミクロンの波長の
コヒーレントなポンピング光は光・マイクロ波共鳴部2
に入力し、ポンピングさせ、透過光量の変化を光検出器
3にて検出して得た共鳴信号を、選択増幅器14にて選
択増幅し、同期検波器15にて同期検波した後、積分器
16にて積分し、積分した電圧を電圧制御水晶発振器1
0に加えることにより、周波数合成器12の出力のマイ
クロ波の周波数が常にルビジウム原子の遷移周波数と一
致するように制御している。
2. Description of the Related Art FIG. 3 is a block diagram of a conventional LD-excited rubidium atomic oscillator. In FIG. 3, the output frequency of the voltage-controlled crystal oscillator 10 of the control electronic circuit 4 is modulated by the output signal of the low-frequency oscillator 17 in the modulator 11, and the modulated signal is multiplied and synthesized in the frequency synthesizer 12. It is added to the light/microwave resonance part 2, and the L
The coherent pumping light of rubidium-87 with a wavelength of 0.78 microns from D1 is the optical/microwave resonance part 2.
The resonant signal obtained by inputting and pumping the transmitted light and detecting the change in the amount of transmitted light with the photodetector 3 is selectively amplified by the selective amplifier 14, synchronously detected by the synchronous detector 15, and then the integrator 16 The integrated voltage is integrated by the voltage controlled crystal oscillator 1.
By adding 0, the frequency of the microwave output from the frequency synthesizer 12 is controlled to always match the transition frequency of rubidium atoms.

【0004】尚LD1の温度及び流れる電流は制御し安
定な光源となるようにしているのは勿論である。このよ
うにして高安定なルビジウム原子発振器を得るようにし
ている。
Of course, the temperature and flowing current of the LD 1 are controlled to provide a stable light source. In this way, a highly stable rubidium atomic oscillator is obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、更に高
安定なルビジウム原子発振器を得ようとすると、光検出
器3の検出する共鳴信号のレベルと光検出器3の雑音レ
ベルとの比を向上させ、より正確な共鳴信号の位相反転
点を検出する必要がある。
However, in order to obtain an even more stable rubidium atomic oscillator, the ratio between the level of the resonance signal detected by the photodetector 3 and the noise level of the photodetector 3 must be improved. It is necessary to detect the phase inversion point of the resonance signal more accurately.

【0006】光検出器3の雑音源として考えられるのは
光シヨット雑音,光検出素子の雑音,増幅回路の熱雑音
等が考えられるが、光シヨット雑音が支配的である。し
かし共鳴信号を得る為にはある一定量の光強度が必要で
あるので、光シヨット雑音はさけられず、これ以上高安
定に出来ない問題点がある。
Possible sources of noise in the photodetector 3 include optical shot noise, noise of the photodetecting element, thermal noise of the amplifier circuit, etc., but optical shot noise is dominant. However, since a certain amount of light intensity is required to obtain a resonance signal, optical shot noise cannot be avoided, and there is a problem that it is impossible to achieve higher stability.

【0007】本発明は、LD励起型のより高安定なルビ
ジウム原子発振器の提供を目的としている。
The object of the present invention is to provide a more stable LD-excited rubidium atomic oscillator.

【0008】[0008]

【課題を解決するための手段】図1は本発明の原理ブロ
ック図である。図1に示す如く、0.87μmの波長の
光を出力するLD1よりのポンピング光を、光・マイク
ロ波共鳴部2に入力し、第1の光検出器3にてポンピン
グ光量の変化を検出し共鳴信号を、制御用電子回路4に
入力し、ルビジウム原子の遷移周波数に等しいマイクロ
波を発生させ該光・マイクロ波共鳴部2に入力するルビ
ジウム原子発振器において、該LD1よりの光を分光手
段5にて分光し、一方は該光・マイクロ波共鳴部2に入
力して該第1の光検出器3の出力の共鳴信号を差動増幅
器7に入力し、他方は第2の光検出器6に入力し出力を
該差動増幅器7に入力し、該差動増幅器7の出力を該制
御用電子回路4に入力するようにする。
[Means for Solving the Problems] FIG. 1 is a block diagram of the principle of the present invention. As shown in FIG. 1, pumping light from an LD 1 that outputs light with a wavelength of 0.87 μm is input to an optical/microwave resonator 2, and a first photodetector 3 detects a change in the amount of pumping light. In the rubidium atomic oscillator, which inputs the resonance signal to the control electronic circuit 4 and generates a microwave equal to the transition frequency of the rubidium atom and inputs it to the optical/microwave resonator 2, the light from the LD 1 is transmitted to the spectroscopic means 5. One side is input to the optical/microwave resonator 2 and the resonance signal output from the first photodetector 3 is input to the differential amplifier 7, and the other side is input to the second photodetector 6. and its output is input to the differential amplifier 7, and the output of the differential amplifier 7 is input to the control electronic circuit 4.

【0009】[0009]

【作用】本発明では、第1の光検出器3の出力は共鳴信
号Aと光シヨット雑音Bの和、つまりA+Bであり、第
2の光検出器6の出力は光シヨット雑音Cであり、且つ
LD1の出力光はコヒーレント性が高いので、光シヨッ
ト雑音BとCの位相は略等しく、差動増幅器7の出力は
A+B−Cとなり、雑音が減少することになる。
[Operation] In the present invention, the output of the first photodetector 3 is the sum of the resonance signal A and the optical shot noise B, that is, A+B, and the output of the second photodetector 6 is the optical shot noise C. In addition, since the output light of the LD 1 has high coherence, the phases of the optical shot noises B and C are approximately equal, and the output of the differential amplifier 7 becomes A+B-C, resulting in a reduction in noise.

【0010】すると光検出器3の検出する共鳴信号のレ
ベルと光検出器3の雑音レベルとの比が向上することに
なるので、より正確な共鳴信号の位相反転点が検出され
、より高安定なLD励起型のルビジウム原子発振器が得
られる。
[0010] Then, the ratio between the level of the resonance signal detected by the photodetector 3 and the noise level of the photodetector 3 is improved, so that a more accurate phase inversion point of the resonance signal can be detected, resulting in higher stability. A LD-excited rubidium atomic oscillator can be obtained.

【0011】[0011]

【実施例】図2は本発明の実施例のLD励起型ルビジウ
ム原子発振器のブロック図である。
Embodiment FIG. 2 is a block diagram of an LD-excited rubidium atomic oscillator according to an embodiment of the present invention.

【0012】図2で図3の従来例と異なる点は、LD1
の出力を分光し、1つを光検出器6に入力し、光検出器
3,6の出力を差動増幅器7に加え、出力を制御用電子
回路4に入力するようにした点であるので、この異なる
点を中心に以下説明する。
The difference between FIG. 2 and the conventional example shown in FIG. 3 is that LD1
The outputs of the two are separated, one is inputted to the photodetector 6, the outputs of the photodetectors 3 and 6 are added to the differential amplifier 7, and the output is inputted to the control electronic circuit 4. , this different point will be mainly explained below.

【0013】図2では、LD1よりのルビジウム87の
0.78ミクロンの波長のコヒーレントなポンピング光
は、ハーフミラー5ー1にて分光し、一方は光・マイク
ロ波共鳴部2に加えポンピングさせ、ポンピング光量の
変化を光検出器3にて検出して得た共鳴信号Aと光検出
器3の光シヨット雑音Bとの和を差動増幅器7の一方の
入力端子に加え、ハーフミラー5ー1にて分光した他方
はプリズム5ー2にて方向を変え光検出器6に入力し、
出力の光シヨット雑音Cを差動増幅器7の他方の入力端
子に加え、差動増幅器7の出力を制御用電子回路4に入
力するようにしている。
In FIG. 2, the coherent pumping light of rubidium-87 with a wavelength of 0.78 microns from the LD 1 is separated by a half mirror 5-1, and one is added to the optical/microwave resonator 2 and pumped. The sum of the resonance signal A obtained by detecting the change in the amount of pumping light with the photodetector 3 and the optical shot noise B of the photodetector 3 is applied to one input terminal of the differential amplifier 7, and the half mirror 5-1 is added to one input terminal of the differential amplifier 7. The other part of the spectrum is changed direction by a prism 5-2 and inputted to a photodetector 6.
The output optical noise C is applied to the other input terminal of the differential amplifier 7, and the output of the differential amplifier 7 is input to the control electronic circuit 4.

【0014】この場合LD1の出力光はコヒーレント性
が高い為に、光検出器3,6の光シヨット雑音B,Cの
位相は略等しいので、差動増幅器7の出力では、光シヨ
ット雑音B,Cの差分だけ光検出器3の雑音が減少した
ことになり、共鳴信号のレベルと光検出器3の雑音レベ
ルとの比が向上し、より正確な共鳴信号の位相反転点が
検出でき出来るようになるので、より高安定なLD励起
型ルビジウム原子発振器が得られることになる。
In this case, since the output light of the LD 1 has high coherence, the phases of the optical shot noises B and C of the photodetectors 3 and 6 are approximately equal, so that the output of the differential amplifier 7 has optical shot noises B and C of the optical detectors 3 and 6. This means that the noise of the photodetector 3 has been reduced by the difference in C, and the ratio between the level of the resonance signal and the noise level of the photodetector 3 has improved, making it possible to more accurately detect the phase inversion point of the resonance signal. Therefore, a more stable LD-excited rubidium atomic oscillator can be obtained.

【0015】[0015]

【発明の効果】以上詳細に説明せる如く本発明によれば
、光検出器3の雑音が減少したことになり、共鳴信号の
レベルと光検出器3の雑音レベルとの比が向上し、より
正確な共鳴信号の位相反転点が検出でき出来るようにな
るので、より高安定なLD励起型ルビジウム原子発振器
が得られる効果がある。
Effects of the Invention As explained in detail above, according to the present invention, the noise of the photodetector 3 is reduced, and the ratio between the level of the resonance signal and the noise level of the photodetector 3 is improved. Since it becomes possible to accurately detect the phase inversion point of the resonance signal, there is an effect that a more stable LD-excited rubidium atomic oscillator can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】は本発明の原理ブロック図、FIG. 1 is a block diagram of the principle of the present invention.

【図2】は、本発明の実施例のLD励起型ルビジウム原
子発振器のブロック図、
FIG. 2 is a block diagram of an LD-excited rubidium atomic oscillator according to an embodiment of the present invention;

【図3】は従来例のLD励起型ルビジウム原子発振器の
ブロック図である。
FIG. 3 is a block diagram of a conventional LD-excited rubidium atomic oscillator.

【符号の説明】[Explanation of symbols]

1はレーザダイオード、 2は光・マイクロ波共鳴部、 3,6は光検出器、 4は制御用電子回路、 5は分光手段、 5ー1はハーフミラー、 5ー2はプリズム、 7は差動増幅器、 10は電圧制御水晶発振器、 11は変調器、 12は周波数合成器、 14は選択増幅器、 15は同期検波器、 16は積分器、 17は低周波発振器を示す。 1 is a laser diode, 2 is an optical/microwave resonance part, 3 and 6 are photodetectors; 4 is a control electronic circuit; 5 is a spectroscopic means; 5-1 is a half mirror, 5-2 is a prism, 7 is a differential amplifier, 10 is a voltage controlled crystal oscillator; 11 is a modulator; 12 is a frequency synthesizer; 14 is a selection amplifier; 15 is a synchronous detector; 16 is an integrator, 17 indicates a low frequency oscillator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  0.87μmの波長の光を出力するレ
ーザダイオード(1)よりのポンピング光を、光・マイ
クロ波共鳴部(2)に入力し、第1の光検出器(3)に
てポンピング光量の変化を検出し共鳴信号を、制御用電
子回路(4)に入力し、ルビジウム原子の遷移周波数に
等しいマイクロ波を発生させ該光・マイクロ波共鳴部(
2)に入力するルビジウム原子発振器において、該レー
ザダイオード(1)よりの光を分光手段(5)にて分光
し、一方は該光・マイクロ波共鳴部(2)に入力して該
第1の光検出器(3)の出力の共鳴信号を差動増幅器(
7)に入力し、他方は第2の光検出器(6)に入力し出
力を該差動増幅器(7)に入力し、該差動増幅器(7)
の出力を該制御用電子回路(4)に入力するようにした
ことを特徴とするルビジウム原子発振器。
[Claim 1] Pumping light from a laser diode (1) that outputs light with a wavelength of 0.87 μm is input to an optical/microwave resonator (2), and is detected by a first photodetector (3). Changes in the amount of pumping light are detected and a resonance signal is input to the control electronic circuit (4), which generates microwaves equal to the transition frequency of rubidium atoms and activates the optical/microwave resonator (
In the rubidium atomic oscillator input to 2), the light from the laser diode (1) is separated into spectra by the spectrometer (5), and one is input to the optical/microwave resonator (2) and the first A differential amplifier (
7), the other is input to the second photodetector (6), and the output is input to the differential amplifier (7);
A rubidium atomic oscillator, characterized in that the output of the control electronic circuit (4) is inputted to the control electronic circuit (4).
JP2651191A 1991-02-20 1991-02-20 Rubidium atom oscillator Withdrawn JPH04265017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2651191A JPH04265017A (en) 1991-02-20 1991-02-20 Rubidium atom oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2651191A JPH04265017A (en) 1991-02-20 1991-02-20 Rubidium atom oscillator

Publications (1)

Publication Number Publication Date
JPH04265017A true JPH04265017A (en) 1992-09-21

Family

ID=12195506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2651191A Withdrawn JPH04265017A (en) 1991-02-20 1991-02-20 Rubidium atom oscillator

Country Status (1)

Country Link
JP (1) JPH04265017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001015325A1 (en) * 1999-08-23 2001-03-01 Datum, Inc. Laser light quantum system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001015325A1 (en) * 1999-08-23 2001-03-01 Datum, Inc. Laser light quantum system

Similar Documents

Publication Publication Date Title
US6175579B1 (en) Apparatus and method for laser frequency control
US6333942B1 (en) Atomic frequency standard laser pulse oscillator
JPWO2015015628A1 (en) Magnetic field measuring device
US9407060B2 (en) Mutually-referenced optical frequency combs
US4779279A (en) Magnetic laser control
JPS61253876A (en) Laser diode detection type pumping cesium resonator
US5146185A (en) Compact optically pumped resonance system and apparatus
JPH04265017A (en) Rubidium atom oscillator
US11791608B2 (en) Compact highly-stable synthesized RF sources using self mode-locked beat-notes of multi-modes lasers
JP2015032700A (en) Narrow line-width light source averaging optical frequency with parallel operation of external optical resonators
JP3500582B2 (en) Optical frequency reference light source generator
JP4956749B2 (en) Ultra-high accuracy optical phase synchronization system
CN113078552B (en) Frequency stabilizing device of single-frequency laser based on intracavity self-reference
JPH09101109A (en) Laser interference length measuring device
JPH0748661B2 (en) Gas cell type atomic oscillator
Varcoe et al. Long term laser frequency control for applications in atomic physics
RU2817140C1 (en) Small-sized atomic clock with two optical radiation detection zones
US6667996B2 (en) Apparatus and method for stabilizing the frequency of a laser
US20230022012A1 (en) Ramsey spectrometer, optical lattice clock, and ramsey spectroscopic method
CN113471806B (en) Multi-feedback laser stepping frequency sweep driving device and method
JPH0212884A (en) Oscillation frequency stabilizer for variable wavelength laser
JP2997557B2 (en) Frequency stabilized light source with narrow linewidth oscillation frequency spectrum
JP2008263362A (en) Gas-cell type atomic oscillator
JPH0391981A (en) Frequency variable type stabilized light source
JPH06152406A (en) Phase synchronizing rubidium atomic oscillator

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514