JPH0391981A - Frequency variable type stabilized light source - Google Patents

Frequency variable type stabilized light source

Info

Publication number
JPH0391981A
JPH0391981A JP22958589A JP22958589A JPH0391981A JP H0391981 A JPH0391981 A JP H0391981A JP 22958589 A JP22958589 A JP 22958589A JP 22958589 A JP22958589 A JP 22958589A JP H0391981 A JPH0391981 A JP H0391981A
Authority
JP
Japan
Prior art keywords
frequency
laser
semiconductor laser
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22958589A
Other languages
Japanese (ja)
Inventor
Takanori Saito
崇記 斉藤
Shigeru Kinugawa
衣川 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP22958589A priority Critical patent/JPH0391981A/en
Publication of JPH0391981A publication Critical patent/JPH0391981A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain laser rays stabilized at an optional frequency by a method wherein the laser rays of a second semiconductor laser are stabilized at a frequency deviating from that of a first semiconductor laser by an optional frequency. CONSTITUTION:The laser rays of a first semiconductor laser 1 are stabilized by using a light absorption peak of vapor or the resonance frequency of a resonator as a frequency reference, and the laser rays of a second semiconductor laser 10 are stabilized at a frequency deviating from that of the first semiconductor laser 1 by an optional frequency. As mentioned above, the laser rays of the second semiconductor laser 10 deviating from those of the first semiconductor laser 1 in frequency by an optional frequency are used as output rays, whereby laser rays of optional frequency can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気体が持つ光吸収ピークや共振器の共振周波
数などを周波数基準にすることにより、第1の半導体レ
ーザのレーザ光の周波数を高精度に安定化し、さらにこ
の安定化したレーザ光の周波数を基準とし、その周波数
から任意の周波数だけずらして第2の半導体レーザのレ
ーザ光の周波数を固定することによって任意に周波数を
選べるようにした周波数可変型安定化光源に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention allows the frequency of the laser beam of the first semiconductor laser to be adjusted by using the optical absorption peak of a gas, the resonant frequency of a resonator, etc. as a frequency standard. The frequency of the laser beam of the second semiconductor laser is fixed by stabilizing it with high precision, and by shifting the frequency of the stabilized laser beam as a reference by an arbitrary frequency from that frequency, the frequency can be arbitrarily selected. This invention relates to a frequency variable stabilized light source.

本発明の光源は、各種光計測用光源を始め、高精度光周
波数基準光源、物理・化学計測用安定化光源、光通信用
光源などに広く利用できる。
The light source of the present invention can be widely used as a light source for various optical measurements, a high-precision optical frequency reference light source, a stabilized light source for physical/chemical measurements, a light source for optical communication, and the like.

特に、例えば、高度なコヒーレント性が要求されるヘテ
ロダイン光通信用光源等に利用できる。
In particular, it can be used, for example, as a light source for heterodyne optical communications that requires a high degree of coherence.

〔従来の技術〕[Conventional technology]

半導体レーザは、駆動電流と周囲温度を変えることによ
ってレーザ光の周波数と光強度を可変することができる
という他のレーザ光源にない特徴を有している. その可変範囲は、周波数が一数G HZ/IIA,  
10数G HZ/Kであり、光強度が0.数mW/mA
,一数10μW/Kであることが知られている。
Semiconductor lasers have a feature that other laser light sources do not have: the frequency and intensity of laser light can be varied by changing the driving current and ambient temperature. Its variable range is several GHz/IIA frequencies,
10-odd GHz/K, and the light intensity is 0. Several mW/mA
, is known to be several 10 μW/K.

(発明が解決しようとする課題〕 しかし、以上に述べた長所は反面、駆動電流と周囲温度
の変動によって周波数と光強度が不安定になるという短
所にもなっている。この短所をなくすため従来において
は、光吸収セルを用いて所定の周波数に安定させていた
。例えば、同一出園人等による発明「波長安定化光源J
lil昭63− 248250号)では周囲温度を、任
意に設定した温度の±0.1〜1mK程度の範囲内まで
安定に保ち、その上で周波数を光吸収セル中のガスの光
吸収スペクトル等の周波数基準と比較し、その差分に対
応する駆動電流を半導体レーザに負帰還させ、周波数を
安定化しているため光吸収スペクトルのピーク位置の周
波数のレーザ光しか得られない。また半導体レーザのレ
ーザ光の周波数を固定しただけでは、周波数基準となる
周波数のレーザ光しか得られず、外部変調器を用いなけ
れば、レーザ光の周波数変調ができないという課題があ
った。
(Problems to be Solved by the Invention) However, despite the above-mentioned advantages, there is also a disadvantage that the frequency and light intensity become unstable due to fluctuations in drive current and ambient temperature. In the 1990s, a light absorption cell was used to stabilize the frequency at a predetermined level.For example, the wavelength stabilized light source J
lil No. 63-248250), the ambient temperature is kept stable within a range of approximately ±0.1 to 1 mK of the arbitrarily set temperature, and then the frequency is adjusted to match the light absorption spectrum of the gas in the light absorption cell. Since the frequency is stabilized by comparing it with a frequency reference and feeding a driving current corresponding to the difference negatively back to the semiconductor laser, it is possible to obtain only laser light at the frequency at the peak position of the optical absorption spectrum. In addition, simply fixing the frequency of the laser beam of a semiconductor laser results in obtaining only a laser beam with a frequency that serves as a frequency reference, and there is a problem in that the frequency of the laser beam cannot be modulated without using an external modulator.

(参考文献) (1)橋本 実.大津 元一; j j17R b原子発振器のためのレーザ分光及び半
導体レーザの周波数制御J .  Trans. IE
E  JapanVol.108−C,’88  pT
1.706−712(2)橋本 実,小沢 英隆,大津
 元一;「半導体レーザ励起ルビジウム原子発振器」、
電子情報通信学会  OQE85−3  pp.15−
22〔課題を解決するための手段及び作用〕そこで、本
発明では、上記の課題に対して、気体が持つ光吸収ピー
クや共振器の共振周波数などを周波数基準にすることに
より第1の半導体レーザのレーザ光の周波数を安定化し
、その周波数から任意の周波数だけずらして第2の半導
体レーザのレーザ光の周波数を安定にすることで周波数
可変型安定化光源を実現するものである。
(References) (1) Minoru Hashimoto. Motoichi Otsu; j j17R b Laser spectroscopy for atomic oscillators and frequency control of semiconductor lasers J. Trans. IE
E Japan Vol. 108-C,'88 pT
1.706-712 (2) Minoru Hashimoto, Hidetaka Ozawa, Genichi Otsu; “Semiconductor laser pumped rubidium atomic oscillator”,
Institute of Electronics, Information and Communication Engineers OQE85-3 pp. 15-
22 [Means and effects for solving the problem] Therefore, in the present invention, in order to solve the above problem, the first semiconductor laser A frequency-variable stabilized light source is realized by stabilizing the frequency of the laser light of the second semiconductor laser and shifting it by an arbitrary frequency from that frequency to stabilize the frequency of the laser light of the second semiconductor laser.

この実現により、 (1)第1の半導体レ〜ザのレーザ光の周波数から任意
の周波数だけずらした第2の半導体レーザのレーザ光を
出力光として用いることにより、任意の周波数のレーザ
光を得ることかで゛きる。
By realizing this, (1) Laser light of an arbitrary frequency can be obtained by using the laser light of the second semiconductor laser, which is shifted by an arbitrary frequency from the frequency of the laser light of the first semiconductor laser, as output light. I can do that.

(2)電気光学効果を利用した周波数シフターを用いて
レーザ光の周波数を変澗させた場合、変調周波数の精度
はあまり良くないが、ビート周波数をカウンタすること
により変調周波数を制御することとすれば、デジタル的
に制御できるために、高精度な制御ができる。
(2) When changing the frequency of laser light using a frequency shifter that utilizes the electro-optic effect, the accuracy of the modulation frequency is not very good, but it is possible to control the modulation frequency by countering the beat frequency. For example, since it can be controlled digitally, highly accurate control is possible.

〔実施例〕〔Example〕

第1図は本発明の周波数可変型安定化光源の一実施例を
示したものである。
FIG. 1 shows an embodiment of the frequency variable stabilized light source of the present invention.

第工の半導体レーザ1から出力されたレーザ光を、第1
のレーザ光取出用ビームスプリッタ8を?して周波敗弁
別器2に入射する。
The laser beam output from the first semiconductor laser 1 is
Beam splitter 8 for extracting laser light? and enters the frequency discriminator 2.

周波数弁別器2は、所定の周波数だけを吸収する特性(
光吸収特性)を有し、所望の光吸収特性が得られるよう
にしたエタロン.干渉装置,フィルタ,光吸収セルなど
を用いることができる。
The frequency discriminator 2 has a characteristic of absorbing only a predetermined frequency (
An etalon that has the desired light absorption properties (light absorption properties). Interference devices, filters, light absorption cells, etc. can be used.

本実施例では光吸収セルを用いた場合について説明する
In this example, a case will be explained in which a light absorption cell is used.

光吸収セルの中には、ルビジウム(1?b) ,セシウ
ム(Cs),アセチレンガス(C.H2),水蒸気(H
20),炭酸ガス(Go■)等のガスが単独でまたは複
数種類封入されており、特定光の周波数において封入物
質で定まる吸収スペクトルを有する。
The light absorption cell contains rubidium (1?b), cesium (Cs), acetylene gas (C.H2), and water vapor (H2).
20), gas such as carbon dioxide (Go) is sealed singly or in plural types, and has an absorption spectrum determined by the sealed substance at a specific frequency of light.

第2図は、光吸収ガスとしてアセチレンガスを封入した
場合の光吸収セルにおける吸収スペクトルの一例を示し
たものである。この図から明らかなように,レーザ光の
周波数(横軸)が変化するのに対応してレーザ光が光吸
収セルを透過(実施例がエタロン.干渉装置等の場合は
通過)する透過光強度(縦軸)も変化する。
FIG. 2 shows an example of an absorption spectrum in a light absorption cell when acetylene gas is sealed as a light absorption gas. As is clear from this figure, as the frequency of the laser light (horizontal axis) changes, the intensity of the transmitted light as the laser light passes through the light absorption cell (in the example is an etalon, and in the case of an interference device, etc.) (vertical axis) also changes.

先ず、第1の周波数安定化光′/R9について説明する
First, the first frequency stabilized light '/R9 will be explained.

第1の半導体レーザlのレーザ光の周波数をiに安定化
することを考える。この場合、実際の周波数がflであ
ったとして、周波数f1は周波数fmの近傍にあるとす
る。第2図から、周波数fm, flにおける透過光強
度は、それぞれPm, PIである。
Consider stabilizing the frequency of the laser light from the first semiconductor laser l to i. In this case, assuming that the actual frequency is fl, it is assumed that the frequency f1 is near the frequency fm. From FIG. 2, the transmitted light intensities at frequencies fm and fl are Pm and PI, respectively.

この透過光強度P1のときの透過光を、第1図に示すよ
うに、第1の受光器3で電圧に変換し、さらに第1の増
幅器4で増幅する。その増幅した後の電圧をv1とする
。同様に透過光強度PII1のときの透過光の第1の増
幅器4における出力電圧はVmである。基準電圧源5の
出力電圧をVmに固定し、差動増幅器6で基準電圧源5
の出力と第1の増幅器4の出力との差分をとる。その差
出力を第1の駆動電流a7に負帰還すれば、常にVm−
 Vlの関係となり、第1の半導体レ〜ザ1のレーザ光
は、周波数fmに固定されることになる。
The transmitted light at the transmitted light intensity P1 is converted into a voltage by the first light receiver 3, and further amplified by the first amplifier 4, as shown in FIG. The voltage after the amplification is assumed to be v1. Similarly, the output voltage of the transmitted light at the first amplifier 4 when the transmitted light intensity is PII1 is Vm. The output voltage of the reference voltage source 5 is fixed at Vm, and the differential amplifier 6 outputs the reference voltage source 5.
The difference between the output of the first amplifier 4 and the output of the first amplifier 4 is calculated. If the difference output is negatively fed back to the first drive current a7, Vm-
Vl, and the laser beam from the first semiconductor laser 1 is fixed at the frequency fm.

このレーザ光は、第1のレーザ光取出用ビームスプリッ
タ8によって外部に出力される。
This laser light is outputted to the outside by the first laser light extraction beam splitter 8.

つぎに、第2の周波数安定化光源19について説゛明す
る。
Next, the second frequency stabilized light source 19 will be explained.

第2の半導体レーザ10から出力されたレーザ光と第1
の周波数安定化光源9つまり.第1のレーザ光取出用ビ
ームスプリッタ8から出力されたレーザ光とを合波器1
1で合波することによって光ビト信号を発生させ、その
光ビート信号を第2の受光器12で電気ビート信号に変
換する。この電気ビート信号を第2の増幅器13で増幅
し、その出力をブリスケーラ14でd分のlまで分周す
る。
The laser light output from the second semiconductor laser 10 and the first
Frequency stabilized light source 9 ie. The laser beam output from the first laser beam extraction beam splitter 8 is combined with the multiplexer 1.
1 generates an optical beat signal, and the second optical receiver 12 converts the optical beat signal into an electric beat signal. This electric beat signal is amplified by a second amplifier 13, and its output is frequency-divided by d/l by a brise scaler 14.

仮に、得たいレーザ光の周波数をfsであるとすれば1
可変信号発生器15から出力される周波数信号は、fs
g = ( fs − fm) /d  となる。
If the frequency of the desired laser beam is fs, then 1
The frequency signal output from the variable signal generator 15 is fs
g = (fs - fm)/d.

この出力fsgとプリスケーラ14からの出力fpとを
周波数差信号発生器l6に人力する。
This output fsg and the output fp from the prescaler 14 are input to a frequency difference signal generator l6.

この周波数差信号発生器16は、ブリスケ〜ラ14の出
力fpと可変信号発生器l5の出力fsgとの差(fp
−fag)に対応した信号を出力するので、この信号が
常にOとなるように第2の駆動電流源17に負帰還すれ
ば、第2の半導体レーザ10からのレーザ光の周波数は
、fs= fm + fsgX dに安定化することに
なり、第2のレーザ光取出用ビームスプリッタl8によ
って、外部に出力することができる。
This frequency difference signal generator 16 generates a difference (fp
-fag), so if this signal is negatively fed back to the second drive current source 17 so that it is always O, the frequency of the laser light from the second semiconductor laser 10 will be fs= It is stabilized to fm + fsgX d, and can be output to the outside by the second laser beam extraction beam splitter l8.

第2の周波数安定化光源19の構威要素であるブリスケ
ーラ14,可変信号発生器15,周波数差信号発生器1
6はディジタル的に信号処理ができるため高精度な周波
数制御ができる。
The structural elements of the second frequency stabilized light source 19 are a brise scaler 14, a variable signal generator 15, and a frequency difference signal generator 1.
6 can perform digital signal processing, so highly accurate frequency control is possible.

ブリスケーラ14の帯域は、数GHz程度であるので,
周波数の可変範囲もそれと同じとなる。
Since the band of the brise scaler 14 is about several GHz,
The frequency variable range is also the same.

アセチレンの光吸収ピークは半値全幅が数百MHzであ
り、ピーク間隔は数GHzである。
The full width at half maximum of the light absorption peak of acetylene is several hundred MHz, and the peak interval is several GHz.

そこで、例えば、周波数が『aのレーザ光を得たい場合
には、第1の周波数安定化光源9の周波数をfa近傍の
アセチレンの光吸収ピークに安定化し、そこから周波数
差を与えて第2の周波数安定化光源19の周波数をfa
に安定させる。このように光吸収ピークを変えることに
より,数百GHzにわたって周波数を可変することがで
きる。
Therefore, for example, if you want to obtain a laser beam with a frequency of a, the frequency of the first frequency stabilized light source 9 is stabilized to the light absorption peak of acetylene near fa, and a frequency difference is given therefrom to obtain a second laser beam. The frequency of the frequency stabilized light source 19 is fa
stabilize it. By changing the optical absorption peak in this way, the frequency can be varied over several hundred GHz.

第3図は、アセチレン(C2+12)の光吸収特性を示
す。横軸は波長(μm).縦軸は光吸収率を示す。
FIG. 3 shows the light absorption characteristics of acetylene (C2+12). The horizontal axis is wavelength (μm). The vertical axis shows the light absorption rate.

図から判るように、一般に分子の光吸収には周波数スケ
ール上に、周期的に吸収ピークがいくつも出現すること
が知られている。
As can be seen from the figure, it is generally known that a number of absorption peaks appear periodically on the frequency scale in light absorption by molecules.

このような分子の吸収特性を利用して吸収セルを構威し
、この発明の周波数可変形安定化光源を実現するときは
、ピーク1 , 2, 3.・−・・・.9のいずれの
ピークの近傍で第lの周波数安定化光源を安定化させる
ことができる。例えば、第3のピークの右側を用いて、
fm3=1.941374X 10” +12の発振を
させることができる。
When implementing the variable frequency stabilized light source of the present invention by constructing an absorption cell by utilizing the absorption characteristics of such molecules, peaks 1, 2, 3.・-・・・. The l-th frequency-stabilized light source can be stabilized near any of the peaks of 9. For example, using the right side of the third peak,
It is possible to oscillate fm3=1.941374×10”+12.

この場合、第2の周波数安定化光源19においては、ビ
ート信号検出系の帯域がIOc;Fizであるとすれば
、l.941374x 10” Hzから1.9413
84X 10” Hzの範囲で発振周波数を可変できる
。基準電圧源5と第lの駆動電流源7を調整すれば、第
1の周波数安定化光源9の発振周波数はfm4. fm
5, frs6にも調整可能である。
In this case, in the second frequency stabilized light source 19, if the band of the beat signal detection system is IOc;Fiz, then l. 941374x 10” Hz to 1.9413
The oscillation frequency can be varied in the range of 84×10” Hz. By adjusting the reference voltage source 5 and the first drive current source 7, the oscillation frequency of the first frequency stabilized light source 9 becomes fm4.fm
5. Can also be adjusted to frs6.

発振周波数f++iとfmi+1の間隔は、数Cllz
であり、ビート信号検出系の帯域よりも小さい。そのた
め、安定化に用いるピークを変えることにより第1の半
導体レーザ1の発振可能な周波数の範囲内の全ての周波
数において第2の半導体レーザ10のレーザ光の周波数
を安定にすることができる。
The interval between the oscillation frequencies f++i and fmi+1 is several Cllz
, which is smaller than the band of the beat signal detection system. Therefore, by changing the peak used for stabilization, the frequency of the laser light from the second semiconductor laser 10 can be stabilized at all frequencies within the range of frequencies that the first semiconductor laser 1 can oscillate.

さらに、第2の周波数安定化光源の構戒要素である、ブ
リスケーラ14、可変信号発生815、周波数差信号発
生器16の出力はいずれも、ディジタル信号処理ができ
るので、この発明の周波数可変型安定化光源はマイクロ
コンピュータを用いたディジタル制御になしみ易い構戒
である。
Furthermore, the outputs of the brise scaler 14, the variable signal generator 815, and the frequency difference signal generator 16, which are the control elements of the second frequency stabilized light source, can all be subjected to digital signal processing. The integrated light source is a structure that is easy to adapt to digital control using a microcomputer.

〔発明の効果〕〔Effect of the invention〕

以上、述べるように、本発明による周波数可変型安定化
光源は、第1の半導体レーザから任意の周波数だけずら
し′て第2の半導体レーザのレーザ光の周波数を安定化
することにより、次に示すような固有の効果を有する。
As described above, the frequency-variable stabilized light source according to the present invention stabilizes the frequency of the laser light of the second semiconductor laser by shifting the frequency from the first semiconductor laser by an arbitrary frequency. It has such unique effects.

(1)任意の周波数に.安定にしたレーザ光が得られた
(1) To any frequency. A stable laser beam was obtained.

(2)電気光学素子などの外部変調素子を用いず、ディ
ジタル的に変調周波数を選べるため、高精度な周波数変
調が実現できた。
(2) Since the modulation frequency can be selected digitally without using an external modulation element such as an electro-optical element, highly accurate frequency modulation can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明による周波数可変型安定化光源の一実施
例の構戒を、第2図は吸収セル中のアセチレンガスの光
吸収スペクトルを、第3図はアセチレンの光吸収特性を
それぞれ示す。 図において、■は第1の半導体レーザ、2は周波数弁別
器、3は第lの受光器、4は第1の増幅器、5は基準電
圧源、6は差動増幅器、7は第1の駆動電流源、8は第
1のレーザ光取出用ビームスプリツタ、9は第1の周波
数安定化光源、IOは第2の半導体レーザ、11は合波
器、12は第2の受光器、l3は第2の増幅器、14は
ブリスケーラ、15は可変信号発生器、l6は周波数差
信号発生器、17は第2の駆動電流源、l8は第2のレ
ーザ光取出用ビームスプリンタ、19は第2の周波数安
定化光源をそれぞれ示す。
Figure 1 shows the structure of an embodiment of the frequency variable stabilized light source according to the present invention, Figure 2 shows the light absorption spectrum of acetylene gas in the absorption cell, and Figure 3 shows the light absorption characteristics of acetylene. . In the figure, ■ is a first semiconductor laser, 2 is a frequency discriminator, 3 is a first photoreceiver, 4 is a first amplifier, 5 is a reference voltage source, 6 is a differential amplifier, and 7 is a first drive A current source, 8 is a beam splitter for extracting the first laser beam, 9 is a first frequency stabilizing light source, IO is a second semiconductor laser, 11 is a multiplexer, 12 is a second light receiver, l3 is a 14 is a brise scaler, 15 is a variable signal generator, l6 is a frequency difference signal generator, 17 is a second drive current source, l8 is a second laser beam extraction beam splinter, 19 is a second Each shows a frequency stabilized light source.

Claims (1)

【特許請求の範囲】 第1の半導体レーザ(1)と、該第1の半導体レーザか
ら発振したレーザ光を受ける所定波長範囲の光吸収特性
を利用した周波数弁別器(2)と、該周波数弁別器を通
過させた光を検出する第1の受光器(3)と、該第1の
受光器からの信号により該第1の半導体レーザへの駆動
電流を制御する第1の駆動電流源(7)とからなる第1
の周波数安定化光源(9)と; 第2の半導体レーザ(10)と、該第2の半導体レーザ
からのレーザ光と該第1の周波数安定化光源(9)から
のレーザ光とを合波する合波器(11)と、該合波器で
合波することにより発生した光ビート信号を所定範囲の
周波数を持つ電気ビート信号に変換する第2の受光器(
12)と、該所定範囲内の任意の周波数の信号を発生す
る可変信号発生器(15)と、該電気ビート信号と該可
変信号発生器からの信号とを受けてそれらの周波数差に
対応した信号を出力する周波数差信号発生器(16)と
、該周波数差信号発生器からの出力を受けて該第2の半
導体レーザへの駆動電流を制御する第2の駆動電流源(
17)とからなる第2の周波数安定化光源(19)とを
備えて成る周波数可変型安定化光源。
[Scope of Claims] A first semiconductor laser (1), a frequency discriminator (2) that utilizes light absorption characteristics in a predetermined wavelength range that receives laser light oscillated from the first semiconductor laser, and a frequency discriminator (2) that uses light absorption characteristics in a predetermined wavelength range. a first photodetector (3) that detects the light that has passed through the device; and a first drive current source (7) that controls the drive current to the first semiconductor laser based on the signal from the first photodetector. ) and the first
a frequency-stabilized light source (9); a second semiconductor laser (10); combining the laser light from the second semiconductor laser and the laser light from the first frequency-stabilized light source (9); a second optical receiver (11) that converts the optical beat signal generated by multiplexing in the multiplexer into an electric beat signal having a frequency within a predetermined range.
12), a variable signal generator (15) that generates a signal of any frequency within the predetermined range, and a variable signal generator (15) that receives the electric beat signal and the signal from the variable signal generator and responds to the frequency difference between them. a frequency difference signal generator (16) that outputs a signal; and a second drive current source (16) that receives the output from the frequency difference signal generator and controls the drive current to the second semiconductor laser.
17) and a second frequency stabilized light source (19).
JP22958589A 1989-09-05 1989-09-05 Frequency variable type stabilized light source Pending JPH0391981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22958589A JPH0391981A (en) 1989-09-05 1989-09-05 Frequency variable type stabilized light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22958589A JPH0391981A (en) 1989-09-05 1989-09-05 Frequency variable type stabilized light source

Publications (1)

Publication Number Publication Date
JPH0391981A true JPH0391981A (en) 1991-04-17

Family

ID=16894490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22958589A Pending JPH0391981A (en) 1989-09-05 1989-09-05 Frequency variable type stabilized light source

Country Status (1)

Country Link
JP (1) JPH0391981A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117101A1 (en) * 2008-03-18 2009-09-24 Alcatel-Lucent Usa Inc. Self-calibrating integrated photonic circuit and method of control thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117101A1 (en) * 2008-03-18 2009-09-24 Alcatel-Lucent Usa Inc. Self-calibrating integrated photonic circuit and method of control thereof
US7688872B2 (en) 2008-03-18 2010-03-30 Alcatel-Lucent Usa Inc. Self-Calibrating integrated photonic circuit and method of control thereof
JP2011515853A (en) * 2008-03-18 2011-05-19 アルカテル−ルーセント ユーエスエー インコーポレーテッド Self-calibrating integrated optical circuit and control method thereof

Similar Documents

Publication Publication Date Title
CN109270825B (en) Dual-wavelength good-bad cavity active optical clock based on secondary cavity locking technology and implementation method thereof
US6516014B1 (en) Programmable frequency reference for laser frequency stabilization, and arbitrary optical clock generator, using persistent spectral hole burning
US3593189A (en) Frequency stabilization system
US6175579B1 (en) Apparatus and method for laser frequency control
US6333942B1 (en) Atomic frequency standard laser pulse oscillator
CN108933379B (en) Laser offset frequency locking system
US7902927B2 (en) System and method for modulating pressure in an alkali-vapor cell
US5063568A (en) Wavelength stabilized light source
US7970025B2 (en) System and method for tuning adjusting the central frequency of a laser while maintaining frequency stabilization to an external reference
US7026594B2 (en) Method and device for producing radio frequency waves
US10720745B2 (en) Atomic oscillator
Roy et al. “Loop stabilized” improved transfer cavity-based laser frequency stabilization
JPH0391981A (en) Frequency variable type stabilized light source
JP3500582B2 (en) Optical frequency reference light source generator
CN113078552B (en) Frequency stabilizing device of single-frequency laser based on intracavity self-reference
JPH0453114B2 (en)
JP2520740B2 (en) Variable wavelength stabilized light source
US4984298A (en) Wideband low noise detector
RU2073949C1 (en) Frequency-stabilized laser
RU2210847C1 (en) Radiation frequency stabilized laser
JPH0748661B2 (en) Gas cell type atomic oscillator
JP2008263362A (en) Gas-cell type atomic oscillator
JPH04100286A (en) Optical frequency stabilized light source
Ignatovich et al. Coherent Population Trapping Resonance Parameters and Field Shifts during the Detection of Signals from Different Cross-Sectional Areas of the Interaction of Laser Radiation with Atoms
JP2876498B2 (en) High-precision near-infrared reference light frequency generation method