JPH04264707A - Manufacture of sintered yoke - Google Patents

Manufacture of sintered yoke

Info

Publication number
JPH04264707A
JPH04264707A JP2581491A JP2581491A JPH04264707A JP H04264707 A JPH04264707 A JP H04264707A JP 2581491 A JP2581491 A JP 2581491A JP 2581491 A JP2581491 A JP 2581491A JP H04264707 A JPH04264707 A JP H04264707A
Authority
JP
Japan
Prior art keywords
yoke
sintered
density
powder material
blasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2581491A
Other languages
Japanese (ja)
Other versions
JP2571314B2 (en
Inventor
Teruo Umehara
梅原 輝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3025814A priority Critical patent/JP2571314B2/en
Publication of JPH04264707A publication Critical patent/JPH04264707A/en
Application granted granted Critical
Publication of JP2571314B2 publication Critical patent/JP2571314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)

Abstract

PURPOSE:To prevent generation of corrosion entirely by including a process of blast processing of a sintered body whose density is lower than a final density of a sintered yoke in a manufacture process of the sintered yoke. CONSTITUTION:A side yoke 1 and a center yoke 3 are formed integrally of a ferro powder material to a sintered yoke. A permanent magnet 2 is sealed to an inside of the side yoke 1 to form a magnetic circuit. When manufacturing a sintered yoke, the ferro powder material is charged in a molding space of a molding die and molded by a hydraulic press. Then, the molding is charged in a sintering furnace and primary sintering is performed. The sintered body is blast-processed. A steel shot of a diameter of 0.3mm is used as a projection material and blast processing is carried out for 5 minutes.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,例えば磁気ディスク装
置における磁気ヘッドのような機能部材の移動および/
または位置決め手段として使用される電磁駆動装置若し
くはアクチュエータを構成するヨークを鉄系粉末材料に
よって形成する焼結ヨークの製造方法に関するものであ
る。
[Industrial Application Field] The present invention relates to the movement and/or movement of a functional member such as a magnetic head in a magnetic disk device, for example.
The present invention also relates to a method of manufacturing a sintered yoke, in which the yoke constituting an electromagnetic drive device or actuator used as a positioning means is formed from an iron-based powder material.

【0002】0002

【従来の技術】従来磁気ディスク装置等における記録ト
ラックに磁気ヘッドを移動および位置決めするには,図
5に示すようなアクチュエータが使用されている。図5
において1はサイドヨークであり,例えば低炭素鋼のよ
うな強磁性材料により,縦断面形状をコ字形に形成し,
内面に永久磁石2を固着する。3はセンターヨークであ
り,前記サイドヨーク1と同様の強磁性材料により平板
状に形成する。
2. Description of the Related Art Conventionally, an actuator as shown in FIG. 5 has been used to move and position a magnetic head on a recording track in a magnetic disk drive or the like. Figure 5
1 is a side yoke, which is made of a ferromagnetic material such as low carbon steel and has a U-shaped vertical cross section.
A permanent magnet 2 is fixed to the inner surface. Reference numeral 3 denotes a center yoke, which is made of the same ferromagnetic material as the side yokes 1 and is formed into a flat plate shape.

【0003】次に前記サイドヨーク1,1によりセンタ
ーヨーク3を挟持するように一体に組立て,永久磁石2
とセンターヨーク3との間に磁気空隙4を形成する。な
おこの磁気空隙4内には,環状コイルを構成要素とする
可動子5を移動自在に介装させる。
Next, the side yokes 1 and 1 are assembled together so as to sandwich the center yoke 3, and the permanent magnet 2
A magnetic gap 4 is formed between the center yoke 3 and the center yoke 3. In this magnetic gap 4, a movable element 5 having an annular coil as a component is movably interposed.

【0004】上記の構成により,可動子5に信号電流を
通電すると,フレミングの左手の法則により推力が発生
し,可動子5を図5において左右方向に移動させること
ができる。従って可動子5に磁気ヘッド(図示せず)を
装着することにより,磁気ディスク上の記録トラックに
移動および位置決めをすることができる。
With the above configuration, when a signal current is applied to the movable element 5, a thrust is generated according to Fleming's left-hand rule, and the movable element 5 can be moved in the left-right direction in FIG. Therefore, by attaching a magnetic head (not shown) to the movable element 5, the movable element 5 can be moved and positioned to a recording track on the magnetic disk.

【0005】上記構成のアクチュエータにおいて,サイ
ドヨーク1とセンターヨーク3とを一体に組み立てるに
は,ボルト等の締結部材が必要であり,部品点数が多い
と共に,組み立てに時間と工数を要するという問題点が
ある。一方磁気ディスク装置のような分野においては,
近年装置の小型化,薄型化,高性能化の要求が一段と厳
しくなってきており,従来構造のものにおいては上記要
求を満足することができないという問題点がある。
[0005] In the actuator having the above structure, in order to assemble the side yoke 1 and the center yoke 3 together, fastening members such as bolts are required, and there are problems in that the number of parts is large and the assembly requires time and man-hours. There is. On the other hand, in fields such as magnetic disk drives,
In recent years, demands for smaller, thinner, and higher performance devices have become more and more severe, and there is a problem in that devices with conventional structures cannot satisfy the above demands.

【0006】上記問題点を解決する一手段として,サイ
ドヨーク1を鋳造一体品または焼結一体品で構成すると
いう提案がされている(例えば実開昭61−43783
号公報参照)。このような提案により組立作業の一部が
短縮されるという利点がある。
As a means of solving the above-mentioned problems, it has been proposed to construct the side yoke 1 with a cast or sintered unit (for example, Utility Model Application No. 61-43783).
(see publication). Such a proposal has the advantage that part of the assembly work can be shortened.

【0007】上記のような焼結品で形成される所謂焼結
ヨークの製造方法としては,下記のような工程によるの
が一般的である。すなわち,まず例えば純鉄のような粉
末材料をプレスおよび成形用金型を介して成形し,この
成形体を焼結してヨークとする。このような焼結ヨーク
は,鍛造品若しくは鋳造品からなるヨークと異なって,
ポーラスであるため,樹脂等の有機材料を含浸させて封
孔処理を行う。そして錆の発生を防止するために,表面
を例えばNiメッキ処理をするのであるが,Niメッキ
処理前に表面の微細凹孔を目潰しするためにブラスト加
工を行うのが通例である。
[0007] As a method for manufacturing a so-called sintered yoke formed from the above-mentioned sintered product, the following steps are generally used. That is, first, a powder material such as pure iron is molded using a press and a mold, and this molded body is sintered to form a yoke. Unlike yokes made of forged or cast products, this type of sintered yoke is
Since it is porous, it is sealed by impregnating it with an organic material such as resin. In order to prevent the occurrence of rust, the surface is plated with Ni, for example, but before the Ni plating, it is customary to perform blasting to close up the fine pores on the surface.

【0008】[0008]

【発明が解決しようとする課題】上記のような焼結ヨー
クを使用することにより,組立作業工程の一部が短縮さ
れるという利点がある反面において,従来の鍛造品若し
くは鋳造品のような中実ヨークと比較して,残留磁束密
度が低いと共に,錆が発生し易いという問題点がある。
[Problem to be Solved by the Invention] Although the use of the sintered yoke as described above has the advantage of shortening a part of the assembly work process, it does not require the use of a conventional forged or cast product. Compared to a real yoke, there are problems in that the residual magnetic flux density is lower and rust is more likely to occur.

【0009】すなわち焼結ヨークは粉末材料によって形
成されるため,本質的にポーラスであり,0.1 〜0
.5 mmの可視的な凹孔と,0.1mm 以下の微視
的な凹孔とが存在し,密度が鉄系材料の場合において,
6.8 g/cm3 程度に過ぎない。このため残留磁
束密度が比較的低い値に留まる。
[0009] That is, since the sintered yoke is formed of powder material, it is essentially porous, and has a thickness of 0.1 to 0.
.. In the case where there are visible pores of 5 mm and microscopic pores of 0.1 mm or less, and the density is iron-based material,
It is only about 6.8 g/cm3. Therefore, the residual magnetic flux density remains at a relatively low value.

【0010】このような欠点を解消するために,1次焼
結終了後において,成形用金型と同様の金型中に焼結体
を収容して,サイジングと称する圧縮加工を行って密度
を7.1 〜7.3 g/cm3 に向上させ,2次焼
結を行うことにより,残留磁束密度を確保する手段が採
用されている。
[0010] In order to eliminate these drawbacks, after the primary sintering is completed, the sintered body is placed in a mold similar to the mold for forming, and a compression process called sizing is performed to increase the density. A method of securing the residual magnetic flux density has been adopted by increasing the residual magnetic flux density to 7.1 to 7.3 g/cm3 and performing secondary sintering.

【0011】しかしながら,上記手段によって高密度化
を行っても,錆の発生を完全に防止することができず,
使用中にこの錆が剥離して落下若しくは飛散することに
よる例えば磁気ディスクの特性低下を招来するという問
題点がある。
However, even if the density is increased by the above-mentioned means, it is not possible to completely prevent the occurrence of rust.
There is a problem in that during use, this rust peels off and falls or scatters, resulting in deterioration of the characteristics of the magnetic disk, for example.

【0012】上記のような錆を発生する原因としては,
メッキ処理工程にその一因があると推定される。一般に
Niメッキを施す場合には,被処理品である焼結ヨーク
をトリクロロエタンで洗浄後,アルカリ脱脂処理,塩酸
処理,アルカリ中和処理,Niメッキ処理,クロム酸処
理および乾燥処理する工程を経由し,夫々の工程間にお
いて水洗する手段が採用されている。この場合において
焼結ヨークに存在する凹孔内にClイオンが侵入し,こ
のClイオンがFeイオンと反応して塩化鉄を形成する
結果,この部分にNiメッキが被着されないこととなり
,これが錆発生に至ると推定される。すなわち従来の製
造方法においては,高密度化後にブラスト加工を行って
いたため,焼結ヨークに存在する凹孔を完全に封孔する
ことができないという問題点がある。
[0012] The causes of rust as described above include:
It is assumed that one of the reasons for this is the plating process. Generally, when applying Ni plating, the sintered yoke, which is the product to be treated, is washed with trichloroethane, followed by alkali degreasing treatment, hydrochloric acid treatment, alkali neutralization treatment, Ni plating treatment, chromic acid treatment, and drying treatment. , a method of washing with water between each process is adopted. In this case, Cl ions enter the concave holes existing in the sintered yoke and react with Fe ions to form iron chloride. As a result, Ni plating is not deposited on this part, which causes rust. It is estimated that this will lead to an outbreak. That is, in the conventional manufacturing method, since blasting was performed after densification, there was a problem in that the recesses existing in the sintered yoke could not be completely sealed.

【0013】本発明は,上記従来技術に存在する問題点
を解決し,錆の発生を完全に防止し,特性および信頼性
の高い焼結ヨークを製造する方法を提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a sintered yoke that completely prevents rust and has high characteristics and reliability by solving the problems existing in the prior art described above.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に,本発明においては,鉄系粉末材料からなり,表面に
永久磁石を固着して磁気回路を形成する焼結ヨークの製
造方法において,焼結ヨークの最終密度より低い密度の
焼結体をブラスト加工する工程を含むように構成する,
という技術的手段を採用した。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a method for manufacturing a sintered yoke made of iron-based powder material and in which a permanent magnet is fixed to the surface to form a magnetic circuit. The method includes a step of blasting a sintered body having a density lower than the final density of the sintered yoke.
A technical method was adopted.

【0015】本発明において,ブラスト加工を使用する
ブラスト加工機としては,遠心投射式およびエア加速式
を初めとする各種のものを使用することができるが,乾
式のものがよく,特に投射量が多く,かつ投射面積が広
い遠心投射式のものを使用することが好ましい。また投
射材としては市販の各種のものが使用できるが,スチー
ルショット若しくはスチールグリットのような鉄系のも
のを使用することが好ましい。
[0015] In the present invention, various types of blasting machines can be used for blasting, including centrifugal projection type and air acceleration type, but dry type is preferred, especially when the blasting amount is small. It is preferable to use a centrifugal projection type that has a large number of projection areas and a wide projection area. Although various commercially available shot materials can be used, it is preferable to use iron-based materials such as steel shot or steel grit.

【0016】またブラスト加工工程は,焼結ヨークの最
終密度,例えば7.1〜7.3 g/cm3 より低い
密度の焼結体に対して適用するのであるが,1次焼結後
の焼結体,例えば6.8 g/cm3 の状態に対して
適用することが好ましい。
The blasting process is applied to a sintered body having a lower density than the final density of the sintered yoke, for example 7.1 to 7.3 g/cm3, but It is preferable to apply this method to a solid state, for example, 6.8 g/cm3.

【0017】[0017]

【作用】上記の構成により,低密度の焼結体の表面の凹
孔をブラスト加工によって完全に目潰しをすることがで
き,メッキ工程における非所望な生成物の付着を防止し
,メッキの被着を完全に行い得るのである。
[Function] With the above structure, the concave holes on the surface of the low-density sintered body can be completely closed by blasting, preventing the adhesion of undesired products during the plating process, and preventing the adhesion of plating. can be done perfectly.

【0018】[0018]

【実施例】図1は本発明の第1実施例における磁気回路
を示す要部正面図であり,同一部分は前記図5と同一の
参照符号で示す。図1においてサイドヨーク1とセンタ
ーヨーク3とは鉄系粉末材料によって一体に形成し,焼
結ヨークとし,サイドヨーク1の内面に永久磁石2を固
着して磁気回路を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a front view of essential parts of a magnetic circuit according to a first embodiment of the present invention, and the same parts are designated by the same reference numerals as in FIG. 5. In FIG. 1, a side yoke 1 and a center yoke 3 are integrally formed from an iron-based powder material to form a sintered yoke, and a permanent magnet 2 is fixed to the inner surface of the side yoke 1 to form a magnetic circuit.

【0019】上記のような焼結ヨークを製造するには,
次のような工程による。すなわち,例えばSMF1種(
P,S,Mn,Si等の不純物の合計1重量%以下,残
部Fe)のような機械構造部品用の純鉄系粉末材料を成
形用金型の成形空間に充填し,油圧プレスによって成形
する。この場合の成形体の密度は6.8g/cm3 で
あった。次にこの成形体を焼結炉内に装入し,1100
〜1200℃で1時間1次焼結した。なお雰囲気ガスと
しては,Ar等の非酸化ガスを使用するのが好ましい。
[0019] To manufacture the above sintered yoke,
The process is as follows. That is, for example, one type of SMF (
A pure iron-based powder material for mechanical structural parts (with impurities such as P, S, Mn, and Si (total of 1% by weight or less, balance Fe) is filled into the molding space of a molding die, and then molded using a hydraulic press. . The density of the molded article in this case was 6.8 g/cm3. Next, this compact was charged into a sintering furnace and
Primary sintering was performed at ~1200°C for 1 hour. Note that it is preferable to use a non-oxidizing gas such as Ar as the atmospheric gas.

【0020】次に上記焼結体をブラスト加工するのであ
るが,遠心投射式のブラスト加工機を使用し,投射材と
しては直径0.3mm のスチールショットを使用し,
5分間のブラスト加工を施した。ブラスト加工後焼結ヨ
ークの表面を顕微鏡観察した結果,凹孔が完全に目潰し
され,封孔処理が効果的に行われていることを確認した
Next, the above-mentioned sintered body is blasted using a centrifugal blasting type blasting machine, and a steel shot with a diameter of 0.3 mm is used as the blasting material.
A blasting process was performed for 5 minutes. Microscopic observation of the surface of the sintered yoke after blasting confirmed that the pores were completely closed and that the pore sealing process was performed effectively.

【0021】上記ブラスト加工後の焼結ヨークをサイジ
ング用の金型内に収容し,油圧プレスによってサイジン
グを行った結果,密度は7.1 〜7.3g/cm3 
に向上した。 次に焼結炉において1100〜1200℃で1時間の2
次焼結を行った。雰囲気ガスは前記1次焼結と同様の非
酸化ガスを使用するのが好ましい。
[0021] The sintered yoke after the blasting process was placed in a sizing mold and sized using a hydraulic press, resulting in a density of 7.1 to 7.3 g/cm3.
improved. Next, in a sintering furnace at 1100-1200℃ for 1 hour 2
Next, sintering was performed. As the atmospheric gas, it is preferable to use the same non-oxidizing gas as in the primary sintering.

【0022】上記2次焼結した焼結ヨークをエポキシ系
樹脂のような有機物を溶媒中に溶解してなる溶液中に浸
漬して含浸処理を行い,表面の封孔処理を行った。この
ようにして形成した焼結ヨークの表面に,通常のメッキ
工程によりNi無電解メッキの被覆を行った。このよう
にして形成した焼結ヨークをRH90%,80℃,20
0時間の加速試験を行った結果,錆の発生が皆無である
ことを確認した。
The sintered yoke subjected to the secondary sintering was immersed in a solution prepared by dissolving an organic substance such as an epoxy resin in a solvent to perform an impregnation treatment, thereby sealing the surface. The surface of the sintered yoke thus formed was coated with Ni electroless plating using a normal plating process. The sintered yoke thus formed was heated at 90% RH, 80°C, and 20°C.
As a result of conducting an accelerated test for 0 hours, it was confirmed that there was no occurrence of rust.

【0023】図2ないし図4は夫々本発明の第2ないし
第4実施例における焼結ヨークの例を示す要部正面図で
あり,同一部分は前記図1と同一の参照符号で示す。図
2および図3は横断面形状を各々E字形およびU字形に
形成したもの,図4はサイドヨーク1およびセンターヨ
ーク3を各々円弧状若しくは曲線状に形成したものであ
るが,何れも図1に示すものと同様の工程によって製造
した結果,錆の発生を防止する効果が認められた。
FIGS. 2 to 4 are front views of essential parts showing examples of sintered yokes in second to fourth embodiments of the present invention, respectively, and the same parts are designated by the same reference numerals as in FIG. 1. 2 and 3 have cross-sectional shapes formed in an E-shape and a U-shape, respectively, and FIG. 4 shows a cross-sectional shape in which the side yoke 1 and the center yoke 3 are formed in an arc shape or a curved shape, respectively. As a result of manufacturing using a process similar to that shown in Figure 3, the effect of preventing rust formation was observed.

【0024】上記の実施例においては,焼結ヨークを一
体に形成した例について記述したが,その一部を別個に
形成してもよい。また各構成部分の厚さ寸法を異なるよ
うに形成しても作用は同一である。
In the above embodiment, the sintered yoke is formed integrally, but a portion thereof may be formed separately. Moreover, even if the thickness dimensions of each component are formed to be different, the effect is the same.

【0025】[0025]

【発明の効果】本発明は,以上記述のような構成および
作用であるから,焼結ヨーク表面の凹孔を完全に目潰し
して封孔するものであるから,磁気的特性が高く,かつ
錆の発生のない信頼性の高い焼結ヨークを製造すること
ができるという効果がある。
[Effects of the Invention] Since the present invention has the structure and operation described above, it completely closes and seals the concave holes on the surface of the sintered yoke, so it has high magnetic properties and is rust-resistant. This has the effect that a highly reliable sintered yoke that does not occur can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1実施例における磁気回路を示す要
部正面図である。
FIG. 1 is a front view of main parts showing a magnetic circuit in a first embodiment of the present invention.

【図2】本発明の第2実施例における焼結ヨークの例を
示す要部正面図である。
FIG. 2 is a front view of main parts showing an example of a sintered yoke in a second embodiment of the present invention.

【図3】本発明の第3実施例における焼結ヨークの例を
示す要部正面図である。
FIG. 3 is a front view of main parts showing an example of a sintered yoke in a third embodiment of the present invention.

【図4】本発明の第4実施例における焼結ヨークの例を
示す要部正面図である。
FIG. 4 is a front view of main parts showing an example of a sintered yoke in a fourth embodiment of the present invention.

【図5】従来のアクチュエータの例を示す一部断面要部
正面図である。
FIG. 5 is a partially cross-sectional main part front view showing an example of a conventional actuator.

【符号の説明】[Explanation of symbols]

1  サイドヨーク 3  センターヨーク 1 Side yoke 3 Center yoke

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  鉄系粉末材料からなり,表面に永久磁
石を固着して磁気回路を形成する焼結ヨークの製造方法
において,焼結ヨークの最終密度より低い密度の焼結体
をブラスト加工する工程を含むことを特徴とする焼結ヨ
ークの製造方法。
[Claim 1] A method for manufacturing a sintered yoke made of iron-based powder material, in which a permanent magnet is fixed to the surface to form a magnetic circuit, in which a sintered body having a density lower than the final density of the sintered yoke is blasted. A method for manufacturing a sintered yoke, the method comprising the steps of:
JP3025814A 1991-02-20 1991-02-20 Manufacturing method of sintered yoke Expired - Lifetime JP2571314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3025814A JP2571314B2 (en) 1991-02-20 1991-02-20 Manufacturing method of sintered yoke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3025814A JP2571314B2 (en) 1991-02-20 1991-02-20 Manufacturing method of sintered yoke

Publications (2)

Publication Number Publication Date
JPH04264707A true JPH04264707A (en) 1992-09-21
JP2571314B2 JP2571314B2 (en) 1997-01-16

Family

ID=12176336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3025814A Expired - Lifetime JP2571314B2 (en) 1991-02-20 1991-02-20 Manufacturing method of sintered yoke

Country Status (1)

Country Link
JP (1) JP2571314B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4582848B2 (en) * 2000-01-26 2010-11-17 株式会社ファインシンター Magnetic circuit yoke
JP2017017366A (en) * 2016-10-27 2017-01-19 太陽誘電株式会社 Electronic component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250903A (en) * 1988-08-10 1990-02-20 Mitsubishi Metal Corp Surface treating method for rare earth group-fe-b series magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250903A (en) * 1988-08-10 1990-02-20 Mitsubishi Metal Corp Surface treating method for rare earth group-fe-b series magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4582848B2 (en) * 2000-01-26 2010-11-17 株式会社ファインシンター Magnetic circuit yoke
JP2017017366A (en) * 2016-10-27 2017-01-19 太陽誘電株式会社 Electronic component

Also Published As

Publication number Publication date
JP2571314B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US5013411A (en) Method for producing a corrosion resistant rare earth-containing magnet
US20080118747A1 (en) Process for Producing Permanent Magnet for Use in Automotive Ipm Motor
KR100374398B1 (en) HIGH CORROSION-RESISTANT R-Fe-B BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
JPH04264707A (en) Manufacture of sintered yoke
JP2010018823A (en) Composite type metal molded body, method for producing the same, electromagnetic driving device using the same, and light quantity regulating apparatus
JPH07302705A (en) Corrosion-resistant rare earth magnet and its manufacture
KR100371786B1 (en) METHOD OF MANUFACTURING R-Fe-B BOND MAGNETS OF HIGH CORROSION RESISTANCE
JP2000223308A (en) Coated soft magnetism powder and magnetic core made of the powder
JP3234448B2 (en) Manufacturing method of high corrosion resistant permanent magnet
JP3142172B2 (en) R-TM-B permanent magnet with improved adhesion and method for producing the same
JPH01321610A (en) Permanent magnet and its manufacture
JPH08330121A (en) Permanent magnet body
JPH067915A (en) Wear resistant aluminum alloy casting and manufacture thereof
US9171668B2 (en) Magnet member
JPS6413704A (en) Resin-bonded permanent magnet and manufacture thereof
JP2001176709A (en) High anticorrosion magnet superior in magnetic characteristics and manufacturing method therefor
JPH07106109A (en) R-tm-b permanent magnet of improved corrosion resistance, and its manufacture
JP2008038189A (en) Composite metal compact and its production method
JPS63453A (en) Oxidation resistant permanent magnet material and its production
JP2993255B2 (en) Manufacturing method of resin magnet
JPH03173105A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof
JPH0524968B2 (en)
JPH0465804A (en) Permanent magnet and its manufacture
JPH025506A (en) Rare earth magnet and manufacture thereof
JP2000049007A (en) Rare earth bond magnet