JPH0426434B2 - - Google Patents

Info

Publication number
JPH0426434B2
JPH0426434B2 JP59213592A JP21359284A JPH0426434B2 JP H0426434 B2 JPH0426434 B2 JP H0426434B2 JP 59213592 A JP59213592 A JP 59213592A JP 21359284 A JP21359284 A JP 21359284A JP H0426434 B2 JPH0426434 B2 JP H0426434B2
Authority
JP
Japan
Prior art keywords
test piece
automatic
test
supply mechanism
sample container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59213592A
Other languages
Japanese (ja)
Other versions
JPS6191571A (en
Inventor
Kazue Inoe
Hiroshi Yamamoto
Hiroshi Hyodo
Shinichi Kishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Original Assignee
Kyoto Daiichi Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Daiichi Kagaku KK filed Critical Kyoto Daiichi Kagaku KK
Priority to JP21359284A priority Critical patent/JPS6191571A/en
Priority to US06/782,356 priority patent/US4876204A/en
Priority to EP85112715A priority patent/EP0180792B2/en
Priority to DE8585112715T priority patent/DE3576857D1/en
Priority to CN198585108392A priority patent/CN85108392A/en
Publication of JPS6191571A publication Critical patent/JPS6191571A/en
Publication of JPH0426434B2 publication Critical patent/JPH0426434B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00039Transport arrangements specific to flat sample substrates, e.g. pusher blade
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00039Transport arrangements specific to flat sample substrates, e.g. pusher blade
    • G01N2035/00049Transport arrangements specific to flat sample substrates, e.g. pusher blade for loading/unloading a carousel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00089Magazines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00108Test strips, e.g. paper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00108Test strips, e.g. paper
    • G01N2035/00118Test strips, e.g. paper for multiple tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【発明の詳細な説明】 本発明は、Dip and Read式の試験片を用い
て、試験片の取り出し、被検液への浸漬、測光、
演算、廃棄等全てを自動で行なう連続自動分析方
法及び装置に関するものである。
[Detailed Description of the Invention] The present invention uses a Dip and Read type test piece to take out the test piece, immerse it in the test liquid, perform photometry,
The present invention relates to a continuous automatic analysis method and apparatus that automatically performs calculations, disposal, etc.

現在、血液や尿等の分析に最も多く用いられる
試験片2は、第3図に示すように透明なプラスチ
ツク製ストリツプの一方の端から試薬面2A…を
設け他端部を把持部2Bとするものである。尚、
試薬面2Aは測定項目数に応じた個数だけ設けら
れるが、更に標準反射片を設けてもよい。また、
図示のものは試薬面2Aとして試薬を含浸させた
濾紙の小片を両面粘着テープで貼着したものであ
るが、その他試薬を基材とともに塗布してフイル
ム化したものもある。そしてこれらの試薬片は、
本来被検試料に浸漬した後比色用見本と比較して
被検物質の濃度を測定するいわゆるDip and
Read式検査に用いるものであるが、現在ではこ
のReadの段階が装置化されて定着乃至判定量が
可能となり、また測光から演算、濃度の表示、試
験片の排出まで自動化されたものもある。しかし
Dipの段階を人手に頼つている現状では、検体数
が増える試験片を密閉容器から1本ずつ取り出
し、被検液に浸して色表と見比べたり、または光
学的測定装置の測定部にセツトし、測定が終了し
た試験片を廃棄するという作業の繰り返しは、操
作者に多大な負担を課するものである。しかも、
一定の反応時間を必要とするので操作者は測定中
完全に拘束される。また、人手だと浸漬時間や浸
漬測定開始までの時間がどうしてもバラつきやす
く測定誤差を生じ易い。従つて、このDip段階を
含めて完全な自動化を行なうことが望まれる。
Currently, the test strip 2 most commonly used for analyzing blood, urine, etc. is a transparent plastic strip with a reagent surface 2A at one end and a gripping section 2B at the other end, as shown in Fig. 3. It is something. still,
The number of reagent surfaces 2A corresponding to the number of measurement items is provided, but standard reflective pieces may also be provided. Also,
In the illustrated example, a small piece of filter paper impregnated with a reagent is attached with double-sided adhesive tape as the reagent surface 2A, but there are also other types in which the reagent is applied together with a base material to form a film. And these reagent pieces are
The so-called Dip and
It is used for read-type inspections, but now the read stage has been made into a device, making it possible to fix or judge the amount, and there are also machines that automate everything from photometry to calculation, concentration display, and test piece ejection. but
Currently, we rely on humans to perform the dipping step, so we remove test pieces one by one from a sealed container, which increases the number of specimens, immerse them in the test liquid and compare them with a color chart, or set them in the measuring section of an optical measuring device. The repeated work of discarding test pieces after measurement imposes a heavy burden on the operator. Moreover,
Since a certain reaction time is required, the operator is completely restrained during the measurement. Furthermore, if the measurement is carried out manually, the immersion time and the time until the start of immersion measurement tend to vary and measurement errors are likely to occur. Therefore, it is desirable to perform complete automation including this Dip step.

しかし、Dip段階までを含めて完全な自動化を
図るためには、試験片を規則的に取り出す機構、
及び害取り出した試験片を被検液に浸漬しこれを
測光部に正しくセツトする試験片自動操作機構が
必要となる。しかもこれらは、正確に作動しまた
好ましくは小型で且つ安価であることが必要であ
る。
However, in order to achieve complete automation including the dip stage, it is necessary to develop a mechanism for regularly taking out test pieces,
In addition, an automatic test piece operation mechanism is required to immerse the removed test piece in the test liquid and set it correctly in the photometry section. Moreover, they need to operate accurately and preferably be small and inexpensive.

本発明は、上記要請のもとに開発されたもので
あり、試験片自動操作機構と試験片の自動供給機
構及び従来公知の測光機構等を有機的に組合せて
Dip及びReadの全ての工程を自動的連続的に行
なうものである。以下、本発明を図面に示す実施
例に基づいて詳細に説明する。
The present invention was developed based on the above-mentioned requirements, and organically combines an automatic test piece operation mechanism, an automatic test piece supply mechanism, a conventionally known photometry mechanism, etc.
All processes of Dip and Read are performed automatically and continuously. Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1図は、本発明装置の一例でその作動状態を
示す概略斜視図、第2図はそのブロツク図であ
る。この試験片を用いる連続自動分析装置1は、
試験片自動操作機構3の周囲に試験片自動供給機
構4、試料容器供給機構5及び測光機構6等を配
置したものである。また、第2図中符号7は制御
部、8は入力部、9は出力部である。
FIG. 1 is a schematic perspective view of an example of the device of the present invention showing its operating state, and FIG. 2 is a block diagram thereof. The continuous automatic analyzer 1 using this test piece is
A test piece automatic supply mechanism 4, a sample container supply mechanism 5, a photometry mechanism 6, etc. are arranged around a test piece automatic operation mechanism 3. Further, in FIG. 2, reference numeral 7 is a control section, 8 is an input section, and 9 is an output section.

試験片自動操作機構3は、先端に試験片保持具
11を設けたアーム12とアーム駆動用シヤフト
13及びシヤフト回転用モータ14からなる回転
部15を、縦方向のシヤフト17で支承するとと
もに上下駆動用モータ18の軸に巻係されたワイ
ヤ19で上下動可能に吊持する。またアーム駆動
用シヤフト13の一端部を支えて振り止めするス
ライダー16を、左右駆動用モータ20の軸に巻
係したワイヤ21で左右方向に駆動する。このス
ライダー16は左右駆動用シヤフト22に支持さ
れており、これら全体は枠体23に組み込まれて
いる。
The automatic test piece operation mechanism 3 supports a rotating part 15 consisting of an arm 12 having a test piece holder 11 at its tip, an arm driving shaft 13, and a shaft rotation motor 14 by a vertical shaft 17, and drives it up and down. It is suspended by a wire 19 wound around the shaft of a motor 18 so as to be movable up and down. Further, a slider 16 that supports one end of the arm drive shaft 13 to prevent it from swinging is driven in the left-right direction by a wire 21 wound around the shaft of a left-right drive motor 20. This slider 16 is supported by a left and right drive shaft 22, and the entire slider 16 is incorporated into a frame 23.

また、本例の試験片保持具11はレリーズ24
の押し引きにより開閉するハサミ機構(嘴機構)
で、本例ではこのレリーズ24の操作はソレノイ
ド25で行なつているがエアシリンダーで行なつ
てもよく、或いはハサミ機構の開閉を直接ソレノ
イドやエアシリンダーで行なつてもよい。またハ
サミ機構に替えて空気吸引により直接保持する方
式を採用してもよい。このうちレリーズ式のもの
が軽量で力強く望ましい。これらのレリーズやエ
アパイプはアーム12の中を通す他空間に浮かし
てもよい。更に、前記各モータ14,18,20
は正確な位置決めをするためパルスモータが好ま
しい。
Further, the test piece holder 11 of this example has a release 24.
Scissor mechanism (beak mechanism) that opens and closes by pushing and pulling
In this example, the release 24 is operated by a solenoid 25, but it may also be operated by an air cylinder, or the scissors mechanism may be opened and closed directly by a solenoid or an air cylinder. Further, instead of the scissor mechanism, a method of directly holding the device by air suction may be adopted. Among these, the release type is desirable because it is lightweight and strong. These releases and air pipes may be floating in other spaces passing through the arm 12. Furthermore, each of the motors 14, 18, 20
A pulse motor is preferable for accurate positioning.

もつとも、試験片自動操作機構3としては図示
のものに限らず、アーム12をモータとワイヤや
螺条、シリンダー等を用いて後述の如く上下・左
右の移動及び回転駆動させるものであれば如何な
る構造のものも使用可能である。
However, the automatic test piece operation mechanism 3 is not limited to the one shown in the drawings, but any structure may be used as long as it moves the arm 12 vertically, horizontally, and rotates as described below using a motor, wire, screw, cylinder, etc. can also be used.

次に試験片自動供給機構4は、試験片2を一枚
ずつ供給するもので、種々な構造のものが考えら
れる。本例では、試験片を投入するホツパー26
が試験片嵌入溝27を備えた底部28と該溝27
に平行な2つの内壁面29a,30aを含む壁部
29,30を有し底部28をスライドさせて試験
片嵌入溝27をホツパー外に移動させるスライベ
ース方式のものを用いている。
Next, the test piece automatic feeding mechanism 4 feeds the test pieces 2 one by one, and various structures can be considered. In this example, the hopper 26 into which the test piece is
A bottom portion 28 with a test piece insertion groove 27 and the groove 27
A slide base type is used in which the test piece insertion groove 27 is moved out of the hopper by sliding the bottom part 28, which has wall parts 29 and 30 including two inner wall surfaces 29a and 30a parallel to the hopper.

尚、第4図a,bはその詳細を示すもので、底
部28がラツク31とピニオンギヤ32を介して
モータ33により内壁面29a,30a間(第4
図b〜の間)を左右に移動させられているう
ちに、ホツパー26内に投入された試験片2の内
一枚が、ホツパー内のの位置で溝27に嵌る。
検知器34…が溝27内の試験片2を検知する
と、底部28は更に外方に移動して、溝27が試
験片2の取り出し位置(第1図の状態)に停止
する。また試験片2が裏向き溝27に嵌入してい
る場合、検知器34でその旨を検知して底部28
を更に進行させ(溝37の位置)、反転機構の
レバー35の試験片2を壁部29側に反転させつ
つ押し出す。そして底部28が逆行する際壁部の
外壁面下端で溝27に嵌入させ、の位置で表面
を向いているか否かを再度チエツクして、正しけ
れば逆転しての位置でて停止する。
In addition, FIGS. 4a and 4b show the details, and the bottom part 28 is moved between the inner wall surfaces 29a and 30a (fourth
While the test piece 2 is being moved from side to side (between Figures 1 and 2), one of the test pieces 2 put into the hopper 26 fits into the groove 27 at a position in the hopper.
When the detectors 34 detect the test piece 2 in the groove 27, the bottom 28 moves further outward, and the groove 27 stops at the test piece 2 takeout position (the state shown in FIG. 1). In addition, if the test piece 2 is inserted into the groove 27 facing downward, the detector 34 detects this and the bottom 28
is further advanced (to the position of the groove 37), and the lever 35 of the reversing mechanism pushes out the test piece 2 while inverting it toward the wall portion 29 side. Then, when the bottom part 28 moves backward, it fits into the groove 27 at the lower end of the outer wall surface of the wall part, checks again whether it is facing the surface at the position , and if it is correct, it reverses and stops at the position.

ここに検知器34としては、試験片2の有無を
検知する透過型のホトインタラプタ、表裏判定用
の反射型ホトインタラプタ等の光センサーを1個
或いは適宜組み合わせて用いるが、その他例えば
近傍センサーで溝37の部分の高低を検知して試
験片2の有無や表裏判定を行なうようにしてもよ
い。更に、試薬面2Aの夫々に対応する検知器3
4を複数設けて試験片の種類の判定や試験片の破
損等のチエツクを行ない、別の種類のものや不良
品な系外に除去するようにしてもよい。
Here, as the detector 34, one or an appropriate combination of optical sensors such as a transmission type photointerrupter for detecting the presence or absence of the test piece 2 and a reflection type photointerrupter for determining the front and back side is used. The presence or absence of the test piece 2 and whether it is front or back may be determined by detecting the height of the portion 37. Further, a detector 3 corresponding to each of the reagent surfaces 2A
A plurality of test pieces 4 may be provided to determine the type of test piece and check for breakage of the test piece, and remove other types or defective items from the system.

尚、反転機構を省略して試験片2が表裏反対の
場合試験片保持具11を駆動して試験片2の表裏
が逆になるようにしてもよい。この取り出し機構
4も底部28を固定して壁部を可動にするなどの
変形が種々考えられる。
Note that the reversing mechanism may be omitted, and when the test piece 2 is reversed, the test piece holder 11 may be driven so that the front and back sides of the test piece 2 are reversed. Various modifications of the take-out mechanism 4 are possible, such as fixing the bottom part 28 and making the wall part movable.

或いは、試験片自動供給機構4としてカセツト
式のものを用いることもできる。第5図はこの一
例で、カセツト46内に多数詰め込まれた試験片
2を、スライダー47で下から1枚宛順次押し出
して取り出し位置に置き、検知器48で確認して
おく。そして、この位置で試験片保持具11によ
り取り出される。
Alternatively, a cassette-type automatic test piece supply mechanism 4 can also be used. FIG. 5 shows an example of this, in which a large number of test specimens 2 packed in a cassette 46 are pushed out one by one from the bottom with a slider 47 and placed at a take-out position, and confirmed with a detector 48. Then, at this position, the specimen is taken out by the specimen holder 11.

ところで、本例における試料容器供給機構5や
測光機構6は従来公知のものを組み込んでいる
が、その他種々な変形例が考えられる。本例の試
料容器供給機構5はターンテーブル方式のもの
で、該試料ターンテーブル36はその円周部に試
料容器37を受け入れるポート38を多数設けて
おり、モータ39で正逆方向に回転駆動される。
この試料ターンテーブル36を脱着可能に順次交
換しうるようにすると、大量の試料を手際よく処
理することができる。一方測光機構6は、測光部
40と該測光部40に試験片2…を導く担持台と
しての反応ターンテーブル41からなり、反応タ
ーンテーブル41には試験片載置個所として複数
の溝42が放射状に設けられていてモータ43で
一定方向に間欠回転される。測光部40は溝42
が停止する或位置の上方に置かれている。測光部
40は、光学系44と試験片2を移動させる引張
機構45からなる。
Incidentally, although the sample container supply mechanism 5 and the photometry mechanism 6 in this example incorporate conventionally known mechanisms, various other modifications are possible. The sample container supply mechanism 5 of this example is of a turntable type, and the sample turntable 36 has a number of ports 38 on its circumference for receiving sample containers 37, and is driven to rotate in forward and reverse directions by a motor 39. Ru.
If the sample turntable 36 is made detachable and replaceable one after another, a large amount of samples can be processed efficiently. On the other hand, the photometry mechanism 6 consists of a photometry section 40 and a reaction turntable 41 as a support for guiding the test piece 2 to the photometry section 40. The reaction turntable 41 has a plurality of radial grooves 42 as places for placing the test piece. The motor 43 rotates intermittently in a fixed direction. The photometry section 40 has a groove 42
is placed above a certain position where it stops. The photometry section 40 includes an optical system 44 and a tension mechanism 45 that moves the test piece 2.

次に、上記例装置1による測定動作を説明す
る。まず、試験片自動操作機構3のアーム12が
モータ20の回転により外方(図では左方)に移
動し同時に回転部15がモータ18の回転により
降下して、試験片保持具11は試験片自動供給機
構4の試験片2取り出し位置Aにくる。この際試
験片保持具11は開いており、試験片2の把持部
をくわえた後閉じる。次いで各モータ18,20
が逆回転し、その後シヤフト回転用モータ14が
回転して、試験片保持具11は試験片浸漬位置B
にくる。試験片保持具11はそのまま降下して所
定時間試薬面2Aを被検液中に浸漬しておく。次
いでモータ18が回転して試験片2を引き揚げ、
更にモータ18,14が回転して試験片保持具1
1を測光機構6のターンテーブル溝42の位置C
に移動さて、ここで試験片2を離して溝42内に
載置する。試験片2なターンテーブル41に回転
に伴つて測光部40に送られ、測定される。続い
て試験片保持具11はAの位置に戻り、同様の操
作を繰り返す。
Next, the measurement operation by the above example device 1 will be explained. First, the arm 12 of the automatic test piece operating mechanism 3 moves outward (to the left in the figure) by the rotation of the motor 20, and at the same time, the rotating part 15 descends due to the rotation of the motor 18, and the test piece holder 11 holds the test piece. The test piece 2 of the automatic supply mechanism 4 comes to the take-out position A. At this time, the test piece holder 11 is open and closed after holding the grip part of the test piece 2 in its mouth. Then each motor 18, 20
rotates in the opposite direction, and then the shaft rotation motor 14 rotates, and the test piece holder 11 is moved to the test piece immersion position B.
I'm coming. The test piece holder 11 is lowered as it is, and the reagent surface 2A is immersed in the test liquid for a predetermined time. Next, the motor 18 rotates to pull up the test piece 2,
Furthermore, the motors 18 and 14 rotate, and the test piece holder 1
1 is the position C of the turntable groove 42 of the photometry mechanism 6.
Now, the test piece 2 is released and placed in the groove 42. As the test piece 2 rotates on the turntable 41, it is sent to the photometry section 40 and measured. Subsequently, the test piece holder 11 returns to position A, and the same operation is repeated.

これら各機構3,4,5,6の動作は、夫々制
御部7のマイクロコンピユータで制御される。ま
たこのマイクロコンピユータは、反射率から夫々
の被検物質の濃度等を演算し、その結果を表示部
49に出力する。また第2図中符号50はプリン
ター、51は外部出力、52なキーボードであ
る。
The operation of each of these mechanisms 3, 4, 5, and 6 is controlled by a microcomputer in a control section 7, respectively. This microcomputer also calculates the concentration of each test substance from the reflectance, and outputs the results to the display section 49. Further, in FIG. 2, reference numeral 50 is a printer, 51 is an external output, and 52 is a keyboard.

次に、液面検知機構10について説明する。こ
れは、試験片2を自動で試料容器37中に挿入す
るので、被検液が少ない場合試薬面2Aが浸漬さ
れないし、多すぎると浸漬時間が長くなり正確な
測定が出来なくなる虞があるので、浸漬前に予め
液面を検知しておき試験片2の挿入の程度を調節
したり被検液の不足を予告したりするためのもの
である。そして、この液面検知は、ノズルアーム
53の先端に支持された長短2本の電極54,5
5で行なう。尚、ノズルアーム53はノズルモー
タ56により駆動され、各電極54,55は、測
定毎に洗浄槽57で洗浄される尚、長い方の電極
54は吸引ノズルを兼ねており、ここから吸引さ
れた被検液は比重ユニツト58に導かれて比重の
測定がなされる。ただ、試験片2の浸漬に先立つ
て吸引を行なうと液面が低下するので、その分を
予め予測するか或いは一旦液面検知を行い次いで
浸漬してから後に吸引を行なうようにしてもよ
い。これらの操作はターンテーブル36の回転を
制御して行なう。尚この液面検知は反射光を用い
た光センサー等で行なつてもよい。
Next, the liquid level detection mechanism 10 will be explained. This is because the test piece 2 is automatically inserted into the sample container 37, so if there is too little sample liquid, the reagent surface 2A will not be immersed, and if there is too much, the immersion time will be longer and there is a risk that accurate measurements will not be possible. This is to detect the liquid level in advance before immersion and to adjust the degree of insertion of the test piece 2 or to forewarn a shortage of the test liquid. This liquid level detection is performed using two long and short electrodes 54 and 5 supported at the tip of the nozzle arm 53.
Do it in 5. The nozzle arm 53 is driven by a nozzle motor 56, and each electrode 54, 55 is cleaned in a cleaning tank 57 after each measurement.The longer electrode 54 also serves as a suction nozzle, from which the The test liquid is led to a specific gravity unit 58 and its specific gravity is measured. However, if suction is performed prior to immersing the test piece 2, the liquid level will drop, so this amount may be predicted in advance, or the liquid level may be detected once, and then suction may be performed after immersion. These operations are performed by controlling the rotation of the turntable 36. Note that this liquid level detection may be performed using an optical sensor using reflected light or the like.

以上詳述したように、本発明は供給装置から1
枚ずつ供給される試験片の把持部を保持して持ち
上げ、順次送られてくる試料容器中の試料液に試
験片の試薬面を挿入して所定時間浸漬した後、引
き上げた試験片を試験片担持台にセツトし、次い
で所定時間後試薬面を測光する、試薬片を用いる
連続自動分析方法及び装置である。従つて、Dip
and Read式の試験片を用いて、試験片の取り出
し、被検液の浸漬、測光、演算、廃棄等全てを自
動で行なうことができるので、Dipの段階が人手
に委ねられている従来方法と比べて操作者の負担
が大幅に軽減されると共に、浸漬時間や浸漬後測
定開始までの時間がバラつかないので測定誤差を
生じることもなく、また操作者は試料容器に被検
液を注入するだけでよいため省力化が図れる。ま
た、特別の自動分析装置用試験片を用いずとも、
目視で使用できる試験片をそのまま本連続自動分
析装置に流用することもでき、汎用性が高い。
As described in detail above, the present invention provides a
Hold and lift the grip of the test piece that is supplied one by one, insert the reagent side of the test piece into the sample liquid in the sample container that is sent one by one, and immerse it for a predetermined time. This is a continuous automatic analysis method and apparatus using a reagent piece, which is set on a support table and then photometrically measured on the reagent surface after a predetermined period of time. Therefore, Dip
Using a read-type test piece, all processes such as taking out the test piece, immersing it in the test liquid, photometry, calculation, and disposal can be performed automatically. The burden on the operator is greatly reduced compared to the previous model, and since there are no variations in the immersion time or the time from immersion to the start of measurement, there are no measurement errors, and the operator only needs to inject the test liquid into the sample container. It is possible to save labor because only one person needs to do this. In addition, without using a special test piece for automatic analyzer,
Test pieces that can be used for visual inspection can be directly used in this continuous automatic analyzer, making it highly versatile.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一例を示す概略斜視図、
第2図はそのブロツク図、第3図は試験片の側面
図、第4図aは試験片自動供給機構を示す斜視図
bは同じく部分縦断面図、第5図はカセツト式試
験片自動供給装置の一例を示す斜視図である。 1……連続自動分析装置、2……試験片、2A
……試薬面、2B……把持部、3……試験片自動
操作機構、4……試験片自動供給機構、5……試
料容器供給機構、6……測光機構、7……制御
部、10……液面検知機構、11……試験片保持
具、12……アーム、13……アーム駆動用シヤ
フト、14……シヤフト回転用モータ、17……
シヤフト、18……上下駆動用モータ、20……
左右駆動用モータ、22……左右駆動用シヤフ
ト、24……レリーズ、25……ソレノイド、2
6……ホツパー、27……試験片嵌入溝、28…
…底部、29……壁面、29a……内壁面、30
……壁面、30a……内壁面、34……検知器、
35……反転機構のレバー、36……試料ターン
テーブル、40……測光部(6の)、41……反
応ターンテーブル(6の)、44……光学系、4
6……カセツト、53……ノズルアーム、54…
…長電極(吸引ノズル)、55……短電極、56
……ノズルモータ、58……比重ユニツト。
FIG. 1 is a schematic perspective view showing an example of the device of the present invention;
Fig. 2 is a block diagram thereof, Fig. 3 is a side view of the test piece, Fig. 4a is a perspective view showing the automatic test piece feeding mechanism, b is also a partial vertical sectional view, and Fig. 5 is a cassette type automatic test piece feeding mechanism. It is a perspective view showing an example of a device. 1... Continuous automatic analyzer, 2... Test piece, 2A
... Reagent surface, 2B ... Gripping section, 3 ... Test piece automatic operation mechanism, 4 ... Test piece automatic supply mechanism, 5 ... Sample container supply mechanism, 6 ... Photometry mechanism, 7 ... Control section, 10 ... Liquid level detection mechanism, 11 ... Test piece holder, 12 ... Arm, 13 ... Arm drive shaft, 14 ... Shaft rotation motor, 17 ...
Shaft, 18... Vertical drive motor, 20...
Left and right drive motor, 22... Left and right drive shaft, 24... Release, 25... Solenoid, 2
6...Hopper, 27...Test piece insertion groove, 28...
...Bottom, 29...Wall surface, 29a...Inner wall surface, 30
...Wall surface, 30a...Inner wall surface, 34...Detector,
35... Lever of reversing mechanism, 36... Sample turntable, 40... Photometry section (6), 41... Reaction turntable (6), 44... Optical system, 4
6...Cassette, 53...Nozzle arm, 54...
... Long electrode (suction nozzle), 55 ... Short electrode, 56
... Nozzle motor, 58 ... Specific gravity unit.

Claims (1)

【特許請求の範囲】 1 試験片自動供給機構から1枚ずつ試験片を取
り出し、該試験片を試験片自動操作機構により保
持し、順次送られてくる試料容器の上部へ移送
し、該試料容器中の被検液に浸漬して所定時間後
に引き上げ、試験片担持台の上部へ移送し、次い
で該試験片担持台にセツトして試験片の保持を解
放し、所定時間後に試薬面を自動測光することを
特徴とする試験片を用いる連続自動分析方法。 2 試験片の保持は、駆動アーム先端のハサミ機
構で行なうものである特許請求の範囲第1項記載
の試験片を用いる連続自動分析方法。 3 試薬面の浸漬に先立つて、試料容器中の試料
液の液面の高さを測定し、その高さに応じて試験
片の挿入深さを決定するものである特許請求の範
囲第1項記載の試験片を用いる連続自動分析方
法。 4 試験片の自動供給機構と、該機構から取り出
された試験片を保持し被検液に浸漬し且つ試験片
担持台にセツトする試験片自動操作機構を備えて
成ることを特徴とする試験片を用いる連続自動分
析装置。 5 モータの回転により左右・上下及び回転駆動
されるアームの先端に試験片保持具を設けた試験
片自動操作機構の周囲に、試験片自動供給機構、
試料容器供給機構及び測光機構を配置し、且つ試
験片保持具が試験片自動供給機構の試験片取り出
し位置、試料容器供給機構の試験片浸漬位置、測
光機構の担持台の試験片載置位置に順次移動する
ようモータの回転を制御するとともに、試験片自
動操作機構の駆動、試料容器供給機構の駆動、測
光機構の担持台と測光部の駆動を制御する制御
部、及び制御部に入出力する操作部を備えてなる
特許請求の範囲第4項記載の試験片を用いる連続
自動分析装置。 6 試験片自動供給機構は、試験片を投入するホ
ツパーが試験片嵌入溝を備えた底部と該溝に平行
な2つの内壁面を含む壁部を有し底部をスライド
させて試験片嵌入溝をホツパー外に移動させるも
のである特許請求の範囲第4項又は第5項記載の
試験片を用いる連続自動分析装置。 7 試料容器供給機構の側部に、液面検知機構を
設けてなる特許請求の範囲第4項又は第5項記載
の試験片を用いる連続自動分析装置。 8 液面検知機構は、2本の電極とその信号処理
回路と電極駆動用モータからなる特許請求の範囲
第7項記載の試験片を用いる連続自動分析装置。 9 電極の内1本を吸引ノズルとする特許請求の
範囲第8項記載の試験片を用いる連続自動分析装
置。
[Scope of Claims] 1. Take out the test pieces one by one from the test piece automatic supply mechanism, hold the test pieces by the test piece automatic operation mechanism, transfer them to the upper part of the sample containers that are sent sequentially, and remove the test pieces from the sample container. It is immersed in the test liquid in the container, and after a predetermined period of time, it is pulled up and transferred to the upper part of the test piece holder.Then, it is set on the test piece holder and the holding of the test piece is released, and after a predetermined period of time, the reagent surface is automatically photometered. A continuous automatic analysis method using a test piece characterized by: 2. A continuous automatic analysis method using a test piece according to claim 1, wherein the test piece is held by a scissor mechanism at the tip of a drive arm. 3. Prior to immersion of the reagent surface, the height of the liquid level of the sample liquid in the sample container is measured, and the insertion depth of the test piece is determined according to the measured height. Continuous automatic analysis method using the described test piece. 4. A test piece characterized by comprising an automatic test piece supply mechanism and an automatic test piece operation mechanism that holds the test piece taken out from the mechanism, immerses it in a test liquid, and sets it on a test piece support stand. A continuous automatic analyzer using 5. Around the automatic test piece operation mechanism, which has a test piece holder at the tip of the arm that is driven horizontally, vertically, and rotationally by the rotation of the motor, there is an automatic test piece supply mechanism,
The sample container supply mechanism and the photometry mechanism are arranged, and the test piece holder is placed at the test piece take-out position of the automatic test piece supply mechanism, at the test piece immersion position of the sample container supply mechanism, and at the test piece placement position of the support stand of the photometry mechanism. Controls the rotation of the motor to move sequentially, and also controls the drive of the automatic specimen operation mechanism, the drive of the sample container supply mechanism, the drive of the support stand and photometry section of the photometry mechanism, and input/output to the control section. A continuous automatic analyzer using the test piece according to claim 4, comprising an operating section. 6. The automatic test piece feeding mechanism has a hopper for feeding the test piece, which has a bottom part with a test piece insertion groove and a wall part including two inner wall surfaces parallel to the groove, and slides the bottom part to insert the test piece into the test piece insertion groove. A continuous automatic analyzer using the test piece according to claim 4 or 5, which is moved outside the hopper. 7. A continuous automatic analyzer using the test piece according to claim 4 or 5, which is provided with a liquid level detection mechanism on the side of the sample container supply mechanism. 8. A continuous automatic analyzer using a test piece according to claim 7, wherein the liquid level detection mechanism includes two electrodes, a signal processing circuit thereof, and an electrode drive motor. 9. A continuous automatic analyzer using the test piece according to claim 8, in which one of the electrodes is a suction nozzle.
JP21359284A 1984-10-11 1984-10-11 Continuous automatic analysis method and apparatus using test piece Granted JPS6191571A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21359284A JPS6191571A (en) 1984-10-11 1984-10-11 Continuous automatic analysis method and apparatus using test piece
US06/782,356 US4876204A (en) 1984-10-11 1985-10-01 Method and apparatus of automatic continuous analysis using analytical implement
EP85112715A EP0180792B2 (en) 1984-10-11 1985-10-08 Method and apparatus of automatic continuous analysis using analytical implement
DE8585112715T DE3576857D1 (en) 1984-10-11 1985-10-08 METHOD AND DEVICE FOR AUTOMATICALLY CONTINUOUS ANALYSIS USING AN ANALYZER.
CN198585108392A CN85108392A (en) 1984-10-11 1985-10-09 The automatic continuous analysis method and the device of analytical implement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21359284A JPS6191571A (en) 1984-10-11 1984-10-11 Continuous automatic analysis method and apparatus using test piece

Publications (2)

Publication Number Publication Date
JPS6191571A JPS6191571A (en) 1986-05-09
JPH0426434B2 true JPH0426434B2 (en) 1992-05-07

Family

ID=16641746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21359284A Granted JPS6191571A (en) 1984-10-11 1984-10-11 Continuous automatic analysis method and apparatus using test piece

Country Status (1)

Country Link
JP (1) JPS6191571A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039615A (en) * 1987-04-11 1991-08-13 Kabushiki Kaisha Kyoto Daiichi Kagaku Method for chemically analyzing a test piece
JP2543243B2 (en) * 1990-09-05 1996-10-16 株式会社京都第一科学 Automatic sample analyzer
JP2601075B2 (en) * 1991-10-21 1997-04-16 株式会社日立製作所 Analysis method and analyzer using test piece
JP2771367B2 (en) * 1991-11-14 1998-07-02 株式会社日立製作所 Test piece supply device and analyzer using the same
JP2812625B2 (en) * 1992-10-19 1998-10-22 株式会社日立製作所 Liquid sample automatic analyzer
ATE431932T1 (en) * 2007-09-19 2009-06-15 Hoffmann La Roche MARKING METHOD FOR REJECT MARKING OF TEST ELEMENTS

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106692A (en) * 1974-01-29 1975-08-22
US4204610A (en) * 1976-09-15 1980-05-27 Jacob Schlaepfer & Co. Ag Method of filling blind holes in a stencil
JPS5631538A (en) * 1979-08-20 1981-03-30 Tokico Ltd Method for filling gas in gas spring
JPS5782769A (en) * 1980-11-10 1982-05-24 Hitachi Ltd Automatic analyzing device
JPS581387A (en) * 1981-06-25 1983-01-06 Sanyo Electric Co Ltd Sampling clock regenerating circuit
JPS59779A (en) * 1982-06-28 1984-01-05 Nec Corp Data collating system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106692A (en) * 1974-01-29 1975-08-22
US4204610A (en) * 1976-09-15 1980-05-27 Jacob Schlaepfer & Co. Ag Method of filling blind holes in a stencil
JPS5631538A (en) * 1979-08-20 1981-03-30 Tokico Ltd Method for filling gas in gas spring
JPS5782769A (en) * 1980-11-10 1982-05-24 Hitachi Ltd Automatic analyzing device
JPS581387A (en) * 1981-06-25 1983-01-06 Sanyo Electric Co Ltd Sampling clock regenerating circuit
JPS59779A (en) * 1982-06-28 1984-01-05 Nec Corp Data collating system

Also Published As

Publication number Publication date
JPS6191571A (en) 1986-05-09

Similar Documents

Publication Publication Date Title
JP2812625B2 (en) Liquid sample automatic analyzer
JP2601075B2 (en) Analysis method and analyzer using test piece
US4876204A (en) Method and apparatus of automatic continuous analysis using analytical implement
JP2561509B2 (en) Method and apparatus for biochemical analysis using test piece
US5846490A (en) Automated test strip supplying system
US5030418A (en) Biochemical analysis apparatus
US4731225A (en) Automatic analysis apparatus
JPS6350650B2 (en)
WO2015046425A1 (en) Test piece pickup mechanism, test piece moving apparatus, liquid sample analytical apparatus, and test piece pickup method
US5378630A (en) Test strip automatic supply device and analytical instrument using the same
JPH0426434B2 (en)
JP3036353B2 (en) Test piece supply device
JPH0439624B2 (en)
JP2774052B2 (en) Liquid sample automatic analyzer
JPH07120475A (en) Analysis device and wash water supply device
JPH023462B2 (en)
JPS6319520A (en) Liquid level detector
JPS61111445A (en) Device and method for automatic supply of test piece
JP3331254B2 (en) Apparatus for aspirating excess liquid sample of test piece
JP2002196009A (en) Automatic analyzer, its automatic specimen feeder and analyzing method for liquid sample
JP3715149B2 (en) Biochemical analyzer
JPH0623771B2 (en) Automatic spotting device
JPH01304357A (en) Method and device for adhering liquid to be inspected in dot
JPH01202664A (en) Container cleaner
JPH06341995A (en) Specimens supplying device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees