JPH04264282A - Azimuth detecting device - Google Patents
Azimuth detecting deviceInfo
- Publication number
- JPH04264282A JPH04264282A JP4609991A JP4609991A JPH04264282A JP H04264282 A JPH04264282 A JP H04264282A JP 4609991 A JP4609991 A JP 4609991A JP 4609991 A JP4609991 A JP 4609991A JP H04264282 A JPH04264282 A JP H04264282A
- Authority
- JP
- Japan
- Prior art keywords
- azimuth
- data
- range
- output
- outputs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002194 synthesizing effect Effects 0.000 claims abstract 2
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 238000003786 synthesis reaction Methods 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 7
- 239000000284 extract Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 12
- 238000006243 chemical reaction Methods 0.000 abstract description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 2
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、水中において到来音波
の方位を検出する方位検出装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an azimuth detection device for detecting the azimuth of incoming sound waves underwater.
【0002】0002
【従来の技術】水中の目標が発生する雑音音波やアクテ
ィブソーナー装置のエコー等を受波し、その到来方位を
検出する方位検出装置としては、従来、例えば図5に示
すものが知られている。[Prior Art] As a direction detection device that receives noise sound waves generated by underwater targets, echoes from active sonar devices, etc., and detects their direction of arrival, the one shown in FIG. 5 is conventionally known. .
【0003】図5において、N個の受波器1は、到来音
波の1/2波長以下の間隔dで直線配列された受波器ア
レイであり、到来音波を受波しそれを電気変換する。各
受波器の出力はN個の帯域通過ろ波器2の対応するもの
にて不要な雑音が除去されそれぞれデータラッチ回路4
に入力する。[0003] In FIG. 5, N receivers 1 are a receiver array arranged in a straight line at intervals d equal to or less than 1/2 wavelength of the incoming sound waves, and receive the incoming sound waves and convert them electrically. . The output of each receiver is filtered by corresponding N bandpass filters 2 to remove unnecessary noise, and each data latch circuit 4
Enter.
【0004】ここで、図6に示すように、N個の受波器
1の配列方向に対する法線方向から角度θの到来方位で
音波が入射した場合、#N番目の受波器1の出力SN
を次の数式1のように定める。Here, as shown in FIG. 6, when a sound wave is incident at an arrival direction at an angle θ from the normal direction to the arrangement direction of the N receivers 1, the output of the #Nth receiver 1 is SN
is defined as the following equation 1.
【0005】[0005]
【数1】[Math 1]
【0006】#M(M<N)番目の受波器1の出力SM
は次の数式2のようになる。Output SM of the #M (M<N)th receiver 1
is as shown in Equation 2 below.
【0007】[0007]
【数2】[Math 2]
【0008】そして、到来音波の周波数をf、波長をλ
とすると、ω=2πf、k=2π/λ、l=dsin
θであるから、これを代入すると次の数式3となる。な
お、数式3において、(sin θ)/λは空間周波数
(単位長さ当たりの振動数)と呼ばれ、μと表記される
。[0008] Then, the frequency of the arriving sound wave is f, and the wavelength is λ.
Then, ω=2πf, k=2π/λ, l=dsin
Since θ is substituted, the following equation 3 is obtained. Note that in Equation 3, (sin θ)/λ is called a spatial frequency (frequency of vibration per unit length), and is expressed as μ.
【0009】[0009]
【数3】[Math 3]
【0010】つまり、各受波器の出力は時刻t0 で同
時にサンプルすると、#M番目の受波器1の出力SM
は次の数式4となる。In other words, if the outputs of each receiver are sampled simultaneously at time t0, the output SM of the #Mth receiver 1 will be
is the following equation 4.
【0011】[0011]
【数4】[Math 4]
【0012】これは、空間周波数μの信号を間隔dでサ
ンプルしたことを示すものであり、図6の出力例に示す
ようになる。従って、d≦λ/2なる条件が必要となる
。この同時サンプルを行っているのがデータラッチ回路
4である。This indicates that the signal of spatial frequency μ is sampled at intervals d, as shown in the output example of FIG. Therefore, the condition d≦λ/2 is required. The data latch circuit 4 performs this simultaneous sampling.
【0013】周波数分析回路5は、データラッチ回路4
のN個のサンプル信号を受けて、MEM法(最大エント
ロピー法)やFFT(高速フーリェ変換)法等による周
波数分析を行い前記空間周波数μを求める。The frequency analysis circuit 5 includes the data latch circuit 4
N sample signals are received, and frequency analysis is performed using the MEM method (maximum entropy method), FFT (fast Fourier transform) method, etc. to determine the spatial frequency μ.
【0014】空間周波数・方位変換回路6は、μ=(s
in θ)/λの関係から方位角θ(θ=arcsin
(μ・λ))を求め、方位データの出力を行う。以上の
ように、データラッチ回路4、周波数分析回路5及び空
間周波数・方位変換回路6は全体として方位データ形成
部を構成している。[0014] The spatial frequency/azimuth conversion circuit 6 has μ=(s
From the relationship of in θ)/λ, the azimuth angle θ(θ=arcsin
(μ・λ)) and outputs the direction data. As described above, the data latch circuit 4, the frequency analysis circuit 5, and the spatial frequency/azimuth conversion circuit 6 collectively constitute the azimuth data forming section.
【0015】[0015]
【発明が解決しようとする課題】上述した従来の方位検
出装置において、空間周波数の分析に周波数の符号を判
定しない方式(MEM法が代表例であるが、FFT法で
も判定しない場合がある)を使用すると、マイナス方向
からの到来音波を正しく判別できないという問題がある
。[Problem to be Solved by the Invention] In the above-mentioned conventional direction detecting device, a method that does not determine the sign of the frequency for spatial frequency analysis (the MEM method is a typical example, but the FFT method may also not determine the sign) is used. If used, there is a problem in that it is not possible to correctly distinguish sound waves arriving from the negative direction.
【0016】例えば図7(a)は音波到来方位の各種態
様を示し、図7(b)はMEM処理結果の方位データ出
力を示すが、受波器アレイの配列方向に対する法線方向
を方位角0°とし、配列方向の左方を方位角−90°、
右方を方位角+90°とすると、0°から+90°の範
囲の所謂第1象限(プラス方向の方位)での到来波■の
分析結果は0°〜+90°の範囲内のものとなるが、0
°から−90°の範囲の所謂第2象限(マイナス方向の
方位)での到来波■の分析結果も同様に0°〜+90°
の範囲内のものとなってしまうのである。For example, FIG. 7(a) shows various aspects of the sound wave arrival direction, and FIG. 7(b) shows the azimuth data output as a result of MEM processing. 0°, the left side of the arrangement direction is -90° azimuth,
If the azimuth angle is +90° to the right, the analysis result of the arriving wave ■ in the so-called first quadrant (positive azimuth) in the range of 0° to +90° will be within the range of 0° to +90°. ,0
Similarly, the analysis result of the arriving wave ■ in the so-called second quadrant (minus direction) in the range of -90° is 0° to +90°.
It ends up being within the range of .
【0017】本発明の目的は、空間周波数の分析に周波
数の符号を判定しない方式を使用するものにおいて、音
波の到来方位が受波器アレイの配列方向に対する法線方
向に関し所謂第1象限(プラス方向の方位)側か所謂第
2象限(マイナス方向の方位)側かの判定を可能にする
方位検出装置を提供することにある。An object of the present invention is to analyze spatial frequencies using a method that does not determine the sign of the frequency, so that the direction of arrival of a sound wave is in the so-called first quadrant (plus An object of the present invention is to provide an orientation detecting device that can determine whether the object is on the so-called second quadrant (negative direction) side or the so-called second quadrant (minus direction orientation) side.
【0018】[0018]
【課題を解決するための手段】前記の目的を達成するた
めに、本発明の方位検出装置は次の如き構成を有する。
即ち、本発明の方位検出装置は、水中において到来音波
を受波する受波器のN個を到来音波の1/2波長以下の
等間隔で直線配列した受波器アレイと; 各受波器毎
に設けられるN個の通過帯域ろ波器と; N個の通過
帯域ろ波器それぞれに対応して設けられ、整相面が前記
受波器アレイの配列方向に対する法線方向から所謂第1
象限側及び所謂第2象限側それぞれに向かい一定角度傾
いた方向に向くように対応する通過帯域ろ波器の出力を
所定値遅延させる第1及び第2のN個の遅延回路と;
前記第1及び第2のN個の遅延回路それぞれの出力に
基づき空間周波数をその符号を判別することなく分析し
到来音波の方位データを形成出力する第1及び第2の方
位データ形成部と; 前記第1及び第2の方位データ
形成部の対応する出力から必要な範囲のデータを取り出
して出力する第1及び第2の方位選択回路と; 前記
第1及び第2の方位選択回路の各出力を合成変換して1
つの方位データを形成出力する方位合成回路と; を
備えたことを特徴とするものである。Means for Solving the Problems In order to achieve the above object, the orientation detecting device of the present invention has the following configuration. That is, the direction detection device of the present invention includes a receiver array in which N receivers for receiving incoming sound waves underwater are linearly arranged at equal intervals of 1/2 wavelength or less of the incoming sound waves; and N passband filters provided for each of the N passband filters; provided corresponding to each of the N passband filters, with a phasing surface extending from the normal direction to the arrangement direction of the receiver array to the so-called first
N first and second delay circuits that delay the outputs of the corresponding passband filters by a predetermined value so as to be oriented at a certain angle toward the quadrant side and the so-called second quadrant side;
first and second azimuth data forming units that analyze spatial frequencies based on the outputs of the first and second N delay circuits without determining their signs, and form and output azimuth data of incoming sound waves; first and second orientation selection circuits that extract and output data in a necessary range from corresponding outputs of the first and second orientation data forming sections; each output of the first and second orientation selection circuits; Combine and convert 1
The present invention is characterized by comprising: an azimuth synthesis circuit that forms and outputs two azimuth data;
【0019】[0019]
【作用】次に、前記の如く構成される本発明の方位検出
装置の作用を図1を参照して説明する。図1は、本発明
の方位合成の原理説明図である。図1(a)(c)は、
受波器アレイの配列方向と第1及び第2のN個の遅延回
路が形成する整相面との関係を示す。受波器アレイの配
列方向に対する法線方向を方位角0°とし、配列方向の
左方を方位角−90°、右方を方位角+90°とすると
、0°〜+90°の範囲が所謂第1象限で、0°〜−9
0°の範囲が所謂第2象限である。なお、第1及び第2
の方位データ形成部は、それぞれ例えばMEM法によっ
て空間周波数を分析するとしてある。[Operation] Next, the operation of the orientation detecting device of the present invention constructed as described above will be explained with reference to FIG. FIG. 1 is an explanatory diagram of the principle of orientation synthesis according to the present invention. Figures 1(a) and (c) are
The relationship between the arrangement direction of the receiver array and the phasing plane formed by the first and second N delay circuits is shown. If the normal direction to the arrangement direction of the receiver array is 0° azimuth, the left side of the arrangement direction is -90° azimuth, and the right side is +90° azimuth, then the range from 0° to +90° is the so-called azimuth angle. 0° to -9 in one quadrant
The range of 0° is the so-called second quadrant. In addition, the first and second
Each of the azimuth data forming units analyzes the spatial frequency by, for example, the MEM method.
【0020】第1のN個の遅延回路は、例えば図1(a
)に示すように、整相面が受波器アレイの法線方向から
所謂第1象限側に向かい一定角度(例えば+45°)傾
いた方向に向くように対応する通過帯域ろ波器の出力を
所定値遅延させる。−45°〜0°の範囲をD、0°〜
+45°の範囲をC、+45°〜+90°の範囲をB、
+90°から背面側の範囲をAとすると、対応する第1
の方位データ形成部でのMEM処理結果は図1(b)に
示すようになる。即ち、整相面の法線方向を0°、右方
を90°とすると、受波器アレイの配列方向は45°の
方向となるが、空間周波数の符号は無視するのであるか
ら、0°〜45°の範囲がB+C、45°〜90°の範
囲がA+Dとなる。ここで、Aは受波器アレイの背面領
域であるので、信号はなく、A+DはDの信号のみとな
る。The first N delay circuits are, for example, shown in FIG.
), the output of the corresponding passband filter is adjusted so that the phasing surface is oriented at a certain angle (for example, +45°) from the normal direction of the receiver array toward the so-called first quadrant side. Delay by a predetermined value. -45°~0° range is D, 0°~
C for the range of +45°, B for the range of +45° to +90°,
If the range from +90° to the back side is A, the corresponding first
The MEM processing result in the orientation data forming section is shown in FIG. 1(b). In other words, if the normal direction of the phasing surface is 0° and the right side is 90°, the arrangement direction of the receiver array is 45°, but since the sign of the spatial frequency is ignored, it is 0°. The range from 45° to 45° is B+C, and the range from 45° to 90° is A+D. Here, since A is the rear area of the receiver array, there is no signal, and A+D is only the signal of D.
【0021】また、第2のN個の遅延回路は、例えば図
1(c)に示すように、整相面が受波器アレイの法線方
向から所謂第2象限側に向かい一定角度(例えば−45
°)傾いた方向に向くように対応する通過帯域ろ波器の
出力を所定値遅延させる。背面側から−90°の範囲を
D′、−90°〜−45°の範囲をC′、−45°〜0
°の範囲をB′、0°〜+45°の範囲をA′とすると
、対応する第2の方位データ形成部でのMEM処理結果
は図1(d)に示すようになる。即ち、整相面の法線方
向を0°、右方を90°とすると、受波器アレイの配列
方向は45°の方向となるが、空間周波数の符号は無視
するのであるから、0°〜45°の範囲がB′+C′、
45°〜90°の範囲がA′+D′となる。ここで、D
′は受波器アレイの背面領域であるので、信号はなく、
A′+D′はA′の信号のみとなる。Further, as shown in FIG. 1(c), the second N delay circuits have phasing surfaces facing at a certain angle (for example, toward the so-called second quadrant) from the normal direction of the receiver array. -45
°) Delay the output of the corresponding passband filter by a predetermined value so that it faces in the tilted direction. -90° range from the back side is D', -90° to -45° range is C', -45° to 0
Assuming that the range of degrees is B' and the range of 0 degrees to +45 degrees is A', the corresponding MEM processing results in the second orientation data forming section are shown in FIG. 1(d). In other words, if the normal direction of the phasing surface is 0° and the right side is 90°, the arrangement direction of the receiver array is 45°, but since the sign of the spatial frequency is ignored, it is 0°. ~45° range is B'+C',
The range from 45° to 90° is A'+D'. Here, D
′ is the back area of the receiver array, so there is no signal;
A'+D' is only the signal of A'.
【0022】次いで、第1の方位選択回路は、第1の方
位データ形成部の出力のうち45°〜90°の範囲D(
図1(b))のデータを取り出し、また第2の方位選択
回路は、第2の方位データ形成部の出力のうち45°〜
90°の範囲A′(図1(d))のデータを取り出す。Next, the first azimuth selection circuit selects a range D (from 45° to 90°) of the output of the first azimuth data forming section.
The second azimuth selection circuit extracts the data in FIG.
Data in the 90° range A' (FIG. 1(d)) is extracted.
【0023】そして、方位合成回路は、図1(e)に示
すように、第1の方位選択回路の出力(範囲Dのデータ
)を−45°〜0°の範囲に変換設定し、第2の方位選
択回路の出力(範囲A′のデータ)を0°〜+45°の
範囲に変換設定し、1つの方位データを形成出力する。Then, as shown in FIG. 1(e), the azimuth synthesis circuit converts and sets the output of the first azimuth selection circuit (data in range D) to a range of -45° to 0°, The output of the azimuth selection circuit (data in range A') is converted and set to a range of 0° to +45°, and one azimuth data is formed and output.
【0024】斯くして、本発明によれば、空間周波数の
分析に周波数の符号を判定しない方式を使用するものに
おいて、音波の到来方位が受波器アレイの配列方向に対
する法線方向に関し所謂第1象限側か所謂第2象限側か
の判定が可能になる。Thus, according to the present invention, in a system that uses a method that does not determine the sign of the frequency for spatial frequency analysis, when the direction of arrival of the sound wave is in the so-called direction with respect to the normal direction to the arrangement direction of the receiver array, It becomes possible to determine whether it is on the first quadrant side or the so-called second quadrant side.
【0025】[0025]
【実施例】以下、本発明の実施例を図面を参照して説明
する。図2は、本発明の一実施例に係る方位検出装置を
示す。本発明では、N個の帯域通過ろ波器(BPF)2
の後段に、N個の遅延回路3a(3b)、データラッチ
回路4a(4b)、周波数分析回路5a(5b)、空間
周波数・方位変換回路6a(6b)及び方位選択回路7
a(7b)を設けて2系統化し、さらに方位合成回路8
を設けてある。Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 shows an orientation detection device according to an embodiment of the present invention. In the present invention, N bandpass filters (BPF) 2
At the subsequent stage, N delay circuits 3a (3b), data latch circuits 4a (4b), frequency analysis circuits 5a (5b), spatial frequency/direction conversion circuits 6a (6b), and direction selection circuits 7.
A (7b) is provided to make it into two systems, and further an azimuth synthesis circuit 8
is provided.
【0026】図3は、N個の遅延回路3a(3b)が整
相面を形成する様子を示す。今、受波器1の配列方向に
対し法線方向を方位角0°とし、配列方向の右方をプラ
ス(+)方向の方位とし、左方をマイナス(−)方向の
方位とすると、N個の遅延回路3aは、整相面が受波器
アレイの法線方向からプラス側に例えば+45°傾いた
方向に向くように対応する通過帯域ろ波器の出力を所定
値遅延させる。−方、N個の遅延回路3bは、整相面が
受波器アレイの法線方向からマイナス側に例えば−45
°傾いた方向に向くように対応する通過帯域ろ波器の出
力を所定値遅延させる。FIG. 3 shows how N delay circuits 3a (3b) form a phasing surface. Now, assuming that the normal direction to the array direction of the receiver 1 is azimuth 0°, the right side of the array direction is the plus (+) direction, and the left side is the minus (-) direction, then N Each of the delay circuits 3a delays the output of the corresponding passband filter by a predetermined value so that the phasing surface faces in a direction tilted by, for example, +45 degrees to the positive side from the normal direction of the receiver array. - On the other hand, the N delay circuits 3b have their phasing planes on the negative side from the normal direction of the receiver array, for example -45
The output of the corresponding passband filter is delayed by a predetermined value so that it faces in the tilted direction.
【0027】データラッチ回路4a(4b)から空間周
波数・方位変換回路6a(6b)までは、従来と同様の
方位データ形成回路であるが、周波数分析回路5a(5
b)は、空間周波数の分析をその符号を判別しない方式
(例えばMEM法)によってを行う。従って、図4(c
)に示すように、整相面の法線方向を0°、右方を90
°とすると、受波器アレイの配列方向は45°の方向と
なるが、空間周波数の符号は無視するのであるから、周
波数分析(MEM)の結果は共に0°なら90°の範囲
内(図中斜線で示す部分)のものとなる。ここで、図1
にて説明したように、45°から90°の範囲内のデー
タが真のデータである。この0°から90°の範囲内の
データが空間周波数・方位変換回路6a(6b)から方
位選択回路7a(7b)に出力される。The data latch circuit 4a (4b) to the spatial frequency/azimuth conversion circuit 6a (6b) is the same azimuth data forming circuit as the conventional one, but the frequency analysis circuit 5a (5)
In b), the spatial frequency is analyzed by a method that does not discriminate its sign (for example, the MEM method). Therefore, Fig. 4(c)
), the normal direction of the phasing surface is 0°, and the right side is 90°.
If it is 0°, then the arrangement direction of the receiver array is 45°, but since the sign of the spatial frequency is ignored, the result of frequency analysis (MEM) is within the range of 90° if both are 0° (Fig. The part indicated by the middle diagonal line). Here, Figure 1
As explained above, data within the range of 45° to 90° is true data. Data within the range of 0° to 90° is output from the spatial frequency/azimuth conversion circuit 6a (6b) to the azimuth selection circuit 7a (7b).
【0028】そこで、方位選択回路7a(7b)は、入
力されたデータのうち45°から90°の範囲内のデー
タを選択し、それを方位合成回路8にそれぞれ出力する
。The azimuth selection circuit 7a (7b) selects data within the range of 45° to 90° from the input data and outputs them to the azimuth synthesis circuit 8, respectively.
【0029】方位合成回路8は、図4(d)に示すよう
に、+系統の選択データを0°から−45°の範囲の方
位出力とし、−系統の選択データを0°から+45°の
範囲の方位出力とするように変換合成し、−45°から
+45°までの方位データを出力する。As shown in FIG. 4(d), the azimuth synthesis circuit 8 outputs the selection data of the + system as an azimuth output in the range of 0° to -45°, and outputs the selection data of the - system as the azimuth output in the range of 0° to +45°. Conversion and synthesis are performed to output the azimuth within the range, and azimuth data from -45° to +45° is output.
【0030】なお、整相面は、±45°傾けるようにし
たが、その傾度は任意に定められるものであることは言
うまでもない。Although the phasing surface is inclined at ±45°, it goes without saying that the inclination can be determined arbitrarily.
【0031】[0031]
【発明の効果】以上説明したように、本発明の方位検出
装置によれば、2系統の遅延回路によって整相面を2方
向に傾け、それぞれの整相面を用いて方位データを形成
するようにしたので、方位データ形成部は符号判別をし
ないで周波数分析を行うが、音波の到来方位が受波器ア
レイの配列方向に対する法線方向に関し所謂第1象限側
か所謂第2象限側かの判定が可能になる効果がある。[Effects of the Invention] As explained above, according to the azimuth detecting device of the present invention, the phasing surface is tilted in two directions by the two delay circuits, and azimuth data is formed using each phasing surface. Therefore, the azimuth data forming unit performs frequency analysis without performing sign discrimination, but it is determined whether the direction of arrival of the sound wave is on the so-called first quadrant side or on the so-called second quadrant side with respect to the normal direction to the array direction of the receiver array. This has the effect of making judgment possible.
【図1】本発明の方位合成の原理説明図である。FIG. 1 is an explanatory diagram of the principle of orientation synthesis of the present invention.
【図2】本発明の一実施例に係る方位検出装置の構成ブ
ロック図である。FIG. 2 is a configuration block diagram of a direction detection device according to an embodiment of the present invention.
【図3】遅延回路の動作説明図である。FIG. 3 is an explanatory diagram of the operation of the delay circuit.
【図4】方位データ形成部以降の動作説明図である。FIG. 4 is an explanatory diagram of operations after the orientation data forming section.
【図5】従来の方位検出装置の構成ブロック図である。FIG. 5 is a configuration block diagram of a conventional direction detection device.
【図6】音波の到来方位と受波器出力の関係図である。FIG. 6 is a diagram showing the relationship between the direction of arrival of a sound wave and the output of a receiver.
【図7】周波数の符号判定をしないで周波数分析する場
合の説明図である。FIG. 7 is an explanatory diagram when frequency analysis is performed without frequency sign determination.
1 受波器 2 N個の帯域通過ろ波器 3a N個の遅延回路 3b N個の遅延回路 4a データラッチ回路 4b データラッチ回路 5a 周波数分析回路 5b 周波数分析回路 6a 空間周波数・方位変換回路 6b 空間周波数・方位変換回路 7a 方位選択回路 7b 方位選択回路 8 方位合成回路 1 Receiver 2 N bandpass filters 3a N delay circuits 3b N delay circuits 4a Data latch circuit 4b Data latch circuit 5a Frequency analysis circuit 5b Frequency analysis circuit 6a Spatial frequency/azimuth conversion circuit 6b Spatial frequency/azimuth conversion circuit 7a Direction selection circuit 7b Direction selection circuit 8 Orientation synthesis circuit
Claims (1)
器のN個を到来音波の1/2波長以下の等間隔で直線配
列した受波器アレイと; 各受波器毎に設けられるN
個の通過帯域ろ波器と; N個の通過帯域ろ波器それ
ぞれに対応して設けられ、整相面が前記受波器アレイの
配列方向に対する法線方向から所謂第1象限側及び所謂
第2象限側それぞれに向かい一定角度傾いた方向に向く
ように対応する通過帯域ろ波器の出力を所定値遅延させ
る第1及び第2のN個の遅延回路と;前記第1及び第2
のN個の遅延回路それぞれの出力に基づき空間周波数を
その符号を判別することなく分析し到来音波の方位デー
タを形成出力する第1及び第2の方位データ形成部と;
前記第1及び第2の方位データ形成部の対応する出
力から必要な範囲のデータを取り出して出力する第1及
び第2の方位選択回路と; 前記第1及び第2の方位
選択回路の各出力を合成変換して1つの方位データを形
成出力する方位合成回路と; を備えたことを特徴と
する方位検出装置。Claim 1: A receiver array in which N receivers for receiving incoming sound waves underwater are arranged in a straight line at equal intervals of 1/2 wavelength or less of the incoming sound waves; N receivers arranged for each receiver;
N passband filters are provided corresponding to each of the N passband filters, and the phasing surface is located on the so-called first quadrant side and the so-called so-called first quadrant side from the normal direction to the arrangement direction of the receiver array. first and second N delay circuits that delay the outputs of the corresponding passband filters by a predetermined value so as to face the two quadrants in directions inclined at a constant angle;
first and second azimuth data forming units that analyze the spatial frequency based on the outputs of each of the N delay circuits without determining its sign, form and output azimuth data of an incoming sound wave;
first and second orientation selection circuits that extract and output data in a necessary range from corresponding outputs of the first and second orientation data forming sections; each output of the first and second orientation selection circuits; An azimuth detection device comprising: an azimuth synthesis circuit for synthesizing and converting directional data to form and output one azimuth data;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4609991A JP2682248B2 (en) | 1991-02-19 | 1991-02-19 | Direction detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4609991A JP2682248B2 (en) | 1991-02-19 | 1991-02-19 | Direction detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04264282A true JPH04264282A (en) | 1992-09-21 |
JP2682248B2 JP2682248B2 (en) | 1997-11-26 |
Family
ID=12737549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4609991A Expired - Lifetime JP2682248B2 (en) | 1991-02-19 | 1991-02-19 | Direction detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2682248B2 (en) |
-
1991
- 1991-02-19 JP JP4609991A patent/JP2682248B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2682248B2 (en) | 1997-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1021732B1 (en) | Digital direction finding receiver | |
US5329285A (en) | Dually polarized monopulse feed using an orthogonal polarization coupler in a multimode waveguide | |
US9479867B2 (en) | Method and circuitry for direction of arrival estimation using microphone array with a sharp null | |
EP2810453B1 (en) | Audio source position estimation | |
US20020190902A1 (en) | Direction finding method | |
JPH09145834A (en) | Target signal detecting method and device | |
JPH04264282A (en) | Azimuth detecting device | |
JP2580855B2 (en) | Direction detection device | |
JPH05180923A (en) | Direction finder | |
JPS6352346B2 (en) | ||
JP2852196B2 (en) | Underwater acoustic signal direction calculator | |
JPH0367233B2 (en) | ||
JPS5951372A (en) | Antenna | |
JP2934545B2 (en) | Radar equipment | |
JPH0693016B2 (en) | Signal processing device for passive sonar | |
JP2002006037A (en) | Target detecting method for sonar | |
JPH04168388A (en) | Direction detector | |
JP2560396B2 (en) | Wide frequency band noise source power spectrum detection method | |
JPS6010190A (en) | Mutual signal processing system for passive sonar | |
JPH07318631A (en) | Orientation discrimination system | |
JP2004347458A (en) | Radio wave direction finder | |
JPH04157383A (en) | Measuring apparatus of azimuth | |
JPH0261576A (en) | Phase difference direction finder | |
Talantzis et al. | Using a differential microphone array to estimate the direction of arrival of two acoustic sources. | |
JPH05188147A (en) | Doppler detecting circuit |