JP2852196B2 - Underwater acoustic signal direction calculator - Google Patents

Underwater acoustic signal direction calculator

Info

Publication number
JP2852196B2
JP2852196B2 JP7027784A JP2778495A JP2852196B2 JP 2852196 B2 JP2852196 B2 JP 2852196B2 JP 7027784 A JP7027784 A JP 7027784A JP 2778495 A JP2778495 A JP 2778495A JP 2852196 B2 JP2852196 B2 JP 2852196B2
Authority
JP
Japan
Prior art keywords
cross
quadrant
phase
signal
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7027784A
Other languages
Japanese (ja)
Other versions
JPH08220209A (en
Inventor
謙二 塚田
一利 齋藤
康 佐々木
正典 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOEICHO GIJUTSU KENKYU HONBUCHO
NEC Corp
Original Assignee
BOEICHO GIJUTSU KENKYU HONBUCHO
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOEICHO GIJUTSU KENKYU HONBUCHO, Nippon Electric Co Ltd filed Critical BOEICHO GIJUTSU KENKYU HONBUCHO
Priority to JP7027784A priority Critical patent/JP2852196B2/en
Publication of JPH08220209A publication Critical patent/JPH08220209A/en
Application granted granted Critical
Publication of JP2852196B2 publication Critical patent/JP2852196B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水中音響信号方位計算装
置に関し、特に全方向に一様な指向性を有するOMNI
ハイドロホンと、南北方向に8の字形指向性の最大感度
軸を有すNSハイドロホンと、東西方向に8の字形指向
性の最大感度軸を有するEWハイドロホンとを組合せ利
用し、水中における目標の方位を求める指向性ソノブイ
で捕捉した目標信号の到来方位を計算する水中音響信号
方位計算装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater acoustic signal azimuth calculation apparatus, and more particularly to an OMNI having uniform directivity in all directions.
A combination of a hydrophone, an NS hydrophone having a maximum sensitivity axis of eight-shaped directivity in the north-south direction, and an EW hydrophone having a maximum sensitivity axis of eight-shaped directivity in the east-west direction, and using the hydrophone in combination with the target The present invention relates to an underwater acoustic signal azimuth calculation device that calculates the azimuth of arrival of a target signal captured by a directional sonobuoy for obtaining the azimuth of a sound.

【0002】[0002]

【従来の技術】従来のこの種の水中音響信号方位計算装
置は、図2(a)に示すように全方向に一様なOMNI
指向性パターンPIを有して第1の受信信号を出力する
第1のハイドロホンとしてのOMNIハイドロホンと、
図2(b)に示すように磁方位の南北方向に8の字形指
向性のNS指向性パターンP2の最大感度軸を有し第2
の受信信号を出力する第2のハイドロホンとしてのNS
ハイドロホンと、図2(c)に示すように磁方位の東西
方向に8の字形指向性のEW指向性パターンP3の最大
感度軸を有し第3の受信信号を出力する第3のハイドロ
ホンとしてのEWハイドロホンとを備える指向性ソノブ
イを利用し、OMNIハイドロホンで受信する第1の受
信信号(以下OMNI受信信号と呼ぶ)と、NSハイド
ロホンで受信した第2の受信信号(以下NS受信信号と
呼ぶ)と、EWハイドロホンで受信した第3の受信信号
(以下EW信号と呼ぶ)とを入力し、これら3つの受信
入力にもとづいて目標信号の到来方位を計算していた。
2. Description of the Related Art As shown in FIG. 2A, this kind of conventional underwater acoustic signal azimuth calculating apparatus has a uniform OMNI in all directions.
An OMNI hydrophone as a first hydrophone having a directivity pattern PI and outputting a first reception signal;
As shown in FIG. 2B, the second direction having the maximum sensitivity axis of the NS directivity pattern P2 having a figure-of-eight directivity in the north-south direction of the magnetic direction.
NS as a second hydrophone that outputs a received signal of
A hydrophone and a third hydrophone that has a maximum sensitivity axis of an EW directivity pattern P3 having a figure-eight pattern in the east-west direction of the magnetic direction as shown in FIG. 2C and outputs a third reception signal. Utilizing a directional sonobuoy including an EW hydrophone as the first, a first reception signal (hereinafter, referred to as an OMNI reception signal) received by the OMNI hydrophone and a second reception signal (hereinafter, NS) received by the NS hydrophone A received signal) and a third received signal (hereinafter, referred to as an EW signal) received by the EW hydrophone, and the arrival direction of the target signal is calculated based on the three received inputs.

【0003】図2によって方位決定の基本を説明すると
次のとおりである。
[0003] The basics of azimuth determination will be described with reference to FIG.

【0004】即ち、同一の目標Tに対してNS指向性パ
ターンP2とEW指向性パターンP3とが共通の目標T
から受ける入力は互いに直交する8字形の指向性を介し
て捕捉され、従って2つの入力の振幅比が到来方向に対
応し、この到来方向の存在象限を決定することによって
磁北を0度方向とする直交座標での到来方位が決定でき
る。到来方向の座標決定は、図2(a)に示す0MNI
指向性パターンP1を基準パターンとし、図2(b)お
よび(c)に示す実線が基準パターンと同位相かつ点線
が逆相であるとし、これらの位相関係から求められる。
That is, for the same target T, the NS directivity pattern P2 and the EW directivity pattern P3 share a common target T.
Are received via the directivity of the figure 8 which is orthogonal to each other, so that the amplitude ratio of the two inputs corresponds to the direction of arrival, and by determining the existence quadrant of this direction of arrival, the magnetic north is set to the 0 degree direction. The direction of arrival in rectangular coordinates can be determined. The coordinates of the arrival direction are determined by the 0MNI shown in FIG.
The directivity pattern P1 is used as a reference pattern, and the solid lines shown in FIGS. 2B and 2C are in phase with the reference pattern and the dotted lines are out of phase, and are obtained from these phase relationships.

【0005】図3は従来の水中音響信号方位計算装置の
構成図で、OMNI受信信号(SOM)101とNS受信
信号(SNS)102とEW受信信号(SEW)103とを
入力してそれぞれをFFT(Fast Fourier
Transform)により周波数分析するFFT回
路4と、SOM101に対するSNS102とSEW103と
の位相関係にもとづいて目標信号の到来方位の象限を判
定する象限判定回路5と、SNS102およびSEW103
の振幅情報と象限判定回路3の判定象限にもとづいて目
標信号の到来方位を計算する方位計算回路6とを備え
る。
FIG. 3 is a block diagram of a conventional underwater acoustic signal azimuth calculating apparatus. The OMNI received signal (S OM ) 101, NS received signal (S NS ) 102 and EW received signal (S EW ) 103 are inputted. FFT (Fast Fourier)
Transform), an FFT circuit 4 for analyzing the frequency, a quadrant judging circuit 5 for judging the quadrant of the arrival direction of the target signal based on the phase relationship between the S NS 102 and the S EW 103 with respect to the S OM 101, and S NS 102 and S S EW 103
And a azimuth calculating circuit 6 for calculating the azimuth of arrival of the target signal based on the amplitude information of the target signal and the determination quadrant of the quadrant determination circuit 3.

【0006】FFT回路4は、SOM101,SNS102
およびSEW103を受けてフーリエ変換による周波数分
析を行い、一定周波数で時間的連続性を有する信号を目
標信号の実数成分Reと複素数成分Imとから目標信号
の振幅スペクトルAと位相スペクトルPとを求め、それ
ぞれ方位計算回路6と象限判定回路5に出力する。
[0006] The FFT circuit 4 includes S OM 101, S NS 102
And SEW 103, perform a frequency analysis by Fourier transform, and convert a signal having temporal continuity at a constant frequency from the real component Re and the complex component Im of the target signal to the amplitude spectrum A and the phase spectrum P of the target signal. And outputs them to the azimuth calculation circuit 6 and the quadrant determination circuit 5, respectively.

【0007】目標信号に関する振幅スペクトルAおよび
位相スペクトルPはそれぞれ次の(1) および(2) 式で求
められる。 A=(Re2 +Im2 1/2 ……(1) P=tan-1(Re/Im) ……(2) 象限判定回路5では、FFT回路4の出力するOMN
I,NSおよびEWの各受信信号の位相スペクトルPOM
401,PNS402およびPEN403を受けてOMN
I,NSおよびEWの各受信信号の位相関係にもとづい
て目標信号の到来方位の象限を判定し、その判定結果を
象限出力Q501として方位計算回路6に出力する。こ
の象限出力Q501は、具体的には第1,2,3および
4象限の開始角度である0度,90度,180度および
270度を指定する。
The amplitude spectrum A and the phase spectrum P for the target signal are obtained by the following equations (1) and (2), respectively. A = (Re 2 + Im 2 ) 1/2 (1) P = tan −1 (Re / Im) (2) In the quadrant determination circuit 5, the OMN output from the FFT circuit 4
Phase spectrum P OM of each received signal of I, NS and EW
OMN upon receiving 401, P NS 402 and P EN 403
The quadrant of the azimuth of arrival of the target signal is determined based on the phase relationship between the I, NS, and EW received signals, and the result of the determination is output to the azimuth calculation circuit 6 as a quadrant output Q501. Specifically, this quadrant output Q501 designates 0 degrees, 90 degrees, 180 degrees, and 270 degrees, which are the start angles of the first, second, third, and fourth quadrants.

【0008】象限出力Q501によって指定する象限は
図2からも明らかな如く、次の(1)〜(4)に示す第
1〜第4象限即ち、(1)PNS402とPEW403がい
ずれもPOM401と同位相のときはQ501は0度で第
1象限、(2)PNS402がPOM401と逆位相でかつ
EW403がPOM401と同位相のときはQ501は9
0度で第2象限、(3)PNS402とPEW403とが共
にPOM401と逆位相とのきはQ501は180度で第
3象限、(4)PNS402がPOM401と同位相でかつ
EW403がPOM401と逆位相のときはQ501は2
70度で第4象限を指定する。
As is apparent from FIG. 2, the quadrant designated by the quadrant output Q501 is the first to fourth quadrants shown in the following (1) to (4), that is, (1) PNS 402 and PEW 403, Is also in phase with P OM 401, Q 501 is 0 degree in the first quadrant, and (2) Q 501 is 9 when P NS 402 is in phase opposite to P OM 401 and P EW 403 is in phase with P OM 401.
When the second quadrant is at 0 degree, (3) when both P NS 402 and P EW 403 are out of phase with P OM 401, Q501 is at 180 degree in the third quadrant, and (4) P NS 402 is equal to P OM 401. When the phase is the same and P EW 403 is out of phase with P OM 401, Q 501 is 2
Specify the fourth quadrant at 70 degrees.

【0009】方位計算回路6は、象限出力Q501とF
FT回路4の出力するNS受信信号およびEW受信信号
の振幅スペクトルANS404およびAEW405を受けて
次の(3)式の演算を実行し、目標信号の到来方位Bを
算出する。 B=Q+tan-1(AEW/ANS)……(3)
The azimuth calculation circuit 6 includes a quadrant output Q501 and F
Receiving the amplitude spectra A NS 404 and A EW 405 of the NS reception signal and the EW reception signal output from the FT circuit 4, the following equation (3) is executed to calculate the arrival direction B of the target signal. B = Q + tan -1 (A EW / A NS ) (3)

【発明が解決しようとする課題】この従来の水中音響信
号方位計算装置は、一定の周波数で時間連続性を有する
目標信号を対象とし、周波数分析にフーリエ変換を採用
しているため、出力の位相スペクトルは指向性ソノブイ
のOMNI受信信号、NS受信信号およびEW受信信号
のそれぞれが持っている位相情報をそのまま保存して求
めることができ、これにより目標信号の到来方位の算出
に必要な信号の到来象限の正しい判定を行なうことがで
きていた。
This conventional underwater acoustic signal direction calculation device targets a target signal having a constant frequency and time continuity, and employs a Fourier transform for frequency analysis. The spectrum can be obtained by storing the phase information of each of the OMNI reception signal, NS reception signal, and EW reception signal of the directional sonobuoy as it is, whereby the arrival of the signal necessary for calculating the arrival direction of the target signal can be obtained. The correct judgment of the quadrant could be made.

【0010】しかしながら、従来の水中音響信号方位計
算装置においては、到来方位の算出に必要な信号が相当
長い持続時間受信できる場合には周囲雑音を無視又は区
別することが可能である。例えば図4(a)に示す如
く、観測の時間長Tとし、観測データの時間長Tsがあ
る時刻t 0 を中心としてほぼ対称にデータ振幅Asで分
布し、過去の前位雑音時間長−Tnおよび現時点t 0
ら後の後位時間長+Tnの間に雑音振幅Anが存在する
場合には観測の時間Tにしめる観測データのデータ振幅
As×Tsの電力と雑音の振幅An×2Tnの電力の平
均との差が大きいすなわちS/Nが大きい場合は区別可
能であるが、特に観測の時間長Tに対して持続時間Ts
の短い目標信号を対象とすると、フーリエ変換のデータ
切出し区間の長さに応じた時間長で平均されるため周囲
雑音との区別が困難となり、目標信号の方位計算が不可
能となるという問題点があった。
However, the conventional underwater acoustic signal compass
Signal required for calculating the direction of arrival
Ignore or classify ambient noise when long duration reception is possible.
It is possible to separate. For example, as shown in FIG.
And the time length of observation data is T.
At the data amplitude As, almost symmetrically around the time t 0
And cloth, or past the previous position noise length of time -Tn and the present time t 0
Noise amplitude An exists between the subsequent posterior time length + Tn
In the case, the data amplitude of the observation data to be set to the observation time T
The average of the power of As × Ts and the power of the noise amplitude An × 2Tn
Can be distinguished when the difference from the average is large, that is, when the S / N is large.
But the duration Ts for the observation time length T
If the target signal is short, it is difficult to distinguish it from ambient noise because it is averaged with the time length corresponding to the length of the data extraction section of the Fourier transform, making it impossible to calculate the azimuth of the target signal. was there.

【0011】本発明の目的は上述した問題点を解決し、
持続時間の短い目標信号でも方位計算が可能な水中音響
信号方位計算装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems,
It is an object of the present invention to provide an underwater acoustic signal azimuth calculation device capable of calculating an azimuth even with a target signal having a short duration.

【0012】本発明の水中音響信号方位計算装置は、全
方向に一様な指向性を有する第1のハイドロホンと、南
北方向に8字形の指向性の最大感度軸を有する第2のハ
イドロホンと、東西方向に8字形の指向性の最大感度軸
を有する第3のハイドロホンとを備えた指向性ソノプイ
によって取得する受信信号の含む目標信号の到来方位を
計算する水中音響信号方位計算装置において、前記第1
および第2および第3の受信信号それぞれに含まれる目
標信号と周辺雑音とを判別するために現時点よりΔt時
間だけ前位の受信信号と現時点よりΔt(前記Δtに同
じ)時間だけ後位の受信信号との複数個の相関をとるこ
とにより前記目標信号を特定した後に前記第1のハイド
ロホンで受信した第1の受信信号と前記第2のハイドロ
ホンで受信した第2の受信信号との第1の相互相関係数
と前記第1の受信信号と前記第3のハイドロホンで受信
した第3の受信信号との第2の相互相関係数とを求め前
記第1および第2の相互相関係数を周波数分析してそれ
ぞれ振幅スペクトルと移送スペクトルとを出力する相互
相関処理回路と、前記相互相関処理回路の出力する前記
位相スペクトルにもとづいて前記目標信号の到来方向の
象限を判定する象限判定回路と、前記相互相関処理回路
の出力する前記振幅スペクトルと前記象限判定回路の象
限判定結果にもとづいて前記目標信号の到来方向を算出
する到来方位計算回路とを備える。
The underwater acoustic signal azimuth calculating apparatus according to the present invention comprises a first hydrophone having a uniform directivity in all directions and a second hydrophone having a maximum sensitivity axis having a directivity figure of eight in the north-south direction. And a third hydrophone having an eight-shaped directivity maximum sensitivity axis in the east-west direction and an underwater acoustic signal azimuth calculation device for calculating the azimuth of arrival of a target signal included in a reception signal acquired by a directional sonopuy. , The first
And an eye included in each of the second and third received signals.
At time Δt from the current time to distinguish between the target signal and the surrounding noise
Between the previous received signal and Δt (same as Δt above)
J) To take multiple correlations with the received signal after time
A first cross-correlation coefficient between a first received signal received by the first hydrophone and a second received signal received by the second hydrophone after the target signal is specified by And a second cross-correlation coefficient between the first received signal and the third received signal received by the third hydrophone are obtained, and the first and second cross-correlation coefficients are subjected to frequency analysis to obtain respective amplitudes. A cross-correlation processing circuit that outputs a spectrum and a transfer spectrum; a quadrant determination circuit that determines a quadrant in an arrival direction of the target signal based on the phase spectrum output by the cross-correlation processing circuit; An arrival direction calculation circuit for calculating an arrival direction of the target signal based on the output amplitude spectrum and a quadrant judgment result of the quadrant judgment circuit.

【0013】また本発明の水中音響方位計算装置は、前
記象限判定回路が、前記第1と第2の相互相関の位相ス
プクトルが同位相であるが逆位相であるかの位相関係
と、前記第1の相互相関の位相スペクトルの位相存在象
限との組合せを判定条件として前記目標信号の方位を含
む象限を判定する構成を有する。
Further, in the underwater acoustic azimuth calculating apparatus according to the present invention, the quadrant judging circuit may determine whether the phase spectra of the first and second cross-correlations are in phase but opposite in phase. The quadrature including the azimuth of the target signal is determined by using a combination of the cross-correlation phase spectrum of one and the phase existence quadrant as a determination condition.

【0014】さらに本発明の水中音響方位計算装置は、
前記方位計算回路が、前記第1と第2の相互相関の振幅
スペクトルの比にもとづいて表現される象限内角度と前
記象限判定回路の象限判定結果とによって前記目標信号
の到来方位を決定する構成を有する。
Further, the underwater acoustic azimuth calculation device of the present invention is
The azimuth calculation circuit determines an arrival azimuth of the target signal based on an angle in a quadrant expressed based on a ratio of amplitude spectra of the first and second cross-correlations and a quadrant judgment result of the quadrant judgment circuit. Having.

【0015】[0015]

【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の一実施例の構成図である。図1に示
す水中音響信号方位計算装置は、OMNI,NSおよび
EW各受信信号を入力してOMNI受信信号とNSおよ
びEW受信信号との相互相関をとり、その後相互相関信
号のフーリエ変換による周波数分析を行なう相互相関処
理回路1と、相互相関処理回路1の出力する相互相関信
号の位相スペクトルを入力して目標信号の到来方位の象
限を決定する象限判定回路2と、相互相関処理回路1の
出力する相互相関信号の振幅スペクトルと象限判定回路
2の出力する象限情報とにもとづいて目標信号の到来方
位を決定する方位計算回路3とを備える。
Next, the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of one embodiment of the present invention. The underwater acoustic signal direction calculation device shown in FIG. 1 receives the OMNI, NS, and EW received signals, takes a cross-correlation between the OMNI received signal and the NS and EW received signals, and then performs a frequency analysis by Fourier transform of the cross-correlated signal. A quadrature determination circuit 2 for inputting a phase spectrum of a cross-correlation signal output from the cross-correlation processing circuit 1 to determine a quadrant of an arrival direction of a target signal, and an output of the cross-correlation processing circuit 1 And a direction calculation circuit 3 for determining the direction of arrival of the target signal based on the amplitude spectrum of the cross-correlation signal and the quadrant information output from the quadrant determination circuit 2.

【0016】相互相関処理回路1は、次の(4),
(5)および(6)式で示されるOMNI受信信号のS
OM101,NS受信信号のSNS102およびEW受信信
号のSEW103を入力し、SOM101とSNS102お
よびSOM101とSEW103の相互相関を求め、その後
この相互相関結果をフーリエ変換で周波数分析する。
The cross-correlation processing circuit 1 has the following (4),
S of the OMNI reception signal represented by the equations (5) and (6)
OM 101, S NS 102 of the NS reception signal and S EW 103 of the EW reception signal are input, and the cross-correlation between S OM 101 and SNS 102 and between S OM 101 and S EW 103 is obtained. Then, the cross-correlation result is subjected to Fourier transform. Perform frequency analysis.

【0017】持続時間の短い目標信号を対象としてその
ままフーリエ変換を施すとデータ切出し区間の長さに応
じた時間長で平均化されるため周囲雑音との区別が困難
となることを回避する手段としては、受信した目標信号
に前処理として自己相関処理を施すことも考えられる
が、これでは目標信号の有する位相情報が失われてしま
うので、本発明では相互相関による前処理を行って対雑
音性を著しく改善し上述した問題の回避を図っている。
ここで本実施例で実施する問題の回避手段を図4(b)
を参照して安定的に説明する。前述した如くある時刻t
0 を中心として観測データの時間長Tsの切り出しを理
想的に行うためには観測データの立上がりと立下がりよ
りわずかに広いTs≒Tが最適であるが、一方図4
(b)に示す如く時刻t 0 を中心として対称に前位の時
刻−t 1 ,−t 2 ,−t 3 と後位の時刻+t 1 ,+
2 ,+t 3 との自己相関をそれぞれとることにより、
切り出し時間が理想的に観測データの時間長Tsの中心
にt 0 がある場合には目標信号に関する精細な自己相関
が得られる。t 0 が時間長Tsの中心からずれて行く課
程で、例えば−t 4 の雑音成分と+t 2 のデータとの間
を切り出した課程では自己相関が僅かにはずれることに
なるが切り出し時間(観測時間Tに対応)を狭くするこ
とにより、周囲雑音と目標信号との区別を明確にするこ
とができる。このようにまず各OMN,NS,EW信号
それぞれが自己相関をとった後にOMNとNS信号およ
びOMNとEW信号の相関をとる。すなわち(9)式か
ら(12)式はそれぞれOMN1受信信号101、NS
受信信号102、EW受信信号103に含まれる同一の
目標信号の切り出しを行った後に相互の振幅スペクトル
0 N ,A 0 E と位相スペクトルP 0 N ,P 0
5 の相互相関信号を計算している。
If the Fourier transform is applied to a target signal having a short duration as it is, the target signal is averaged with a time length corresponding to the length of the data cutout section, so that it becomes difficult to distinguish it from ambient noise. Although it is conceivable to apply autocorrelation processing to the received target signal as preprocessing, the phase information of the target signal is lost in this case. Are remarkably improved to avoid the above-mentioned problem.
Here, means for avoiding the problem implemented in the present embodiment is shown in FIG.
The description will be made stably with reference to FIG. As described above, a certain time t
How to extract the time length Ts of observation data from 0
In order to do this sensibly, rise and fall the observation data.
A slightly wider Ts ≒ T is optimal, while FIG.
As shown in (b), when the front position is symmetric with respect to time t 0
Time -t 1, -t 2, -t 3 and the rear position of the time + t 1, +
By taking the autocorrelation with t 2 and + t 3 respectively,
The cutout time is ideally the center of the observation data time length Ts
Definition autocorrelation related to the target signal when there is a t 0 to
Is obtained. Section in which t 0 deviates from the center of time length Ts
Between the noise component at −t 4 and the data at + t 2
The autocorrelation is slightly shifted in the process
However, the cut-out time (corresponding to the observation time T) must be reduced.
Makes clear the distinction between ambient noise and the target signal.
Can be. Thus, first, each OMN, NS, EW signal
After each autocorrelation, the OMN and NS signals and
And OMN and EW signal are correlated. That is, equation (9)
Equations (12) indicate that the OMN1 received signal 101, NS
The same signal included in the reception signal 102 and the EW reception signal 103
After extracting the target signal, the mutual amplitude spectrum
A 0 - N, A 0 - E and the phase spectrum P 0 - N, P 0 -
5 cross-correlation signals are calculated.

【0018】SOM=Asin ωt……(4) SNS=Asin(ωt+θ1 )cosB……(5) SEW=Asin(ωt+θ2 )sinB……(6) 上述した(4)〜(6)式は、図2に示す第1象限で磁
北から東にB度の方位に目標Tが存在し、Aが目標信号
の強度、またSOM101の位相を基準としたSNS102
およびSEW103の位相差をそれぞれθ1 ,θ2 とした
場合を例としている。
S OM = Asin ωt (4) S NS = Asin (ωt + θ 1 ) cosB (5) S EW = Asin (ωt + θ 2 ) sinB (6) The above (4) to (6) The equation shows that in the first quadrant shown in FIG. 2, a target T exists in a direction of B degrees east of magnetic north, and A is the intensity of the target signal and S NS 102 with reference to the phase of S OM 101.
And the phase difference between S EW 103 and θ EW 103 are θ 1 and θ 2 , respectively.

【0019】SOM101とSNS102,SOM101とS
EW103との相互相関(SO-N ,SO-E はそそれぞれ次
の(7),(8)式で示される。 SO-N =A2 cosB sin(ωt−ωτ/2) sin(ωt+ωt/2+θ1 )……(7) SO-E =A2 sinB sin(ωt−ωτ/2) sin(ωt+ωτ/2+θ2 )……(8) 相互相関SO-N とSO-E の振幅スペクトルAO-N および
O-E と、位相スペクトルPO-N およびPO-E はそれぞ
れ次の(9),(10)式と、(11),(12)式で
示される。
S OM 101 and S NS 102, S OM 101 and S
Cross-correlation with EW 103 (S ON and S OE are given by the following equations (7) and (8), respectively): S ON = A 2 cosB sin (ωt−ωτ / 2) sin (ωt + ωt / 2 + θ 1 ) (7) S OE = A 2 sinB sin (ωt−ωτ / 2) sin (ωt + ωτ / 2 + θ 2 ) (8) Cross-correlation S ON and S OE amplitude spectrum A ON and A OE and phase spectrum P ON and P OE are expressed by the following equations (9) and (10), and equations (11) and (12), respectively.

【0020】 [0020]

【0021】 [0021]

【0022】 [0022]

【0023】 [0023]

【0024】(9)〜(12)式における記号−は平均
化処理を示す。
The symbol-in the expressions (9) to (12) indicates an averaging process.

【0025】相互相関結果の振幅スペクトルAO-N 10
6はAO-E 107とはそれぞれ方位計算回路3に、また
位相スペクトルPO-N 104とPO-E 105とはそれぞ
れ象限判定回路2に供給される。
The amplitude spectrum A ON 10 of the cross-correlation result
6 is supplied to the azimuth calculation circuit 3 with A OE 107, and the phase spectra P ON 104 and P OE 105 are supplied to the quadrant determination circuit 2 respectively.

【0026】象限判定回路2では、相互相関処理回路1
からSOM101とSNS102との相互相関信号の位相ス
ペクトルPO-N 104と、SOM101とSEW103との
相互相関信号の位相スペクトルPO-E 105とを入力し
てPO-N 104とPO-E 105との位相関係を判定し、
その判定結果を象限出力Q201として方位計算回路3
に出力する。象限出力Q201指定する象限は次の
(A),(B),(C)および(D)の4通りである。
In the quadrant determination circuit 2, the cross-correlation processing circuit 1
, The phase spectrum P ON 104 of the cross-correlation signal between S OM 101 and S NS 102 and the phase spectrum P OE 105 of the cross-correlation signal between S OM 101 and S EW 103 are input to P ON 104 and P OE. The phase relationship with 105 is determined,
The azimuth calculation circuit 3 uses the determination result as a quadrant output Q201.
Output to The quadrants designated by the quadrant output Q201 are the following four types (A), (B), (C) and (D).

【0027】すなわち、(A)PO-N 104とPO-E
05とが同位相で、かつPO-N 104が−π/2≦P
O-N ≦π/2の範囲にあるときQ201=0度で第1象
限を指定、(B)PO-N 104とPO-E 105とが逆位
相で、かつPO-N 104がπ/2<PO-N <3/2πの
範囲にあるときQ201=90度で第2象限を指定、
(C)PO-N 104とPO-E 105とが同位相でかつP
O-N 104がπ/2<PO-N <3/2πの範囲にあると
きQ201=180度で第3象限を指定、(D)PO-N
104とPO-E 105とが逆位相で、かつPO-N 104
が−π/2≦PO-N≦π/2の範囲にあるときQ201
=270度で第4象限を指定する。
That is, (A) P ON 104 and P OE 1
05 is in phase and P ON 104 is -π / 2 ≦ P
When ON ≦ π / 2, Q201 = 0 degree designates the first quadrant. (B) P ON 104 and P OE 105 are in opposite phases, and P ON 104 is π / 2 <P ON <3. / 2π when Q201 = 90 degrees specifies the second quadrant,
(C) P ON 104 and P OE 105 are in phase and P
When ON 104 is in the range of π / 2 <P ON <3 / 2π, specify the third quadrant with Q201 = 180 degrees, (D) P ON
104 and P OE 105 are in opposite phase and P ON 104
Is in the range of -π / 2 ≦ P ON ≦ π / 2 when Q201
= Specify the fourth quadrant at 270 degrees.

【0028】上述した(A)〜(D)による象限決定の
基本的背景は、図2で説明した象限判定の考え方を相互
相関領域に適用したものであり、たとえば(A)では、
OMNI指向性パターンP1で捕捉したOMNI受信信
号と、NS指向性パターンP2およびEW指向性パター
ンP3で捕捉したNS受信号およびEW受信信号とがそ
れぞれ同極性状態であり、従って目標の到来方位が第1
象限である場合に対応する。
The basic background of the above-described quadrant determination by (A) to (D) is that the concept of quadrant determination described with reference to FIG. 2 is applied to a cross-correlation area.
The OMNI reception signal captured by the OMNI directivity pattern P1 and the NS reception signal and the EW reception signal captured by the NS directivity pattern P2 and the EW directivity pattern P3 are in the same polarity state. 1
Corresponds to the case of a quadrant.

【0029】方位計算回路3は象限判定回路2の出力す
る象限出力Q201と、相互相関処理回路1の出力する
振幅スペクトルAO-N 106およびAO-E 107にもと
づき、次の(13)式によって目標の到来方位Bを算出
する。 B=Q+tan-1(A0−E/AO−N)……(13) このようにして、持続時間の短い信号でも相互相関によ
り著しく対雑音性を改善し確実に到来方位を把握するこ
とができる。
Based on the quadrant output Q201 output from the quadrant determination circuit 2 and the amplitude spectra A ON 106 and A OE 107 output from the cross-correlation processing circuit 1, the azimuth calculation circuit 3 arrives at the target by the following equation (13). The direction B is calculated. B = Q + tan -1 (A0-E / AO-N) (13) In this way, even for a signal having a short duration, the noise immunity can be remarkably improved by the cross-correlation, and the direction of arrival can be reliably grasped. .

【0030】[0030]

【発明の効果】以上説明したように本発明は、全方向指
向性と、東西および南北方向を最大感度方向とする2つ
の8の字形指向性とを有する指向性ソノブイで受信した
目標信号の方位を計算する場合に、全方向指向性による
受信信号と2つの8の字形指向性による受信信号との相
互相関を前処理とするフーリエ変換によって求めた振幅
スペクトルと位相スペクトルとにもとづいて目標信号の
方位を求めることにより、持続時間の短い目標信号も対
雑音比を著しく改善しつ正確な方位決定を行なうことが
できる効果を有する。
As described above, according to the present invention, the azimuth of a target signal received by a directional sonobuoy having omnidirectional directivity and two figure-of-eight directivities having maximum sensitivity directions in east-west and north-south directions. Is calculated, the target signal of the target signal is calculated based on the amplitude spectrum and the phase spectrum obtained by the Fourier transform in which the cross-correlation between the received signal based on the omnidirectional directivity and the received signals based on the two figure-shaped directivities is preprocessed. By obtaining the azimuth, there is an effect that a target signal having a short duration can be remarkably improved in a noise ratio and an accurate azimuth can be determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】指向性ソノブイのOMNI指向性(a),NS
指向性(b)およびEW指向性(c)を示す図である。
FIG. 2 shows OMNI directivity (a), NS of directivity sonobuoy
It is a figure which shows directivity (b) and EW directivity (c).

【図3】従来の水中音響信号方位計算装置の構成図であ
る。
FIG. 3 is a configuration diagram of a conventional underwater acoustic signal direction calculation device.

【図4】従来の技術および本発明の実施例を説明する説
明図である。
FIG. 4 is an explanatory diagram for explaining a conventional technique and an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 相互相関処理回路 2 象限判定回路 3 方位計算回路 4 FFT回路 5 象限判定回路 6 方位計算回路 7 周波数分析回路 8 自己相関回路 9 FFT回路 REFERENCE SIGNS LIST 1 cross-correlation processing circuit 2 quadrant determination circuit 3 azimuth calculation circuit 4 FFT circuit 5 quadrant determination circuit 6 azimuth calculation circuit 7 frequency analysis circuit 8 autocorrelation circuit 9 FFT circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 康 千葉県印旛群白井町大山口2−4−16− 203 (72)発明者 阿部 正典 東京都港区芝五丁目7番1号 日本電気 株式会社内 (56)参考文献 特開 平6−201811(JP,A) 特開 平5−87903(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01S 3/80 - 3/86 G01S 5/18 - 5/30 G01S 7/52 - 7/64 G01S 15/00 - 15/96──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasushi Sasaki 2-4-16-203 Oyamaguchi, Shirai-machi, Inba-gun, Chiba Prefecture (72) Inventor Masanori Abe 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation In-company (56) References JP-A-6-201811 (JP, A) JP-A-5-87903 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01S 3/80- 3/86 G01S 5/18-5/30 G01S 7/52-7/64 G01S 15/00-15/96

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 全方向に一様な指向性を有する第1のハ
イドロホンと、南北方向に8字形の指向性の最大感度軸
を有する第2のハイドロホンと、東西方向に8字形の指
向性の最大感度軸を有する第3のハイドトホンとを備え
た指向性ソノブイによって取得する受信信号の含む目標
信号の到来方位を計算する水中音響信号方位計算装置に
おいて、前記第1のハイドロホンで受信した第1の受信
信号と前記第2のハイドロホンで受信した第2の受信信
号との第1の相互相関と前記第1の受信信号と前記第3
のハイドロホンで受信した第3の受信信号との第2の相
互相関とを求め前記第1および第2の相互相関の結果を
周波数分析してそれぞれ振幅スペクトルと位相スペクト
ルとを出力する相互相関処理回路と、前記相互相関処理
回路の出力する前記位相スペクトルにもとづいて前記目
標信号の到来方位の象限を判定する象限判定回路と、前
記相互相関処理回路の出力する前記振幅スペクトルと前
記象限判定回路の象限判定結果とにもとづいて前記目標
信号の到来方向を算出する到来方位計算回路とを備え、前記第1N受信信号SOMをSOM =Asin ωt 第2の受信信号SNSをSNS=Asin(ωt+θ1 )c
osB 第3の受信信号SEWをSEW=Asin(ωt+θ2 )s
inB ここで、Aが目標信号の強度、磁北から東にB度の方位
に目標が存在するとし、SOMの位相を基準としたSNSお
よびSEWの位相差をそれぞれθ1 ,θ2 、 としたとき、 前記第1の相互相関SO-NはSO-N =A2 cosB s
in(ωt−ωτ/2)sin(ωt+ωt/2+θ1
)、 前記第2の相互相関SO-EはSO-E =A2 sinB s
in(ωt−ωτ/2)sin(ωt+ωτ/2+θ2
で求められる ことを特徴とする水中音響信号方位計算装
置。
1. A first hydrophone having a uniform directivity in all directions, a second hydrophone having a maximum sensitivity axis having a directivity of eight in the north-south direction, and a directivity of eight in the east-west direction. Underwater acoustic signal azimuth calculating apparatus for calculating the azimuth of arrival of a target signal included in a received signal obtained by a directional sonobuoy having a third hydtophone having a maximum sensitivity axis of the first hydrophone A first cross-correlation between a first received signal and a second received signal received by the second hydrophone; and a first cross-correlation between the first received signal and the third received signal.
Cross-correlation processing for obtaining a second cross-correlation with a third received signal received by the hydrophone of the first embodiment, frequency-analyzing the results of the first and second cross-correlations, and outputting an amplitude spectrum and a phase spectrum, respectively. A quadrature determination circuit that determines a quadrant of an arrival direction of the target signal based on the phase spectrum output from the cross-correlation processing circuit; and a quadrature determination circuit that outputs the amplitude spectrum and the quadrant determination circuit output from the cross-correlation processing circuit. A direction-of-arrival calculation circuit for calculating the direction of arrival of the target signal based on the quadrant determination result, wherein the first N received signal SOM is SOM = Asin ωt and the second received signal SNS is SNS = Asin (ωt + θ1) c
osB The third received signal SEW is calculated as SEW = Asin (ωt + θ2) s
inB where A is the intensity of the target signal and the direction of B degrees from magnetic north to east
It is assumed that there is a target in SNS and SNS based on the phase of SOM.
Each θ1 a phase difference of SEW and, .theta.2, when the said first cross-correlation SO-N is SO-N = A2 cosB s
in (ωt−ωτ / 2) sin (ωt + ωt / 2 + θ1
), The second cross-correlation SO-E is: SO-E = A2 sinB s
in (ωt−ωτ / 2) sin (ωt + ωτ / 2 + θ2
A) Underwater acoustic signal azimuth calculation device characterized by being obtained by:
【請求項2】 前記象限判定回路が、前記第1と第2の
相互相関の位相スプクトルが同位相であるが逆位相であ
るかの位相関係と、前記第1の相互相関の位相スペクト
ルの位相存在象限との組合せを判定条件として前記目標
信号の方位を含む象限を判定することを特徴とする請求
項1記載の水中音響信号方位計算装置。
2. The phase determination circuit according to claim 1, wherein the quadrature determination circuit determines a phase relationship between whether the phase spectra of the first and second cross-correlations are in phase but opposite phases, and a phase of the phase spectrum of the first cross-correlation. 2. The underwater acoustic signal azimuth calculation device according to claim 1, wherein a quadrant including the azimuth of the target signal is determined using a combination with a presence quadrant as a determination condition.
【請求項3】 前記方位計算回路が、前記第1と第2の
相互相関の振幅スペクトルの比にもとづいて表現される
象限内角度と前記象限判定回路の象限判定結果とによっ
て前記目標信号の到来方位を決定することを特徴とする
請求項1記載の水中音響信号方位計算装置。
3. The arrival of the target signal based on an angle in a quadrant expressed based on a ratio of amplitude spectra of the first and second cross-correlations and a quadrant judgment result of the quadrant judging circuit. The azimuth calculating device according to claim 1, wherein the azimuth is determined.
JP7027784A 1995-02-16 1995-02-16 Underwater acoustic signal direction calculator Expired - Lifetime JP2852196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7027784A JP2852196B2 (en) 1995-02-16 1995-02-16 Underwater acoustic signal direction calculator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7027784A JP2852196B2 (en) 1995-02-16 1995-02-16 Underwater acoustic signal direction calculator

Publications (2)

Publication Number Publication Date
JPH08220209A JPH08220209A (en) 1996-08-30
JP2852196B2 true JP2852196B2 (en) 1999-01-27

Family

ID=12230611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7027784A Expired - Lifetime JP2852196B2 (en) 1995-02-16 1995-02-16 Underwater acoustic signal direction calculator

Country Status (1)

Country Link
JP (1) JP2852196B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4011395B2 (en) * 2002-05-10 2007-11-21 株式会社ケンウッド Microphone device and sound source direction determination device
JP5093616B2 (en) * 2009-01-26 2012-12-12 日本電気株式会社 Target signal detection apparatus, method and program
JP6627953B1 (en) * 2018-11-20 2020-01-08 株式会社島津製作所 Optical axis adjustment method for scanning probe microscope

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2985982B2 (en) * 1991-09-27 1999-12-06 日本電信電話株式会社 Sound source direction estimation method
JPH0766050B2 (en) * 1992-12-18 1995-07-19 日本電気株式会社 Direction measurement method

Also Published As

Publication number Publication date
JPH08220209A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
Jarrett et al. 3D source localization in the spherical harmonic domain using a pseudointensity vector
Famoriji et al. An intelligent deep learning-based direction-of-arrival estimation scheme using spherical antenna array with unknown mutual coupling
Najeem et al. Open lake experiment for direction of arrival estimation using acoustic vector sensor array
Zhao et al. Open-lake experimental investigation of azimuth angle estimation using a single acoustic vector sensor
CN105223551A (en) A kind of wearable auditory localization tracker and method
Dey et al. Applied examples and applications of localization and tracking problem of multiple speech sources
Wang et al. An investigation and solution of angle based rigid body localization
CN108318855B (en) Near-field and far-field mixed signal source positioning method based on uniform circular array
CN109696657A (en) A kind of coherent sound sources localization method based on vector hydrophone
Chen et al. A new algorithm for joint range-DOA-frequency estimation of near-field sources
CN102265642A (en) Method of, and apparatus for, planar audio tracking
JP2852196B2 (en) Underwater acoustic signal direction calculator
CN110196407A (en) A kind of single vector hydrophone signal arrival bearing&#39;s estimation method based on frequency estimation
Huang et al. Spatial localization of sound sources: azimuth and elevation estimation
Zou et al. Vector hydrophone array development and its associated DOA estimation algorithms
CN115453300B (en) Partial discharge positioning system and method based on acoustic sensor array
USH1171H (en) Cardioid beamformer with noise reduction
Majid et al. Lightweight audio source localization for swarm robots
Dini et al. An enhanced bearing estimation technique for DIFAR sonobuoy underwater target tracking
Astapov et al. A two-stage approach to 2D DOA estimation for a compact circular microphone array
Matsumoto et al. Multiple signal classification by aggregated microphones
Damarla Azimuth & elevation estimation using acoustic array
Hawkes et al. Battlefield target localization using acoustic vector sensors and distributed processing
Cheong et al. Interference Localisation Methods using Direct Position Determination Concept
Mosgaard et al. Circular statistics-based low complexity DOA estimation for hearing aid application

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
EXPY Cancellation because of completion of term