JPH0693016B2 - Signal processing device for passive sonar - Google Patents

Signal processing device for passive sonar

Info

Publication number
JPH0693016B2
JPH0693016B2 JP29314086A JP29314086A JPH0693016B2 JP H0693016 B2 JPH0693016 B2 JP H0693016B2 JP 29314086 A JP29314086 A JP 29314086A JP 29314086 A JP29314086 A JP 29314086A JP H0693016 B2 JPH0693016 B2 JP H0693016B2
Authority
JP
Japan
Prior art keywords
hydrophones
sound wave
frequency
vector
underwater sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29314086A
Other languages
Japanese (ja)
Other versions
JPS63144276A (en
Inventor
博一 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29314086A priority Critical patent/JPH0693016B2/en
Publication of JPS63144276A publication Critical patent/JPS63144276A/en
Publication of JPH0693016B2 publication Critical patent/JPH0693016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はパッシブソーナーの信号処理装置に関し、特に
少なくとも2個のハイドロホンの受信信号に基づき水中
音波の到来方位を検出するに際しS/N改善を図ったパッ
シブソーナーの信号処理装置に関する。
Description: TECHNICAL FIELD The present invention relates to a signal processing device for a passive sonar, and in particular, it improves S / N when detecting the arrival direction of underwater sound waves based on the received signals of at least two hydrophones. The present invention relates to a passive sonar signal processing device.

〔従来の技術〕 形成すべき受波指向性等の運用条件を勘案して複数のハ
イドロホンを配置し、その受信信号間の位相差に基づき
目標の方位を決定するパッシブソーナーの信号処理装置
はよく知られている。
[Prior Art] A signal processing device of a passive sonar that arranges a plurality of hydrophones in consideration of operating conditions such as receiving directivity to be formed and determines a target azimuth based on a phase difference between the received signals is well known.

第2図は2個のハイドロホンの受信信号の位相差により
音波の到来方位を検出する説明図である。
FIG. 2 is an explanatory diagram for detecting the arrival direction of a sound wave based on the phase difference between the reception signals of two hydrophones.

いま、基準方位に対し方位角θにある音源からの到来音
波がハイドロホンA,Bにそれぞれ入射するものとする
と、ハイドロホンA,Bの受信信号SA,SBは次の(1),
(2)式で示される。
Now, assuming that the incoming sound waves from the sound source at the azimuth angle θ with respect to the reference azimuth are incident on the hydrophones A and B, respectively, the reception signals S A and S B of the hydrophones A and B are as follows (1),
It is shown by the equation (2).

SA=Asin(ωt+φ) …………(1) SB=Asin(ωt+φ+Δφ) ……(2) 但し、Aは振幅、ωは角周波数、φは位相、Δφは位相
差である。
S A = Asin (ωt + φ) (1) S B = Asin (ωt + φ + Δφ) (2) where A is amplitude, ω is angular frequency, φ is phase, and Δφ is phase difference.

また、ハイドロホンA,Bの到来音波の伝搬時間差をΔT
とし、ハイドロホンA,B間の距離をdとし、音速をcと
すれば、第2図からΔT=dsinθ/cであるから、Δφ=
ωΔT=ωd・sinθ/cとなり、次の(3)式がられ
る。
In addition, the propagation time difference between the incoming sound waves of the hydrophones A and B is ΔT.
If the distance between the hydrophones A and B is d and the speed of sound is c, then ΔT = dsin θ / c from FIG. 2, so Δφ =
ωΔT = ωd · sin θ / c, and the following equation (3) is obtained.

従って、受信信号の位相差Δφと周波数が分かれば、
(3)式から容易に方位角θを求めることができる。上
述した内容はハイドロホンが2個の場合を例としている
が、2個以上の場合でも、これを同数の2群に分割し、
それぞれの群ごとに配置条件にもとづく相互の位相差を
無くすように受信信号に対し整相処理を施すことによっ
て、基本的には2個のハイドロホンの場合と同様に処理
できる。このようにして、従来のこの種の方位検出技術
は、各方位ごとに等しい複数のハイドロホンの受信信号
を位相合成し、全体として1つの合成指向性を提供せし
め、これら合成指向性による受信信号相互間で(3)式
を利用して方位角を検出しているものが多い。
Therefore, if the phase difference Δφ of the received signal and the frequency are known,
The azimuth angle θ can be easily obtained from the equation (3). In the above description, the case where there are two hydrophones is taken as an example, but even if there are two or more hydrophones, this is divided into two groups of the same number,
By subjecting the received signals to the phasing processing so as to eliminate the mutual phase difference based on the arrangement conditions for each group, basically the same processing as in the case of two hydrophones can be performed. In this way, the conventional azimuth detecting technology of this type phase-combines the reception signals of a plurality of hydrophones that are equal for each azimuth to provide one combined directivity as a whole, and the received signals based on these combined directivities. Many of them mutually detect the azimuth angle by using the equation (3).

ところで、2個もしくはそれ以上の複数のハイドロホン
を使用して方位検出を行うとき、ハイドロホンの受信信
号を所定時間にわたって時間積分しつつ利用することが
多い。この時間積分の目的は、積分によって定常性が高
い信号成分のエネルギーを増大させ、結果として高S/N
(Signal/Noise)を得ることにある。この場合、時間積
分の時間長としてはパッシブソーナーの運用条件等を考
慮して通常数10秒程度をとる。
By the way, when azimuth detection is performed using two or more hydrophones, the received signals of the hydrophones are often used while being time-integrated over a predetermined time. The purpose of this time integration is to increase the energy of signal components with high stationarity by integration, resulting in high S / N.
(Signal / Noise). In this case, the time length of time integration is usually several tens of seconds in consideration of the operating conditions of the passive sonar.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述したように従来は、信号処理における高S/Nを得る
目的から各方位ごとの受信信号に対して時間積分を施し
ている。しかしながら、このような時間積分効果による
S/Nの改善には限界があり、定常性の高い信号成分エネ
ルギーの積分効果は得られるものの雑音成分エネルギー
の抑圧効果は少ない。この理由は基本的に、信号と雑音
の自己相関特性の差異に起因すると考えられている。
As described above, conventionally, for the purpose of obtaining high S / N in signal processing, time integration is performed on the received signal for each direction. However, due to such time integration effect
There is a limit to the improvement of S / N, and the integration effect of the signal component energy with high stationarity can be obtained, but the noise component energy suppression effect is small. The reason for this is basically considered to be due to the difference in the autocorrelation characteristics of the signal and noise.

すなわち、雑音成分エネルギーは互いに無相関であるの
で十分長時間にわたって時間積分すればほぼ相殺し合う
ことが期待でき、また、信号成分エネルギーは自己関特
性があるため十分長時間の時間積分により蓄積効果があ
る。しかし、数10秒程度の短時間では積分効果が十分に
得られない。
That is, since the noise component energies are uncorrelated with each other, they can be expected to cancel each other out if they are integrated over a sufficiently long time, and since the signal component energies have self-relationship characteristics, the accumulation effect is obtained by integrating over a sufficiently long time. There is. However, the integration effect cannot be sufficiently obtained in a short time of about several tens of seconds.

本発明の目的は、雑音を含む各方位の到来信号の伝搬損
失の距離特性を自動利得制御によって平準化した後、音
波の到来方位,レベルに対応した空間ベクトルを設定し
て時間、空間的に積分することにより、積分時間が数10
秒程度であってもランダムに発生する雑音を抑圧して著
しくS/Nを改善できるパッシブソーナーの信号処理装置
を提供することにある。
An object of the present invention is to level the distance characteristic of the propagation loss of the incoming signal of each direction including noise by automatic gain control, and then set the spatial vector corresponding to the incoming direction and level of the sound wave to set time and space. By integrating, the integration time is several tens.
Another object of the present invention is to provide a passive sonar signal processing device capable of suppressing noise that is randomly generated even for about a second and remarkably improving S / N.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のパッシブソーナーの信号処理装置は、少なくと
も2個のハイドロホンの受信信号に基づき水中音波の到
来方位を検出するパッシブソーナーの信号処理装置であ
って、前記少なくとも2個のハイドロホンからの受信信
号に対し所定処理時間単位ごとに伝播損失をそれぞれ補
償する自動利得制御手段と、この自動利得制御手段によ
って伝播損失が補償された前記少なくとも2個のハイド
ロホンの受信信号に対し前記所定処理時間単位ごとにそ
れぞれフーリェ変換処理を行ってレベル対周波数スペク
トラムを示す周波数領域データを出力する周波数分析手
段と、前記周波数領域データを受けて前記所定処理時間
単位ごとに前記周波数スペクトラムの最大レベル値に対
応する周波数を求めると共に前記最大レベル値に対応す
る周波数における前記少なくとも2個のハイドロホン間
の位相差を求めて前記水中音波の到来方位を演算する方
位演算手段と、この方位演算手段が演算した前記水中音
波の到来方位を方向とし前記周波数スペクトラムの最大
レベル値を大きさとするベクトル量を前記所定処理時間
単位ごとに求めるベクトル演算手段と、前記ベクトル量
を所定時間にわたって空間的に積分して前記水中音波の
到来方位を検出する目標方位検出手段とを備える。
The signal processing device of the passive sonar of the present invention is a signal processing device of the passive sonar which detects the arrival direction of an underwater sound wave based on the reception signals of at least two hydrophones, and the signal processing device receives signals from the at least two hydrophones. Automatic gain control means for compensating the propagation loss for each predetermined processing time unit of the signal, and the predetermined processing time unit for the reception signals of the at least two hydrophones for which the propagation loss is compensated by the automatic gain control means. Frequency analysis means for respectively performing Fourier transform processing to output frequency domain data indicating a level versus frequency spectrum; and receiving the frequency domain data and corresponding to the maximum level value of the frequency spectrum for each predetermined processing time unit. At the frequency corresponding to the maximum level value while obtaining the frequency Note: An azimuth calculating means for calculating the azimuth of arrival of the underwater sound wave by obtaining a phase difference between at least two hydrophones, and a maximum level of the frequency spectrum with the azimuth of the underwater sound wave calculated by the azimuth calculating means as a direction. A vector calculation means for obtaining a vector amount having a value for each of the predetermined processing time units, and a target direction detection means for spatially integrating the vector amount for a predetermined time to detect the arrival direction of the underwater sound wave. .

〔実施例〕〔Example〕

次に図面を参照して本発明を詳細に説明する。 The present invention will now be described in detail with reference to the drawings.

第1図は本発明の一実施例を示すブロック図である。こ
こでは、ハイドロホン1,2、AGC(Automatic Gain Contr
ol)回路3,4、周波数分析回路5,6、方位/ベクトル演算
回路7、目標方位検出回路8等を備えて構成される。
FIG. 1 is a block diagram showing an embodiment of the present invention. Here, hydrophones 1, 2 and AGC (Automatic Gain Contr
ol) circuits 3 and 4, frequency analysis circuits 5 and 6, azimuth / vector operation circuit 7, target azimuth detection circuit 8 and the like.

まず本発明の要点について説明する。First, the essential points of the present invention will be described.

信号処理の対象となる信号成分は、音波の到来方位とレ
ベルとに対応する空間ベクトルとして見た場合、音波の
発生源となる目標が遠距離であれば方位変化は小さく、
所定の設定処理時間内ではほぼ一定方位のベクトルと見
做しうる場合が多い。一方、雑音成分は、いわゆる背景
雑音であり、海中の生物音、波浪等時間的にも空間的に
もランダムに発生するので、方位分散ベクトルと見做し
うる。
When viewed as a space vector corresponding to the arrival direction and level of the sound wave, the signal component that is the target of the signal processing has a small change in direction if the target that is the source of the sound wave is a long distance,
In many cases, it can be regarded as a vector having a substantially constant azimuth within a predetermined setting processing time. On the other hand, the noise component is so-called background noise, which is randomly generated both temporally and spatially such as biological sounds and waves in the sea, and thus can be regarded as an azimuth dispersion vector.

このような受信信号を所定時間にわたって積分すれば、
特定の方位から到来する信号成分のエネルギーは積分さ
れ、一方、雑音成分のエネルギーは相殺し合って減少す
るので、S/Nの改善が可能となる。この場合、対象空間
内の雑音を効果的に減少せしめるには、音源である目標
から受波点であるハイドロホンまでの伝搬損失の距離依
存性を排除して平準化すればよく、第1図に示した実施
例もこのような観点に立って構成されている。
If such a received signal is integrated over a predetermined time,
The energy of the signal component coming from a specific direction is integrated, while the energy of the noise component cancels out and decreases, so that the S / N can be improved. In this case, in order to effectively reduce the noise in the target space, it is sufficient to eliminate the distance dependence of the propagation loss from the target which is the sound source to the hydrophone which is the receiving point, and to level it. The embodiment shown in (1) is also configured from this point of view.

さて、第1図において、ハイドロホン1,2は所定の距離
間隔で配置され、到来する目標からの音波および対象空
間の背景雑音を入力音波として受波し、電気信号に変換
してAGC回路3および4にそれぞれ供給する。
Now, in FIG. 1, the hydrophones 1 and 2 are arranged at predetermined distance intervals, receive sound waves from an incoming target and background noise in the target space as input sound waves, convert them into electric signals, and convert them into an AGC circuit 3 And 4 respectively.

AGC回路3,4は、入力する信号に対し所定の受信処理時間
単位ごとに所定の許容変動範囲内で、あらかじめ設定さ
れた特性の自動利得制御を行なう。このあらかじめ設定
された自動利得制御特性は、距離の自乗に逆比例して減
衰する水中音波の伝播損失を運用距離にわたって補償す
る特性、すなわち、伝播損失特性とは逆の特性としてい
る。従って、AGC回路3,4から出力される信号のレベル
は、伝播損失分が正規化され平準化されている。これら
AGC回路3,4の出力はそれぞれ周波数分析回路5,6に供給
される。
The AGC circuits 3 and 4 perform automatic gain control of a preset characteristic within a predetermined permissible fluctuation range for each predetermined reception processing time unit with respect to an input signal. The preset automatic gain control characteristic is a characteristic that compensates the propagation loss of the underwater acoustic wave that attenuates in inverse proportion to the square of the distance over the operating distance, that is, the characteristic opposite to the propagation loss characteristic. Therefore, the levels of the signals output from the AGC circuits 3 and 4 are normalized by the propagation loss and leveled. these
The outputs of the AGC circuits 3 and 4 are supplied to the frequency analysis circuits 5 and 6, respectively.

周波数分析回路5,6は、AGC回路3,4の出力信号に対して
受信処理時間単位ごとに周波数分析を行い、ハイドロホ
ン1,2で取得した入力音波に関する周波数情報を抽出す
る。周波数分析は、FFT(Fast Fourier Transform)を
利用して行われ、入力信号のレベル対周波数スペクトル
を示す周波数領域データ501,601を生成する。この周波
数領域データ501,601は、到来する水中音波の周波数を
検出するための情報として方位/ベクトル演算回路7へ
供給される。
The frequency analysis circuits 5 and 6 perform frequency analysis on the output signals of the AGC circuits 3 and 4 for each reception processing time unit, and extract frequency information regarding the input sound waves acquired by the hydrophones 1 and 2. The frequency analysis is performed using FFT (Fast Fourier Transform), and frequency domain data 501 and 601 indicating the level versus frequency spectrum of the input signal are generated. The frequency domain data 501 and 601 are supplied to the azimuth / vector calculation circuit 7 as information for detecting the frequency of the incoming underwater sound wave.

方位/ベクトル演算回路7は、周波数分析回路5,6から
周波数領域データ501,601をそれぞれ受け、これらデー
タに基づきハイドロホン1,2に到来する水中音波の到来
方位を受信処理時間単位ごとに算出すると共に、入力レ
ベルを大きさとし到来方位を方向とするベクトル量を設
定する。この場合、周波数領域データ501,601から提供
される周波数スペクトルのうちの最大レベル値に対応す
る周波数を求め、(3)式に基づき方位角を算出する。
そして、最大レベル値を大きさとし、算出した方位角を
方向とし、受信点を座標原点とするベクトル量を設定す
る。このように、AGC処理後の入力音波の周波数スペク
トルの最大レベル値に対応する周波数により(3)式の
演算を行うので、雑音成分の影響の少ない正確な方位角
を算出することができる。また、方位/ベクトル演算回
路7は、設定したベクトル量と共に、周波数領域データ
501,601によってもたらされた周波数スペクトル情報を
目標方位検出回路8へ供給する。
The azimuth / vector calculation circuit 7 receives the frequency domain data 501 and 601 from the frequency analysis circuits 5 and 6, respectively, and calculates the arrival azimuth of the underwater sound waves arriving at the hydrophones 1 and 2 for each reception processing time unit based on these data. , Set the vector amount with the input level as the magnitude and the direction of arrival as the direction. In this case, the frequency corresponding to the maximum level value in the frequency spectrum provided from the frequency domain data 501 and 601 is obtained, and the azimuth angle is calculated based on the equation (3).
Then, the maximum level value is set as the magnitude, the calculated azimuth angle is set as the direction, and the vector amount with the reception point as the coordinate origin is set. As described above, since the calculation of the expression (3) is performed using the frequency corresponding to the maximum level value of the frequency spectrum of the input sound wave after the AGC processing, it is possible to calculate the accurate azimuth angle with less influence of noise components. In addition, the azimuth / vector operation circuit 7 sets the frequency domain data together with the set vector amount.
The frequency spectrum information provided by 501, 601 is supplied to the target orientation detection circuit 8.

目標方位検出回路8は、方位/ベクトル演算回路7が出
力するベクトル量を所定の時間にわたって座標原点を中
心として空間的に積分し、その積分データに基づいてハ
イドロホン1,2への入力音波が所望の目標からの音波で
あるか否かの判定を行ない、所望の目標からの音波であ
ると判定した場合には、到来音波のレベルおよび周波数
を決定する。その処理内容は次のとおりである。
The target azimuth detection circuit 8 spatially integrates the vector amount output from the azimuth / vector calculation circuit 7 around the coordinate origin for a predetermined time, and the sound waves input to the hydrophones 1 and 2 are based on the integrated data. Whether or not the sound wave is from the desired target is determined, and when it is determined that the sound wave is from the desired target, the level and frequency of the incoming sound wave are determined. The processing contents are as follows.

すなわち、所定時間にわたって積分して得られた方位角
の時間特性に現われる方位角の分散を求め、この分散が
所定の判定しきい値の許容範囲に入っている場合には、
この方位角を提供した音波が目標からの到来音波である
と判定する。このことは、ハイドロホン1,2に対して十
分遠方にある目標からの音波の方位角の時間変化率は明
らかに小さく、かつ比較的に規則的な変化を示すので、
その方位角の分散も小さいことに基づいている。なお、
判定しきい値は、多数の運用実績や設計データ等に基づ
いて予め設定される。
That is, the dispersion of the azimuth angle appearing in the time characteristic of the azimuth angle obtained by integrating over a predetermined time is obtained, and when this dispersion is within the allowable range of the predetermined judgment threshold value,
It is determined that the sound wave providing this azimuth is the sound wave coming from the target. This means that the temporal change rate of the azimuth angle of the sound wave from the target that is sufficiently far away from the hydrophones 1 and 2 is obviously small, and shows a relatively regular change.
It is based on the fact that the dispersion of the azimuth angle is also small. In addition,
The judgment threshold value is set in advance based on a large number of operation records and design data.

このようにして目標の方位を決定する一方、入力音波信
号が時間的かつ空間的に積分されたベクトル量が得られ
る。この積分されたベクトル量は、伝播減衰がAGC回路
3,4によってノーマライズ(normalize)されたものであ
り、ベクトル方向の変化がランダムな雑音成分ベクトル
の相殺効果は、ノーマライズされない従来の時間積分の
場合に比して著しく大きい効果を示し、ベクトル方向の
変化が小さくかつ本質的にほぼ定常的と見做し得る信号
成分ベクトルは、強い自己相関をもって累積されるの
で、S/Nが大幅に改善される。
In this way, the target direction is determined, while the vector quantity obtained by temporally and spatially integrating the input sound wave signal is obtained. This integrated vector quantity is
The noise canceling effect of the noise component vector, which is normalized by 3 and 4, and whose vector direction changes randomly, shows a significantly larger effect than the case of the conventional non-normalized time integration. The signal component vectors, which have small changes and can be regarded as essentially stationary, are accumulated with strong autocorrelation, so that the S / N is significantly improved.

なお、第1図の実施例はパッシブソーナーを構成するハ
イドロホンのうち、所定の間隔で配置された2個を取り
上げて説明したが、他のハイドロホンの2個ずつの組合
せについても全く同様にして実施しうることは明らかで
ある。また、この2個のハイドロホンが2個以上の複数
個を利用して指向性を合成されたものとしても勿論差支
えない。
The embodiment of FIG. 1 has been described by taking two hydrophones constituting a passive sonar arranged at a predetermined interval, but the same applies to a combination of two hydrophones other than each other. It is clear that this can be done. Further, it goes without saying that the two hydrophones may have directivity combined by using a plurality of two or more hydrophones.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、少なくとも2個の
ハイドロホンの受信信号に対しAGC回路によって伝播損
失を補償した後、フーリェ変換処理を行って最大レベル
値の周波数および受信信号の位相差を求め、水中音波の
到来方位を所定処理時間単位ごとに演算し、この演算し
た到来方位を方向とし、周波数スペクトラムの最大レベ
ル値を大きさとするベクトル量を所定処理時間単位ごと
に設定し、このベクトル量を所定時間にわたって空間的
に積分することにより、著しくS/Nを改善して音波の到
来方位を検出することができるという効果がある。
As described above, according to the present invention, after the propagation loss is compensated by the AGC circuit for the reception signals of at least two hydrophones, the Fourier transform processing is performed to determine the frequency of the maximum level value and the phase difference between the reception signals. Then, the arrival direction of the underwater sound wave is calculated for each predetermined processing time unit, the calculated arrival direction is set as a direction, and the vector amount having the maximum level value of the frequency spectrum is set for each predetermined processing time unit. By spatially integrating the quantity over a predetermined time, there is an effect that the S / N can be significantly improved and the arrival direction of the sound wave can be detected.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
2個のハイドロホンによる受信信号の位相差から目標方
位を検出する説明図である。 1,2……ハイドロホン、3,4……AGC回路、5,6……周波数
分析回路、7……方位/ベクトル演算回路、8……目標
方位検出回路、501,601……周波数領域データ。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram for detecting a target azimuth from a phase difference between received signals by two hydrophones. 1,2 …… Hydrophone, 3,4 …… AGC circuit, 5,6 …… Frequency analysis circuit, 7 …… Direction / vector operation circuit, 8 …… Target direction detection circuit, 501,601 …… Frequency domain data.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少なくとも2個のハイドロホンの受信信号
に基づき水中音波の到来方位を検出するパッシブソーナ
ーの信号処理装置であって、 前記少なくとも2個のハイドロホンからの受信信号に対
し所定処理時間単位ごとに伝播損失をそれぞれ補償する
自動利得制御手段と、この自動利得制御手段によって伝
播損失が補償された前記少なくとも2個のハイドロホン
の受信信号に対し前記所定処理時間単位ごとにそれぞれ
フーリェ変換処理を行ってレベル対周波数スペクトラム
を示す周波数領域データを出力する周波数分析手段と、
前記周波数領域データを受けて前記所定処理時間単位ご
とに前記周波数スペクトラムの最大レベル値に対応する
周波数を求めると共に前記最大レベル値に対応する周波
数における前記少なくとも2個のハイドロホン間の位相
差を求めて前記水中音波の到来方位を演算する方位演算
手段と、この方位演算手段が演算した前記水中音波の到
来方位を方向とし前記周波数スペクトラムの最大レベル
値を大きさとするベクトル量を前記所定処理時間単位ご
とに求めるベクトル演算手段と、前記ベクトル量を所定
時間にわたって空間的に積分して前記水中音波の到来方
位を検出する目標方位検出手段とを備えることを特徴と
するパッシブソーナーの信号処理装置。
1. A signal processing device of a passive sonar for detecting an arrival direction of an underwater sound wave based on received signals of at least two hydrophones, wherein a predetermined processing time is applied to received signals from the at least two hydrophones. Automatic gain control means for compensating the propagation loss for each unit, and Fourier transform processing for each of the predetermined processing time units with respect to the reception signals of the at least two hydrophones whose propagation loss is compensated by the automatic gain control means. And frequency analysis means for outputting frequency domain data showing a level vs. frequency spectrum,
Receiving the frequency domain data, determining the frequency corresponding to the maximum level value of the frequency spectrum for each predetermined processing time unit, and determining the phase difference between the at least two hydrophones at the frequency corresponding to the maximum level value. Direction calculation means for calculating the arrival direction of the underwater sound wave, and a vector amount having the arrival direction of the underwater sound wave calculated by the direction calculation means as a direction and having a maximum level value of the frequency spectrum as the magnitude, the predetermined processing time unit A signal processing device for a passive sonar, comprising: vector calculation means for each of the above; and target direction detection means for spatially integrating the vector quantity over a predetermined time to detect the arrival direction of the underwater sound wave.
JP29314086A 1986-12-08 1986-12-08 Signal processing device for passive sonar Expired - Lifetime JPH0693016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29314086A JPH0693016B2 (en) 1986-12-08 1986-12-08 Signal processing device for passive sonar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29314086A JPH0693016B2 (en) 1986-12-08 1986-12-08 Signal processing device for passive sonar

Publications (2)

Publication Number Publication Date
JPS63144276A JPS63144276A (en) 1988-06-16
JPH0693016B2 true JPH0693016B2 (en) 1994-11-16

Family

ID=17790937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29314086A Expired - Lifetime JPH0693016B2 (en) 1986-12-08 1986-12-08 Signal processing device for passive sonar

Country Status (1)

Country Link
JP (1) JPH0693016B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523278B1 (en) * 2013-10-29 2015-05-27 국방과학연구소 Method for forming a vector beam using multiple omni-directional hydro-phones

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2853589B2 (en) * 1994-12-28 1999-02-03 日本電気株式会社 Direction detection device
JP2015087132A (en) * 2013-10-28 2015-05-07 株式会社東芝 Signal detection device and signal detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523278B1 (en) * 2013-10-29 2015-05-27 국방과학연구소 Method for forming a vector beam using multiple omni-directional hydro-phones

Also Published As

Publication number Publication date
JPS63144276A (en) 1988-06-16

Similar Documents

Publication Publication Date Title
US7852709B1 (en) Sonar system and process
US4333170A (en) Acoustical detection and tracking system
AU2014412888A1 (en) Methods and systems for spectral analysis of sonar data
US7773458B2 (en) Systems and methods for detection and analysis of amplitude modulation of underwater sound
EP0187851B1 (en) Adaptive predictor of surface reverberation in a bistatic sonar
US6058075A (en) System for canceling interferers from broadband active sonar signals using adaptive beamforming methods
EP0393741B1 (en) Acoustic detection device
US6654315B1 (en) Sonar display system and method
JPH0693016B2 (en) Signal processing device for passive sonar
US7228236B2 (en) Subarray matching beamformer apparatus and method
US20090299661A1 (en) Method and system for minimising noise in arrays comprising pressure and pressure gradient sensors
Mahdinejad et al. Implementation of time delay estimation using different weighted generalized cross correlation in room acoustic environments
RU2740334C1 (en) Method of receiving seismic-acoustic and hydroacoustic waves at the bottom of a water reservoir and device for its implementation
JP3527792B2 (en) Underwater probe
JP2790906B2 (en) Passive sonar broadband signal reception method
JP2541959B2 (en) Direction measuring device for sounding objects
JPS6352346B2 (en)
JP2880787B2 (en) Directional hearing device
WO2001025816A1 (en) Method and apparatus for extracting physical parameters from an acoustic signal
Zhou et al. High-resolution DOA Estimation Algorithm of Vector Hydrophone Based on Preselected Filter
JPH02676B2 (en)
JPS60205269A (en) Under water sound detector
JP2770651B2 (en) Navigation noise reduction method
Walker et al. Beamforming with aperture extrapolation (APEX): Performance in practice
JPS6411151B2 (en)