JPH04264159A - Radiation-resistant composition - Google Patents
Radiation-resistant compositionInfo
- Publication number
- JPH04264159A JPH04264159A JP2337891A JP2337891A JPH04264159A JP H04264159 A JPH04264159 A JP H04264159A JP 2337891 A JP2337891 A JP 2337891A JP 2337891 A JP2337891 A JP 2337891A JP H04264159 A JPH04264159 A JP H04264159A
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- resin
- resistant composition
- compound
- irradiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 36
- 239000000203 mixture Substances 0.000 title claims abstract description 24
- 229920005989 resin Polymers 0.000 claims abstract description 44
- 239000011347 resin Substances 0.000 claims abstract description 44
- 239000004697 Polyetherimide Substances 0.000 claims abstract description 21
- 229920001601 polyetherimide Polymers 0.000 claims abstract description 21
- 239000004696 Poly ether ether ketone Substances 0.000 claims abstract description 19
- 229920002530 polyetherether ketone Polymers 0.000 claims abstract description 19
- 150000001875 compounds Chemical class 0.000 claims abstract description 14
- 229920000642 polymer Polymers 0.000 claims abstract description 13
- 229920002367 Polyisobutene Polymers 0.000 claims abstract description 6
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 3
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 3
- 229920005549 butyl rubber Polymers 0.000 claims description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 239000000460 chlorine Substances 0.000 claims description 2
- 239000011737 fluorine Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 abstract description 7
- 229920004747 ULTEM® 1000 Polymers 0.000 abstract description 5
- 229920006237 degradable polymer Polymers 0.000 abstract 1
- 229920001643 poly(ether ketone) Polymers 0.000 abstract 1
- 239000002952 polymeric resin Substances 0.000 description 8
- 238000009472 formulation Methods 0.000 description 7
- -1 poly(α-methylstyrene) Polymers 0.000 description 7
- 229920003002 synthetic resin Polymers 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 3
- 239000012965 benzophenone Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000009719 polyimide resin Substances 0.000 description 3
- 239000002966 varnish Substances 0.000 description 3
- 241000705989 Tetrax Species 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000012958 reprocessing Methods 0.000 description 2
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229920004738 ULTEM® Polymers 0.000 description 1
- 229920004695 VICTREX™ PEEK Polymers 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 229920003251 poly(α-methylstyrene) Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000002915 spent fuel radioactive waste Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[発明の目的][Object of the invention]
【0002】0002
【産業上の利用分野】本発明は、高速増殖炉、核燃料再
処理工場等の高度な放射線性環境および高温領域下で使
用される耐放射線性絶縁電線用の耐放射線性組成物に関
するものである。[Field of Industrial Application] The present invention relates to a radiation-resistant composition for radiation-resistant insulated wires used in highly radioactive environments and high-temperature areas such as fast breeder reactors and nuclear fuel reprocessing plants. .
【0003】0003
【従来の技術】近年、エネルギ−の利用効率を高めるべ
く高速増殖炉等の新型動力炉への転換が原子力発電所に
おいて進められている。また使用済み核燃料の再処理施
設の建設も進められている。それと共に、大量の放射線
性環境下および高温領域下においても優れた可とう性を
維持して使用できる絶縁電線の要求が、増している。例
えば核融合炉周辺で用いられる絶縁電線やケーブルは空
気中で10MGy以上の耐放射線性を有する耐高電圧計
装用ケーブルなどが要求されている。2. Description of the Related Art In recent years, nuclear power plants are undergoing conversion to new types of power reactors such as fast breeder reactors in order to improve energy utilization efficiency. Construction of a spent nuclear fuel reprocessing facility is also underway. At the same time, there is an increasing demand for insulated wires that can be used while maintaining excellent flexibility even in large amounts of radioactive environments and high-temperature environments. For example, insulated wires and cables used around nuclear fusion reactors are required to be high-voltage instrumentation cables that have radiation resistance of 10 MGy or more in the air.
【0004】従来、空気中で10MGy以上の耐放射線
性を有するものとしては、酸化マグネシウム等の無機物
質を絶縁物としたMIケーブルなどがあるが、可とう性
が乏しくマニュピレ−タ−等に用いる計装用ケーブルに
は使用できなかった。[0004] Conventionally, MI cables made of inorganic materials such as magnesium oxide have been used as insulators that have radiation resistance of 10 MGy or more in air, but they have poor flexibility and cannot be used for manipulators, etc. It could not be used for instrumentation cables.
【0005】また、可とう性、耐放射線性に優れた絶縁
材料として芳香族ポリイミド樹脂、芳香族ポリアミドイ
ミド樹脂、芳香族ポリアミド樹脂等があるが、押出成型
法による被覆が不可能であるために、これらをテープ状
に成型し、導体上に捲回して被覆層とするという使用形
態に限られた。更に耐コロナ特性も劣っていた。[0005] Insulating materials with excellent flexibility and radiation resistance include aromatic polyimide resins, aromatic polyamideimide resins, and aromatic polyamide resins, but they cannot be coated by extrusion molding. However, the usage was limited to forming these into a tape shape and winding it onto a conductor to form a coating layer. Furthermore, the corona resistance properties were also poor.
【0006】一方、ポリエチレン樹脂、エチレン・プロ
ピレンゴムなどのポリオレフィン系高分子、絶縁電線の
被覆に使用できるようなポリウレタン樹脂など比較的柔
軟性に富む絶縁材料は、1MGy程度の比較的低度の放
射線照射においても架橋が進行し、硬化してしまうとい
う欠点があった。On the other hand, relatively flexible insulating materials such as polyethylene resin, polyolefin polymers such as ethylene/propylene rubber, and polyurethane resins that can be used to coat insulated wires have relatively low radiation levels of about 1 MGy. There was a drawback that crosslinking progressed even during irradiation, resulting in hardening.
【0007】分子鎖中に芳香族成分を多く含むポリエー
テルイミド樹脂を絶縁物として用いる耐放射線性絶縁電
線は、すでに知られている(特開平1−97305)。
しかし、10MGy以上の耐放射線性は有していない。A radiation-resistant insulated wire using a polyetherimide resin containing a large amount of aromatic components in its molecular chain as an insulator is already known (Japanese Patent Laid-Open No. 1-97305). However, it does not have radiation resistance of 10 MGy or more.
【0008】また、分子鎖中に芳香族成分を多く含むポ
リエーテルエーテルケトン樹脂を絶縁物とし、さらにそ
の上にポリイミド樹脂ワニスを被覆した耐放射線性絶縁
電線も、すでに知られている(特開昭63−30451
5)。しかし、ポリエーテルエーテルケトン樹脂のうえ
にポリイミド樹脂ワニスを被覆することは、一層の被覆
厚さを厚くできないこと、ワニス塗布後、イミド化の工
程を必要とすること等の問題があった。[0008] Furthermore, radiation-resistant insulated wires are already known in which a polyether ether ketone resin containing a large amount of aromatic components in the molecular chain is used as an insulator, and a polyimide resin varnish is further coated on the insulator (Japanese Patent Application Laid-open No. Showa 63-30451
5). However, coating polyimide resin varnish on polyether ether ketone resin has problems such as the inability to increase the thickness of the coating and the need for an imidization step after coating the varnish.
【0009】[0009]
【発明が解決しようとする課題】本発明は、空気中で1
0MGy以上の耐放射線性を有し、しかも可とう性に優
れた絶縁電線用の耐放射線性組成物を提供することを目
的とする。[Problem to be Solved by the Invention] The present invention solves the problem of
It is an object of the present invention to provide a radiation-resistant composition for an insulated wire that has radiation resistance of 0 MGy or more and has excellent flexibility.
【0010】[発明の構成][Configuration of the invention]
【0011】[0011]
【課題を解決するための手段】本発明は、(A)ポリエ
ーテルイミド樹脂および/またはポリエーテルエーテル
ケトン樹脂と、(B)放射線照射により崩壊する高分子
化合物との混合物からなることを特徴とする耐放射線性
組成物に関する。[Means for Solving the Problems] The present invention is characterized in that it consists of a mixture of (A) a polyetherimide resin and/or a polyether ether ketone resin and (B) a polymer compound that disintegrates when irradiated with radiation. The present invention relates to a radiation-resistant composition.
【0012】本発明で使用されるポリエーテルイミド樹
脂は、下記の一般式で表される。The polyetherimide resin used in the present invention is represented by the following general formula.
【0013】[0013]
【化2】[Case 2]
【0014】ポリエーテルイミド樹脂の市販品としては
、ウルテム(ULTEM)(GE社製商品名)が例示さ
れる。[0014] As a commercially available polyetherimide resin, ULTEM (trade name, manufactured by GE) is exemplified.
【0015】さらに、ポリエーテルエーテルケトン樹脂
は、下記の一般式で表される。Furthermore, the polyetheretherketone resin is represented by the following general formula.
【0016】[0016]
【化3】[Chemical formula 3]
【0017】ポリエーテルエーテルケトン樹脂の市販品
としては、例えばVICTREX(I.C.Iジャパン
社製商品名)などが例示される。Examples of commercially available polyetheretherketone resins include VICTREX (trade name, manufactured by I.C.I. Japan).
【0018】放射線照射により崩壊する高分子化合物は
、放射線照射により架橋反応よりも分子鎖の崩壊が主と
して起こる高分子をいい、下記の一般式で表される。[0018] A polymer compound that disintegrates upon radiation irradiation refers to a polymer in which molecular chain collapse mainly occurs rather than crosslinking reaction upon radiation irradiation, and is represented by the following general formula.
【0019】[0019]
【化4】[C4]
【0020】(ただし、R1 、R2 は炭素数1ない
し14の化合物、塩素、弗素を示す。)放射線照射によ
り崩壊する高分子化合物としては、ポリイソブチレン、
ポリ(α−メチルスチレン)、ポリ(メタクリル酸エス
テル)、ポリ(メタクリルアミド)、ポリ(塩化ビニリ
デン)等や、ブチルゴムが例示される。(However, R1 and R2 represent a compound having 1 to 14 carbon atoms, chlorine, and fluorine.) Polymer compounds that disintegrate upon radiation irradiation include polyisobutylene,
Examples include poly(α-methylstyrene), poly(methacrylic acid ester), poly(methacrylamide), poly(vinylidene chloride), and butyl rubber.
【0021】これらの中で、特にポリイソブチレン、ブ
チルゴムが、ポリエーテルイミド樹脂または/およびポ
リエーテルエーテルケトン樹脂との相溶性が優れている
ため、良好な耐熱性及び耐放射線性を保持しつつ可とう
性に優れた絶縁電線を得るためには、適している。Among these, polyisobutylene and butyl rubber have particularly good compatibility with polyetherimide resins and/or polyetheretherketone resins, so they can be used while maintaining good heat resistance and radiation resistance. It is suitable for obtaining insulated wires with excellent flexibility.
【0022】これらの放射線照射により崩壊する高分子
化合物は、単独で用いることも2種以上をブレンドして
用いることもできる。[0022] These polymer compounds that are degraded by radiation irradiation can be used singly or in a blend of two or more.
【0023】本発明においてポリエーテルイミド樹脂ま
たは/およびポリエーテルエーテルケトン樹脂と放射線
照射により崩壊する高分子化合物の配合量は、ポリエー
テルイミド樹脂または/およびポリエーテルエーテルケ
トン樹脂10〜80重量%に対して、90〜20重量%
である。ポリエーテルイミド樹脂または/およびポリエ
ーテルエーテルケトン樹脂が10重量%より少ないと耐
熱性及び耐放射線性が不十分となり、逆に80重量%を
越えると柔軟性が乏しくなる。なお、より好ましいポリ
エーテルイミド樹脂または/およびポリエーテルエーテ
ルケトン樹脂の配合量は30〜60重量%である。[0023] In the present invention, the blending amount of the polyetherimide resin or/and polyether ether ketone resin and the polymer compound that disintegrates upon radiation irradiation is 10 to 80% by weight of the polyether imide resin or/and polyether ether ketone resin. 90-20% by weight
It is. If the polyetherimide resin or/and polyether ether ketone resin is less than 10% by weight, heat resistance and radiation resistance will be insufficient, and if it exceeds 80% by weight, flexibility will be poor. In addition, the more preferable amount of polyetherimide resin and/or polyetheretherketone resin is 30 to 60% by weight.
【0024】なお、ベンゾトリアゾール、ベンゾフェノ
ンおよびその誘導体を全樹脂分あたり0.05〜5重量
%を添加した場合上記添加量の範囲内においては、ブル
ームアウト、加工性不良なく耐放射線性をより向上させ
ることができる。[0024] When benzotriazole, benzophenone, and their derivatives are added in an amount of 0.05 to 5% by weight based on the total resin content, radiation resistance is further improved without blooming or poor processability within the above addition amount range. can be done.
【0025】[0025]
【作用】放射線照射により崩壊する高分子化合物をポリ
エーテルイミド樹脂または/およびポリエーテルエーテ
ルケトン樹脂に配合することにより、本発明の耐放射線
性組成物は、放射線照射によっても架橋による硬化が起
こらない。従って、耐熱性に優れ、しかも高線量下にお
いて、十分な可とう性を維持することができる。[Action] By blending a polymer compound that disintegrates with radiation irradiation into polyetherimide resin and/or polyether ether ketone resin, the radiation-resistant composition of the present invention does not undergo curing due to crosslinking even when irradiated with radiation. . Therefore, it has excellent heat resistance and can maintain sufficient flexibility even under high radiation doses.
【0026】[0026]
【実施例】以下本発明の実施例について記載する。[Examples] Examples of the present invention will be described below.
【0027】実施例1
35φmm異方向2軸混錬機を用い300℃の設定温度
でポリエーテルイミド樹脂(ULTEM1000)30
重量%とポリイソブチレン(日本石油化学社製商品名、
テトラックス)70重量%を混合し、ペレット化した。
上記ペレットを60ton 射出成型機でASTM
D638に準じてダンベル試験片を作成する。この試験
片の初期の引張強さ、伸びおよび曲げ弾性率試験を行っ
た。次に、60Coγ線を1MR/hrで10MGyま
で照射した後の、伸びおよび曲げ弾性率試験を行った。
測定結果を表1に示す。なお、引張試験はASTM
D638により、曲げ弾性率試験はASTM D79
0により行った。Example 1 Polyetherimide resin (ULTEM1000) 30 was prepared at a set temperature of 300°C using a 35φmm twin-screw kneader in different directions.
Weight% and polyisobutylene (product name manufactured by Nippon Petrochemical Co., Ltd.,
Tetrax) was mixed in an amount of 70% by weight and pelletized. The above pellets are molded using a 60 ton injection molding machine using ASTM
A dumbbell test piece is prepared according to D638. The specimens were tested for initial tensile strength, elongation and flexural modulus. Next, elongation and flexural modulus tests were conducted after irradiating with 60Co gamma rays at 1 MR/hr up to 10 MGy. The measurement results are shown in Table 1. In addition, the tensile test is performed using ASTM
D638, flexural modulus test ASTM D79
0 was used.
【0028】実施例2および実施例3
ポリエーテルイミド樹脂(ULTEM1000)と崩壊
型ポリマー樹脂を表1に示す割合で混合して、実施例1
と同一の条件により試験片を作成した。また実施例1と
同一の条件で照射前後の特性を測定した。その結果を配
合と共に表1に示す。Example 2 and Example 3 Polyetherimide resin (ULTEM1000) and collapsible polymer resin were mixed in the proportions shown in Table 1, and Example 1 was prepared.
A test piece was prepared under the same conditions. Further, the characteristics before and after irradiation were measured under the same conditions as in Example 1. The results are shown in Table 1 along with the formulation.
【0029】実施例4
ポリエーテルイミド樹脂(ULTEM1000)と崩壊
型ポリマー樹脂およびベンゾフェノンを表1に示す割合
で混合して、実施例1と同一の条件により試験片を作成
した。また実施例1と同一の条件で照射前後の特性を測
定した。その結果を配合と共に表1に示す。Example 4 A test piece was prepared under the same conditions as in Example 1 by mixing polyetherimide resin (ULTEM 1000), collapsible polymer resin, and benzophenone in the proportions shown in Table 1. Further, the characteristics before and after irradiation were measured under the same conditions as in Example 1. The results are shown in Table 1 along with the formulation.
【0030】実施例5
実施例1と同一の混錬機を用い400℃の設定温度でポ
リエーテルエーテルケトン樹脂(VICTREX−PE
EK)30重量%とポリイソブチレン(日本石油化学社
製商品名、テトラックス)70重量%を混合し、ペレッ
ト化した。上記ペレットより実施例1と同一の条件で試
験片を作成した。また実施例1と同一の条件で照射前後
の特性を測定した。その結果を配合と共に表1に示す。Example 5 Using the same kneading machine as in Example 1, polyether ether ketone resin (VICTREX-PE) was mixed at a set temperature of 400°C.
30% by weight of EK) and 70% by weight of polyisobutylene (trade name, Tetrax, manufactured by Nippon Petrochemicals Co., Ltd.) were mixed and pelletized. A test piece was prepared from the above pellet under the same conditions as in Example 1. Further, the characteristics before and after irradiation were measured under the same conditions as in Example 1. The results are shown in Table 1 along with the formulation.
【0031】実施例6および実施例7
ポリエーテルエーテルケトン樹脂(VICTREX−P
EEK)と崩壊型ポリマー樹脂を表1に示す割合で混合
して、実施例5と同一の条件により試験片を作成した。
また実施例1と同一の条件で照射前後の特性を測定した
。その結果を配合と共に表1に示す。Example 6 and Example 7 Polyetheretherketone resin (VICTREX-P
EEK) and a collapsible polymer resin were mixed in the proportions shown in Table 1, and test pieces were prepared under the same conditions as in Example 5. Further, the characteristics before and after irradiation were measured under the same conditions as in Example 1. The results are shown in Table 1 along with the formulation.
【0032】実施例8
ポリエーテルエーテルケトン樹脂(VICTREX−P
EEK)と崩壊型ポリマー樹脂およびベンゾフェノンを
表1に示す割合で混合して、実施例5と同一の条件によ
り試験片を作成した。また実施例1と同一の条件で照射
前後の特性を測定した。その結果を配合と共に表1に示
す。Example 8 Polyetheretherketone resin (VICTREX-P
EEK), a collapsible polymer resin, and benzophenone were mixed in the proportions shown in Table 1, and test pieces were prepared under the same conditions as in Example 5. Further, the characteristics before and after irradiation were measured under the same conditions as in Example 1. The results are shown in Table 1 along with the formulation.
【0033】比較例1から比較例4
ポリエーテルイミド樹脂(ULTEM1000)単独、
ポリエーテルイミド樹脂と崩壊型ポリマー樹脂の配合比
が本発明の範囲外である組成物およびポリエーテルイミ
ド樹脂と架橋型ポリマー樹脂を配合した以外は実施例1
と同一の条件により試験片を作成した。また実施例1と
同一の条件で照射前後の特性を測定した。その結果を配
合と共に表2に示す。Comparative Examples 1 to 4 Polyetherimide resin (ULTEM1000) alone,
Example 1 except for the composition in which the blending ratio of polyetherimide resin and collapsible polymer resin was outside the scope of the present invention and the blending of polyetherimide resin and crosslinked polymer resin.
A test piece was prepared under the same conditions. Further, the characteristics before and after irradiation were measured under the same conditions as in Example 1. The results are shown in Table 2 along with the formulation.
【0034】比較例5から比較例8
ポリエーテルエーテルケトン樹脂(VICTREX−P
EEK)単独、ポリエーテルエーテルケトン樹脂と崩壊
型ポリマー樹脂の配合比が本発明の範囲外である組成物
およびポリエーテルエーテルケトン樹脂と架橋型ポリマ
ー樹脂を配合した以外は実施例5と同一の条件により試
験片を作成した。また実施例1と同一の条件で照射前後
の特性を測定した。その結果を配合と共に表2に示す。Comparative Examples 5 to 8 Polyetheretherketone resin (VICTREX-P
EEK) alone, a composition in which the blending ratio of polyetheretherketone resin and collapsible polymer resin is outside the range of the present invention, and the same conditions as Example 5 except that polyetheretherketone resin and crosslinked polymer resin were blended A test piece was prepared. Further, the characteristics before and after irradiation were measured under the same conditions as in Example 1. The results are shown in Table 2 along with the formulation.
【0035】[0035]
【表1】[Table 1]
【0036】[0036]
【表2】[Table 2]
【0037】[0037]
【発明の効果】以上の実施例から、放射線照射により崩
壊する高分子化合物をポリエーテルイミド樹脂または/
およびポリエーテルエーテルケトン樹脂に配合すること
により、本発明の絶縁電線用の耐放射線性組成物は、高
度な耐放射線性を有しかつ、柔軟性にも優れている。Effects of the Invention From the above examples, it can be seen that the polymer compound that disintegrates upon radiation irradiation is made of polyetherimide resin or
The radiation-resistant composition for insulated wires of the present invention has a high degree of radiation resistance and is also excellent in flexibility.
Claims (3)
/またはポリエーテルエーテルケトン樹脂と、(B)放
射線照射により崩壊する高分子化合物との混合物からな
ることを特徴とする耐放射線性組成物。1. A radiation-resistant composition comprising a mixture of (A) a polyetherimide resin and/or a polyetheretherketone resin and (B) a polymer compound that disintegrates when irradiated with radiation.
物が、一般式 【化1】 (ただし、R1 、R2 は炭素数1ないし14の化合
物、塩素、弗素を示す。)で表せることを特徴とする請
求項1記載の耐放射線性組成物。[Claim 2] A polymer compound that disintegrates when irradiated with radiation can be represented by the general formula [Formula 1] (wherein R1 and R2 represent a compound having 1 to 14 carbon atoms, chlorine, or fluorine). The radiation-resistant composition according to claim 1.
物がポリイソブチレン、ブチルゴムから選ばれた1種ま
たは2種以上からなることを特徴とする請求項1または
請求項2記載の耐放射線性組成物。3. The radiation-resistant composition according to claim 1, wherein the polymer compound that disintegrates upon radiation irradiation comprises one or more selected from polyisobutylene and butyl rubber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2337891A JPH04264159A (en) | 1991-02-18 | 1991-02-18 | Radiation-resistant composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2337891A JPH04264159A (en) | 1991-02-18 | 1991-02-18 | Radiation-resistant composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04264159A true JPH04264159A (en) | 1992-09-18 |
Family
ID=12108871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2337891A Withdrawn JPH04264159A (en) | 1991-02-18 | 1991-02-18 | Radiation-resistant composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04264159A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013015269A1 (en) * | 2011-07-25 | 2013-01-31 | オリンパス株式会社 | Polyether ether ketone composite material |
-
1991
- 1991-02-18 JP JP2337891A patent/JPH04264159A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013015269A1 (en) * | 2011-07-25 | 2013-01-31 | オリンパス株式会社 | Polyether ether ketone composite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5795778B2 (en) | Improved semiconductive composition | |
KR101696122B1 (en) | A conductive jacket | |
BR112012031519B1 (en) | CABLE UNDERSTANDING A POLYMERIC COMPOSITION, PROCESS OF PRODUCTION AND USE OF THE SAME | |
JPS58198525A (en) | Epoxy resin composition | |
US4767668A (en) | Electric wire and cable | |
JPH04264159A (en) | Radiation-resistant composition | |
JPH04325561A (en) | Radiation-resistant composition | |
JPS63210161A (en) | Polyoxymethylene resin composition | |
Du et al. | The application of recurrence plot in DC tracking test of gamma-ray irradiated polycarbonate | |
JPH04315701A (en) | Radiation resistant cable | |
JPH05125279A (en) | Heat-and radiation-resistant composition | |
JP7425046B2 (en) | Dielectric reinforced polyethylene compound | |
JPS598216A (en) | Polyolefin insulated power cable with semiconductive layer | |
EP0119492B1 (en) | Composition for insulating electrical wire and cable | |
JPH01252661A (en) | Radiation-resistant composition | |
JPH0912786A (en) | Radiation-resistant resin composition | |
JP3744070B2 (en) | Heat resistant elastomer composition | |
JP2004071250A (en) | Insulation composite | |
JPH02227914A (en) | Radiation-proof wire/cable | |
JP3819112B2 (en) | Method for producing heat and radiation resistant composition | |
JPH05112704A (en) | Heat-and radiation-resistant composition | |
SU604859A1 (en) | Self-stopping composition based on homo -or copolymers of olefins or their mixtures | |
JPS5865740A (en) | Polyolefin resin composition | |
JPH02132156A (en) | Resin composition and insulating coating film | |
JPH05125251A (en) | Heat-and radiation-resistant composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980514 |