JP3744070B2 - Heat resistant elastomer composition - Google Patents

Heat resistant elastomer composition Download PDF

Info

Publication number
JP3744070B2
JP3744070B2 JP21918396A JP21918396A JP3744070B2 JP 3744070 B2 JP3744070 B2 JP 3744070B2 JP 21918396 A JP21918396 A JP 21918396A JP 21918396 A JP21918396 A JP 21918396A JP 3744070 B2 JP3744070 B2 JP 3744070B2
Authority
JP
Japan
Prior art keywords
elastomer
elastomer composition
melting point
resistant elastomer
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21918396A
Other languages
Japanese (ja)
Other versions
JPH1045988A (en
Inventor
典男 池ケ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabe Industrial Co Ltd
Original Assignee
Kurabe Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabe Industrial Co Ltd filed Critical Kurabe Industrial Co Ltd
Priority to JP21918396A priority Critical patent/JP3744070B2/en
Publication of JPH1045988A publication Critical patent/JPH1045988A/en
Application granted granted Critical
Publication of JP3744070B2 publication Critical patent/JP3744070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、180℃以上の優れた耐熱性と、耐寒性、機械的強度及び柔軟性を兼ね備えるとともに、未架橋状態でも取り扱いが容易な、特に、押出成形用に好適なエラストマー組成物に関するものである。
【0002】
【従来の技術】
優れた耐熱性を備えたエラストマーとして、シリコーンエラストマー、フッ素系エラストマー等が良く知られているが、これらのエラストマーは成形後直ちに架橋を施して成形品としている。成形後直ちに架橋を施さなくても良いように、耐熱性エラストマーに熱可塑性樹脂を混合する試みは、例えば、特開平2−245047号公報、特開平2−311548号公報等に開示されているが、エラストマーとしての特性を改良するところまでには至っておらず、かえってエラストマーとしての性質を失う方向にあった。
【0003】
熱可塑性エラストマーの中で、ポリオレフィンやポリスチレンなどの重付加高分子をハードセグメントとしたものは耐熱性に劣っているが、それに比べてポリアミド、ポリエステルなどの縮合型高分子をハードセグメントとしたものは比較的耐熱性に優れている。しかしながら、その長期耐熱性はせいぜい130℃程度であり用途が制限されていた。一方、耐寒性はそのソフトセグメントの性質により優れた性質を示すものも多い。これらの熱可塑性エラストマーは、成形性に優れ、耐寒性、機械的強度、柔軟性などエラストマーとしての物性も保っていることから、自動車、産業ロボット等で使用される保護チューブや、電線、ケーブルの絶縁被覆材料、シース材料などとして広く用いられている。
【0004】
【発明が解決しようとする課題】
このような事情に鑑み、まず、本質的な耐熱性エラストマーとしての性質、特に、フッ素系エラストマーにおける耐寒性を改良する一方、180℃以上の優れた耐熱性を保ち、成形性、機械的強度、柔軟性、未架橋状態における取り扱いの容易さなど、熱可塑性エラストマーとしての性質も合わせ持った組成物を得るべく種々検討した結果、熱可塑性エラストマーと耐熱性エラストマーとの特定の組み合わせを実施することにより、意外な効果が発現することを見い出し、本発明に至った。
【0005】
【課題を解決するための手段】
即ち、本発明による耐熱性エラストマー組成物は、芳香族ポリエステルをハードセグメントとした熱可塑性エラストマーと、該熱可塑性エラストマーよりも融点が低いか、融点を持たないフッ素系高分子を重量比90:10〜10:90の範囲で混合してなるとともに、電離性放射線の照射により成形後に架橋されていることを特徴とするものである。
【0006】
【発明の実施の形態】
縮合型高分子をハードセグメントとした熱可塑性エラストマーとしては、ポリエステル樹脂、ポリアミド樹脂、フェノール樹脂、アルキド樹脂などが挙げられるが、好ましくは、芳香族ポリエステル樹脂、更に好ましくは、ポリ(アルキレンテレフタレート)樹脂が使用される。
【0007】
芳香族ポリエステル樹脂としては、ハードセグメントが芳香族ポリエステル、ソフトセグメントが脂肪族ポリエーテルの共重合体タイプと、ハードセグメントが芳香族ポリエステル、ソフトセグメントが脂肪族ポリエステルの共重合体タイプが市販されているが、これらのいずれを使用しても良い。また、ハードセグメントとソフトセグメントは種々の重合比のものが知られており、これらは本発明によって得られる組成物の用途によって適宜に選択すれば良い。
【0008】
フッ素系高分子としては、上記熱可塑性エラストマーよりも融点が低いか、融点を持たないものを選択する。上記熱可塑性エラストマーよりも融点が高いものを選択すると、成形加工温度が高くなり過ぎ、成形時に熱可塑性エラストマーが分解してしまう恐れがあり好ましくない。例示をすると、4フッ化エチレン−プロピレン共重合体、フッ化ビニリデン−6フッ化プロピレン−4フッ化エチレン共重合体、フッ化ビニリデン−6フッ化プロピレン共重合体、エチレン−4フッ化エチレン共重合体及び、これらを更に共重合により変成した高分子などのうち、融点が使用する熱可塑性エラストマーよりも低い結晶性フッ素系高分子、または、4フッ化エチレン−プロピレン共重合体、フッ化ビニリデン−6フッ化プロピレン−4フッ化エチレン共重合体、フッ化ビニリデン−6フッ化プロピレン共重合体及び、これらを更に共重合により変成した高分子などの融点を持たないエラストマー類などが挙げられる。これらは単独で使用しても良いし、2種以上を混合して使用しても良い。
【0009】
本発明においては、上記熱可塑性エラストマーと上記フッ素系高分子を重量比90:10〜10:90、好ましくは60:40〜20:80の範囲で混合する。熱可塑性エラストマーの重量比が90を超えると目的とする十分な耐熱性を得ることができず、一方10未満では耐寒性と機械的強度が低下してしまう。
【0010】
上記の混合物に、架橋剤、架橋助剤、充填剤、酸化防止剤、加工助剤、安定剤、難燃剤、顔料等の従来公知の各種添加剤を必要に応じて適宜に配合したものをインターナルミキサー、一軸混練機、二軸混練機等の公知の混練機で混練りすることによって本発明のエラストマー組成物が完成する。
【0011】
得られた組成物に架橋を施す場合は、電離性放射線の照射により行うことが好ましい。過酸化物やポリオール、アミンなどによる架橋は、混練時や押出成形時の加工温度が高いことからスコーチや発泡が発生しやすく好ましくない。放射線とは、X線、γ線、電子線、陽子線、重陽子線、α線、β線等を言うが、好ましくは、電子線、γ線を用いる。更に好ましくは、放射線管理が容易である電子線を用いる。
【0012】
【実施例】
以下に本発明の実施例を比較例と併せて説明する。この実施例で使用した各配合材料の詳細は表3に示すとおりである。
【0013】
表1及び表2に示した配合材料を二軸混練機で十分に混練りし、得られた組成物をペレット化した後、L/D=24の30mmφ押出機に供給し、実施例1乃至実施例4、実施例7及び実施例8、比較例1乃至比較例4については、シリンダー160℃、ヘッド170℃の温度条件にて、また、実施例5及び実施例6については、シリンダー190℃、ヘッド200℃の温度条件にて、内径4mmφ、外径6mmφのチューブを押出成形した。その後、加速電圧950kv、照射線量150kGyの条件で電子線を照射して架橋を施した。
【0014】
このようにして得られた合計12種類の架橋チューブを試料として、機械的強度(引張強さ、伸び、耐摩耗性)、耐熱性(熱老化性試験)及び耐寒性(低温試験)について、それぞれ評価を行った。結果は表1及び表2に併せて示した。
【0015】
評価方法は以下の通りである。
機械的強度
引張強さと伸びは、JIS C 3005に準拠して測定した。フッ素ゴムの実力値に基づき、引張強さ7MPa以上、伸び150%以上を合格ラインとした。
耐摩耗性は、外径3.8mmφの金属棒をチューブ内に挿入した後、JASOD 608−92の耐摩耗試験の摩耗テープ法(荷重1350g)に従って摩耗抵抗値を測定した。機械的保護としての用途が多いことを考慮して、3000mm以上を合格ラインとした。
【0016】
耐熱性
JASO M 319−80の熱老化性試験B法に従って行い、クラックの発生が無いものを合格とした。この時、熱老化条件は180℃×7日、屈曲半径は5mmとした。
【0017】
耐寒性
JASO M 319−80の低温試験A法に従って行い、クラックの発生が無いものを合格とした。この時、温度条件は−45℃、試験に用いる円筒は外径20mmφとした。
【0018】
【表1】

Figure 0003744070
【0019】
【表2】
Figure 0003744070
【0020】
【表3】
Figure 0003744070
【0021】
表1及び表2から明らかなように、本発明にかかる組成物を成形した架橋チューブ(実施例1乃至実施例8)は、いずれも、機械的強度:引張強さ7MPa以上、伸び150%以上、耐摩耗性3000mm以上、耐熱性:クラック発生無し、耐寒性:クラック発生無しという合格ラインを全てクリアしている。
【0022】
これに対して、フッ素系高分子を混合していない比較例1及びフッ素系高分子の重量比が本発明の範囲の下限値に満たない比較例2は、ともに耐熱性が不合格であった。また、フッ素系高分子の重量比が本発明の範囲の上限値を超える比較例3と、縮合型高分子をハードセグメントとした熱可塑性エラストマーを含まない比較例4は、ともに耐寒性が不合格であった。
【0023】
本発明は上記の実施例に限定されものではない。上記の実施例では本発明にかかるエラストマー組成物をチューブの構成材料として使用したが、電線、ケーブルの絶縁被覆材料やシース材などとして使用することもできる。
【0024】
【発明の効果】
以上詳述したように本発明のエラストマー組成物は、180℃以上の優れた耐熱性と、耐寒性、機械的強度及び柔軟性を兼ね備えるとともに、未架橋状態でも取り扱いが容易である。従って、例えば、自動車、産業ロボット等で使用される保護チューブや、電線、ケーブルの絶縁被覆材料、シース材などとして好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an elastomer composition that has excellent heat resistance of 180 ° C. or more, cold resistance, mechanical strength and flexibility, and is easy to handle even in an uncrosslinked state, and particularly suitable for extrusion molding. is there.
[0002]
[Prior art]
Silicone elastomers, fluorine-based elastomers, and the like are well known as elastomers having excellent heat resistance. These elastomers are crosslinked immediately after molding to form molded products. Attempts to mix a thermoplastic resin with a heat-resistant elastomer so as not to perform crosslinking immediately after molding are disclosed in, for example, JP-A-2-245047 and JP-A-2-311548. However, it has not yet reached a point where the characteristics as an elastomer are improved, but rather, the properties as an elastomer are lost.
[0003]
Among thermoplastic elastomers, those with polyaddition polymers such as polyolefin and polystyrene as hard segments are inferior in heat resistance, but those with condensation type polymers such as polyamide and polyester as hard segments. Relatively excellent heat resistance. However, its long-term heat resistance is at most about 130 ° C., and its use has been limited. On the other hand, cold resistance often shows superior properties due to the properties of the soft segment. These thermoplastic elastomers are excellent in moldability and maintain physical properties as elastomers such as cold resistance, mechanical strength, and flexibility. Therefore, they are used for protection tubes, electric wires, and cables used in automobiles, industrial robots, etc. Widely used as insulation coating materials, sheath materials, and the like.
[0004]
[Problems to be solved by the invention]
In view of such circumstances, first, while improving the properties as an essential heat-resistant elastomer, in particular, the cold resistance in a fluorine-based elastomer, while maintaining excellent heat resistance of 180 ° C. or higher, moldability, mechanical strength, As a result of various studies to obtain a composition having properties as a thermoplastic elastomer such as flexibility and ease of handling in an uncrosslinked state, by carrying out a specific combination of a thermoplastic elastomer and a heat-resistant elastomer The present inventors have found that an unexpected effect is manifested, and have reached the present invention.
[0005]
[Means for Solving the Problems]
That is, the heat-resistant elastomer composition according to the present invention has a weight ratio of 90:10 to a thermoplastic elastomer having an aromatic polyester as a hard segment and a fluoropolymer having a lower melting point or no melting point than the thermoplastic elastomer. It is characterized by being mixed in the range of -10: 90 and being crosslinked after forming by irradiation with ionizing radiation .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the thermoplastic elastomer having a condensation polymer as a hard segment include polyester resins, polyamide resins, phenol resins, alkyd resins, etc., preferably aromatic polyester resins, more preferably poly (alkylene terephthalate) resins. Is used.
[0007]
As the aromatic polyester resin, a copolymer type in which the hard segment is an aromatic polyester and the soft segment is an aliphatic polyether, and a copolymer type in which the hard segment is an aromatic polyester and the soft segment is an aliphatic polyester are commercially available. However, any of these may be used. Further, hard segments and soft segments having various polymerization ratios are known, and these may be appropriately selected depending on the use of the composition obtained by the present invention.
[0008]
As the fluoropolymer, one having a melting point lower than that of the thermoplastic elastomer or not having the melting point is selected. If a material having a melting point higher than that of the thermoplastic elastomer is selected, the molding process temperature becomes too high, and the thermoplastic elastomer may be decomposed during molding, which is not preferable. For example, ethylene tetrafluoride-propylene copolymer, vinylidene fluoride-6-propylene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-6-fluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer Among polymers and polymers obtained by further copolymerization, a crystalline fluoropolymer having a melting point lower than that of the thermoplastic elastomer used, or a tetrafluoroethylene-propylene copolymer, vinylidene fluoride Examples include -6 fluoropropylene-4 fluoroethylene copolymer, vinylidene fluoride-6 fluoropropylene copolymer, and elastomers having no melting point such as a polymer obtained by further copolymerizing these copolymers. These may be used singly or in combination of two or more.
[0009]
In the present invention, the thermoplastic elastomer and the fluoropolymer are mixed in a weight ratio of 90:10 to 10:90, preferably 60:40 to 20:80. If the weight ratio of the thermoplastic elastomer exceeds 90, the desired sufficient heat resistance cannot be obtained, whereas if it is less than 10, the cold resistance and mechanical strength are lowered.
[0010]
Intermixed with the above mixture, as necessary, various conventional additives such as a crosslinking agent, a crosslinking aid, a filler, an antioxidant, a processing aid, a stabilizer, a flame retardant, and a pigment. The elastomer composition of the present invention is completed by kneading with a known kneader such as a null mixer, a uniaxial kneader, or a biaxial kneader.
[0011]
When the obtained composition is crosslinked, it is preferably performed by irradiation with ionizing radiation. Crosslinking with peroxides, polyols, amines and the like is not preferred because scorch and foaming are likely to occur because of high processing temperatures during kneading and extrusion. Radiation refers to X-rays, γ-rays, electron beams, proton beams, deuteron beams, α-rays, β-rays, etc., preferably electron beams and γ-rays are used. More preferably, an electron beam that allows easy radiation management is used.
[0012]
【Example】
Examples of the present invention will be described below together with comparative examples. The details of each compounding material used in this example are as shown in Table 3.
[0013]
The compounding materials shown in Table 1 and Table 2 were sufficiently kneaded with a twin-screw kneader, and the resulting composition was pelletized and then fed to a 30 mmφ extruder with L / D = 24. For Example 4, Example 7 and Example 8, and Comparative Examples 1 to 4, the temperature was set at 160 ° C. for the cylinder and the head at 170 ° C., and for Example 5 and Example 6 at 190 ° C. for the cylinder. Then, a tube having an inner diameter of 4 mmφ and an outer diameter of 6 mmφ was extruded under a temperature condition of 200 ° C. of the head. Thereafter, crosslinking was performed by irradiation with an electron beam under the conditions of an acceleration voltage of 950 kv and an irradiation dose of 150 kGy.
[0014]
Using a total of 12 kinds of cross-linked tubes thus obtained as samples, mechanical strength (tensile strength, elongation, wear resistance), heat resistance (thermal aging test) and cold resistance (low temperature test), respectively. Evaluation was performed. The results are shown in Table 1 and Table 2 together.
[0015]
The evaluation method is as follows.
Mechanical strength Tensile strength and elongation were measured according to JIS C 3005. Based on the actual value of fluororubber, a tensile strength of 7 MPa or more and an elongation of 150% or more were regarded as acceptable lines.
For the wear resistance, a metal rod having an outer diameter of 3.8 mmφ was inserted into the tube, and the wear resistance value was measured according to the wear tape method (load 1350 g) of the wear resistance test of JASOD 608-92. Considering that there are many uses as mechanical protection, 3000 mm or more was regarded as an acceptable line.
[0016]
The test was conducted according to the heat aging test B method of heat- resistant JASO M 319-80, and the product without cracks was regarded as acceptable. At this time, the heat aging conditions were 180 ° C. × 7 days, and the bending radius was 5 mm.
[0017]
The test was carried out according to the cold resistance JASO M 319-80 low temperature test A method, and a test without cracking was accepted. At this time, the temperature condition was −45 ° C., and the cylinder used for the test had an outer diameter of 20 mmφ.
[0018]
[Table 1]
Figure 0003744070
[0019]
[Table 2]
Figure 0003744070
[0020]
[Table 3]
Figure 0003744070
[0021]
As is clear from Tables 1 and 2, all of the crosslinked tubes (Examples 1 to 8) obtained by molding the composition according to the present invention have a mechanical strength: a tensile strength of 7 MPa or more and an elongation of 150% or more. All the passing lines of wear resistance 3000 mm or more, heat resistance: no crack generation, cold resistance: no crack generation are cleared.
[0022]
On the other hand, Comparative Example 1 in which no fluorine-based polymer was mixed and Comparative Example 2 in which the weight ratio of the fluorine-based polymer was less than the lower limit of the range of the present invention both failed in heat resistance. . Further, Comparative Example 3 in which the weight ratio of the fluoropolymer exceeds the upper limit of the range of the present invention and Comparative Example 4 that does not include a thermoplastic elastomer having a condensation type polymer as a hard segment both fail in cold resistance. Met.
[0023]
The present invention is not limited to the above embodiments. In the above embodiment, the elastomer composition according to the present invention is used as a constituent material of a tube, but it can also be used as an insulating coating material or a sheath material for electric wires and cables.
[0024]
【The invention's effect】
As described above in detail, the elastomer composition of the present invention has excellent heat resistance of 180 ° C. or higher, cold resistance, mechanical strength and flexibility, and is easy to handle even in an uncrosslinked state. Therefore, it is suitable as, for example, a protective tube used in automobiles, industrial robots, and the like, insulating coating materials for electric wires and cables, sheath materials, and the like.

Claims (2)

芳香族ポリエステルをハードセグメントとした熱可塑性エラストマーと、該熱可塑性エラストマーよりも融点が低いか、融点を持たないフッ素系高分子を重量比90:10〜10:90の範囲で混合してなるとともに、電離性放射線の照射により成形後に架橋されていることを特徴とする耐熱性エラストマー組成物。And a thermoplastic elastomer in which the aromatic polyester as a hard segment, thermoplastic or having a melting point lower than the elastomer, the weight of a fluorine-based polymer having no melting point ratio 90: 10 to 10: with by mixing in the range of 90 A heat resistant elastomer composition which is crosslinked after molding by irradiation with ionizing radiation . フッ素系高分子が、4フッ化エチレン−プロピレン共重合体、フッ化ビニリデン−6フッ化プロピレン−4フッ化エチレン共重合体、フッ化ビニリデン−6フッ化プロピレン共重合体、エチレン−4フッ化エチレン共重合体及び、これらを更に共重合により変成した高分子からなる群から1種または2種以上選択されたものであることを特徴とする請求項1記載の耐熱性エラストマー組成物。  Fluorine-based polymers include ethylene tetrafluoride-propylene copolymer, vinylidene fluoride-6-propylene fluoride-4-fluoroethylene copolymer, vinylidene fluoride-6-propylene copolymer, ethylene-4 fluoride The heat-resistant elastomer composition according to claim 1, wherein the composition is one or more selected from the group consisting of ethylene copolymers and polymers obtained by further copolymerizing these copolymers.
JP21918396A 1996-07-31 1996-07-31 Heat resistant elastomer composition Expired - Fee Related JP3744070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21918396A JP3744070B2 (en) 1996-07-31 1996-07-31 Heat resistant elastomer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21918396A JP3744070B2 (en) 1996-07-31 1996-07-31 Heat resistant elastomer composition

Publications (2)

Publication Number Publication Date
JPH1045988A JPH1045988A (en) 1998-02-17
JP3744070B2 true JP3744070B2 (en) 2006-02-08

Family

ID=16731507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21918396A Expired - Fee Related JP3744070B2 (en) 1996-07-31 1996-07-31 Heat resistant elastomer composition

Country Status (1)

Country Link
JP (1) JP3744070B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8696657B2 (en) 2008-12-22 2014-04-15 Olympus Medical Systems Corp. Treatment tool
FR3097868B1 (en) * 2019-06-27 2021-12-10 Arkema France COMBINATION OF THERMOPLASTIC ELASTOMER AND FLUORINE POLYMER

Also Published As

Publication number Publication date
JPH1045988A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
JPH01502676A (en) polymer composition
JP6569129B2 (en) Wire covering material composition, insulated wire and wire harness
US3845166A (en) Curable composition comprising polyvinyl chloride,chlorinated polyolfin and an ethylene polymer,and the cured product thereof
US5858540A (en) Fluororesin compositions, heat-shrinkable tubings and insulated wires employing the fluororesin compositions
JP3744070B2 (en) Heat resistant elastomer composition
CN111057334B (en) Method for producing thermoplastic fluororesin composition, method for producing electric wire, and method for producing cable
KR20200058334A (en) Mixture with non-crosslinking resin for preparing insulation layer of power cable
JPH07126468A (en) Fluororesin composition and insulated electric wire and heat-shrinkable tube made therefrom respectively
JP3929091B2 (en) Crosslinkable vinylidene fluoride polymer composition, method of crosslinking the composition, and shaped article
JP5559561B2 (en) Resin composition for heat-shrinkable tube, cross-linked tube and heat-shrinkable tube using the same
JPH06145483A (en) Resin composition and tube made therefrom
JP3812064B2 (en) Fluorine-containing elastomer composition
JP4070006B2 (en) Fluorine-containing elastomer composition
JP3555628B2 (en) Method for producing fluoroelastomer molded article, method for producing insulated wire using same, method for producing insulated tube
JPH06313071A (en) Heat-resistant, flame-retarding and oil-resistant resin composition and insulated wire and heat-shrinkable tube made of the composition
EP3503122A1 (en) Polymer composition for insulation layer of power cable, insulation layer including the same and power cable including the same
JPH0812767A (en) Heat-shrinkable electrical insulation tube
JP3897373B2 (en) Heat-resistant insulating composition and electric wire
JP3603965B2 (en) Heat resistant insulating composition
WO2001018824A1 (en) Dual layer system suitable for use as electrical insulation for wires and other conductors
JPH07179705A (en) Method for crosslinking fluororubber composition and its crosslinked molded product
EP3910023A1 (en) Resin composition, sheath cable, and wire harness
JP3321969B2 (en) Fluororesin-coated wires and Fluororesin-coated shielded wires
JPS6215963B2 (en)
KR102695878B1 (en) Polypropylene resin composition for power cable

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees