JPH04263752A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH04263752A
JPH04263752A JP564991A JP564991A JPH04263752A JP H04263752 A JPH04263752 A JP H04263752A JP 564991 A JP564991 A JP 564991A JP 564991 A JP564991 A JP 564991A JP H04263752 A JPH04263752 A JP H04263752A
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
compressor
water
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP564991A
Other languages
Japanese (ja)
Inventor
Kenzo Kurahashi
倉橋 健三
Masami Imanishi
正美 今西
Hideaki Tagashira
田頭 秀明
Takeshi Yoshida
武司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP564991A priority Critical patent/JPH04263752A/en
Publication of JPH04263752A publication Critical patent/JPH04263752A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To prevent a phenomenon that liquid returns to a compressor and high pressure cut during heating operation by a method wherein a solenoid valve is provided in a branch pipe of a water side heat exchanger, and when, for example, shell temperature of the compressor during cooling operation goes down below a prescribed value, the solenoid valve is closed. CONSTITUTION:Gas refrigerant of high temperature and high pressure discharged from a compressor 1 during cooling operation passes through a four-way turnover valve 2, is heat-exchanged at a water side heat exchanger 5 with circulating water from a water passage 15, and condensed and liquefied. The thus liquefied refrigerant is heat-exchanged at an indoor heat exchanger 5 with room air from a fan 6 and vaporized and gasified, and then, returned to the compressor 1 through the four-way turnover valve 2. At this time, shell temperature of the compressor 1 is detected by a temperature detecting means 11. If the detected temperature goes down below a prescribed value, a solenoid valve 9 mounted on a branch pipe 7 of the water side heat exchanger 3 is closed. By this, liquid refrigerant is stored in the closed water side heat exchanger 3, and the quantity of refrigerant circulating through a refrigeration cycle is reduced, and further liquid return phenomenon of unvaporized liquid refrigerant to the compressor 1 is prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、冷房時の液バック防
止および暖房時の過負荷防止を可能にして冷暖房を行な
う空気調和装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an air conditioner that performs heating and cooling by preventing liquid back during cooling and overload during heating.

【0002】0002

【従来の技術】従来の空気調和装置の冷凍サイクルの構
成を図2に示す。この図2において、1は圧縮機、2は
四方切換弁、3は水側熱交換器、4は減圧装置、5は空
気側熱交換器で、これらを順次冷媒配管16で連結する
ことにより、冷凍サイクルが構成されている。また、6
は空気側熱交換器5に送風する送風器、15は水側熱交
換器3に送水する水回路である。
2. Description of the Related Art The configuration of a refrigeration cycle of a conventional air conditioner is shown in FIG. In FIG. 2, 1 is a compressor, 2 is a four-way switching valve, 3 is a water side heat exchanger, 4 is a pressure reducing device, and 5 is an air side heat exchanger, and by connecting these in order with refrigerant piping 16, A refrigeration cycle is configured. Also, 6
15 is an air blower that sends air to the air side heat exchanger 5, and 15 is a water circuit that sends water to the water side heat exchanger 3.

【0003】次に動作について説明する。冷房運転時(
冷媒の流れを図中太い実線による矢印で示す)には、圧
縮機1から吐出された高温高圧のガス冷媒は、四方切換
弁2を通り、水側熱交換機3で水回路15によって送水
される循環水と熱交換し、ガス冷媒が凝縮液化したのち
、減圧装置4で減圧されて、低温低圧の液冷媒となる。
Next, the operation will be explained. During cooling operation (
(The flow of the refrigerant is indicated by the thick solid line arrow in the figure), the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, and is sent to the water side heat exchanger 3 by the water circuit 15. After exchanging heat with circulating water and condensing and liquefying the gas refrigerant, it is depressurized by the pressure reducing device 4 and becomes a low-temperature, low-pressure liquid refrigerant.

【0004】その後、この液冷媒は室内熱交換器5に入
り、送風機6によって送風される室内空気と熱交換し、
室内空気を冷却するとともに、これにより液冷媒が蒸発
ガス化され、四方切換弁2を通り、圧縮機1に戻るとい
う、冷房時の冷凍サイクルが構成され、以後冷媒は上述
した冷凍サイクル経路内を順次液化、気化を繰り返しな
がら循環される。
[0004] After that, this liquid refrigerant enters the indoor heat exchanger 5 and exchanges heat with the indoor air blown by the blower 6.
In addition to cooling the indoor air, the liquid refrigerant is evaporated and gasified, passes through the four-way switching valve 2, and returns to the compressor 1, forming a refrigeration cycle during cooling. From then on, the refrigerant passes through the above-mentioned refrigeration cycle path. It is circulated through repeated liquefaction and vaporization.

【0005】一方、暖房運転時(冷媒の流れを図中破線
による矢印で示す)には、圧縮機1から吐出された高温
高圧のガス冷媒は、暖房側に切り替えられた四方切換弁
2を通り、空気側熱交換器5に入り、送風機6によって
送風される室内空気と熱交換して、室内空気を加熱する
とともに、これにより、ガス冷媒が凝縮液化される。
On the other hand, during heating operation (the flow of the refrigerant is indicated by the dashed arrow in the figure), the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, which is switched to the heating side. The gas refrigerant enters the air-side heat exchanger 5 and exchanges heat with the indoor air blown by the blower 6 to heat the indoor air, and thereby condenses and liquefies the gas refrigerant.

【0006】この液冷媒は、減圧装置4で減圧され、低
温低圧の液冷媒となる。その後、液冷媒は水側熱交換器
3に入り、水回路15によって送水される循環水と熱交
換し、循環水から再熱して循環水を冷却するとともに、
これにより液冷媒が蒸発ガス化し、四方切換弁2を通り
、圧縮機1に戻り、これにより暖房時の冷凍サイクルが
構成される。
[0006] This liquid refrigerant is depressurized by a pressure reducing device 4, and becomes a low-temperature, low-pressure liquid refrigerant. After that, the liquid refrigerant enters the water side heat exchanger 3, exchanges heat with the circulating water sent by the water circuit 15, reheats from the circulating water, and cools the circulating water.
As a result, the liquid refrigerant is evaporated and gasified, passes through the four-way switching valve 2, and returns to the compressor 1, thereby forming a refrigeration cycle during heating.

【0007】[0007]

【発明が解決しようとする課題】従来の空気調和装置は
以上のように構成されているので、冷房時に送風機6に
よって空気側熱交換器5に送風される送風量が、エアー
フィルタ(図示せず)の汚れなどで少なくなったり、室
内温度が低くなったりした場合、また水回路15によっ
て送水される循環水の水温が低くなったりした場合、蒸
発圧力が低くなり、蒸発能力が少なくなるので、空気側
熱交換器5の液冷媒が、完全に蒸発ガス化できず、液冷
媒が圧縮機1に戻り、圧縮機1が液圧縮し、圧縮機トラ
ブルを生じることがあった。
[Problems to be Solved by the Invention] Since the conventional air conditioner is configured as described above, the amount of air blown to the air side heat exchanger 5 by the blower 6 during cooling is controlled by the air filter (not shown). ), if the indoor temperature becomes low, or if the temperature of the circulating water sent by the water circuit 15 becomes low, the evaporation pressure will decrease and the evaporation capacity will decrease. The liquid refrigerant in the air-side heat exchanger 5 could not be completely evaporated and gasified, and the liquid refrigerant returned to the compressor 1, causing the compressor 1 to compress the liquid, resulting in compressor trouble.

【0008】さらに、暖房時においては、水回路15に
よって送水される循環水の水温が高くなったりした場合
、液冷媒高圧圧力が上昇し、高圧カットにより異常停止
する等の課題があった。
Furthermore, during heating, when the temperature of the circulating water fed by the water circuit 15 becomes high, the high pressure of the liquid refrigerant increases, causing problems such as abnormal stoppage due to high pressure cut.

【0009】この発明は上記のような課題を解消するた
めになされたものであり、冷房運転中に圧縮機への液戻
りがなく、かつ暖房運転中に高圧圧力が上昇し、高圧カ
ットにより異常停止することのない空気調和装置を提供
することを目的とする。
[0009] This invention was made to solve the above-mentioned problems, and there is no liquid returning to the compressor during cooling operation, and high pressure increases during heating operation, resulting in abnormality due to high pressure cut. The purpose is to provide an air conditioner that never stops.

【0010】0010

【課題を解決するための手段】この発明に係る空気調和
装置は、水配管出口および圧縮機シェル部にそれぞれ設
けられた温度検出手段と、水側熱交換機における複数の
分配管のうちのいずれかに設けられ、冷房運転時に圧縮
機シェル温が所定温度以下になると閉塞し、かつ暖房運
転時に出口水温が所定温度以上になると、閉塞する双方
向性の電磁弁とを設けたものである。
[Means for Solving the Problems] The air conditioner according to the present invention includes temperature detection means provided at the water pipe outlet and the compressor shell, and one of the plurality of distribution pipes in the water side heat exchanger. The solenoid valve is provided with a bidirectional solenoid valve that closes when the compressor shell temperature falls below a predetermined temperature during cooling operation, and closes when the outlet water temperature rises above a predetermined temperature during heating operation.

【0011】[0011]

【作用】この発明においては、冷房運転時に圧縮機シェ
ル温度を温度検出手段で検知して水側熱交換器における
複数の分配管のうちいずれかを電磁弁によって閉塞させ
、液冷媒が閉塞された熱交換器に溜り、冷凍サイクルを
循環する冷媒量が減少するとともに、暖房運転時に水回
路の出口水温を温度検出手段で検知して、水側熱交換器
における複数の分配管のうちいずれかを電磁弁によって
閉塞され、蒸発能力を所定量以下に維持し、高圧圧力上
昇による高圧カットを防止する。
[Operation] In this invention, during cooling operation, the compressor shell temperature is detected by the temperature detection means, and one of the plurality of distribution pipes in the water side heat exchanger is blocked by a solenoid valve, so that the liquid refrigerant is blocked. The amount of refrigerant that accumulates in the heat exchanger and circulates through the refrigeration cycle is reduced, and during heating operation, the outlet water temperature of the water circuit is detected by the temperature detection means, and one of the multiple distribution pipes in the water side heat exchanger is It is closed by a solenoid valve to maintain the evaporation capacity below a predetermined amount and prevent high pressure cuts due to high pressure increases.

【0012】0012

【実施例】以下、この発明の空気調和装置の実施例につ
いて図面に基づき説明する。図1はその一実施例の冷媒
回路図である。この図1において、図2と同一部分には
同一符号を付して、その重複説明を避け、図2とは異な
る部分を主体に述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the air conditioner according to the present invention will be described below with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of one embodiment. In FIG. 1, parts that are the same as those in FIG. 2 are designated by the same reference numerals to avoid redundant explanation, and the parts different from those in FIG. 2 will be mainly described.

【0013】この図1を図2と比較しても明らかなよう
に、符号1〜8,15,16で示す部分は図2と同じで
あり、この図1では図2の構成に新たに符号9,10,
11で示す部分が付加されたものである。
As is clear from comparing FIG. 1 with FIG. 2, the parts indicated by numerals 1 to 8, 15, and 16 are the same as in FIG. 2, and in this FIG. 9,10,
The part indicated by 11 has been added.

【0014】すなわち、9は水側熱交換器3の分配管7
の一つに設けられた双方向性の電磁弁である。また、1
0は水回路15の循環水の出口温度を換知する温度検出
手段、11は圧縮機1のシェル温度を換知する温度換出
手段である。その他の構成は図2と同様である。
That is, 9 is the distribution pipe 7 of the water side heat exchanger 3.
This is a bidirectional solenoid valve installed in one of the Also, 1
0 is a temperature detecting means for detecting the outlet temperature of the circulating water of the water circuit 15, and 11 is a temperature converting means for detecting the shell temperature of the compressor 1. The other configurations are the same as in FIG. 2.

【0015】次に動作について説明する。まず、冷房運
転の場合から述べる。冷房運転時(冷媒の流れは図中太
い実線による矢印で示す)圧縮機1から吐出された高温
高圧のガス冷媒は、四方切換弁2を通り、水側熱交換器
3で水路15によって送水される循環水と熱交換し、ガ
ス冷媒が凝縮液化する。
Next, the operation will be explained. First, we will discuss the case of cooling operation. During cooling operation (the flow of refrigerant is indicated by thick solid line arrows in the figure), the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way switching valve 2 and is sent to the water-side heat exchanger 3 by the water channel 15. The gas refrigerant condenses and liquefies by exchanging heat with the circulating water.

【0016】次いで、この凝縮液化されたガス冷媒は、
電磁弁9および分配管8を通り、減圧装置4で減圧され
て、低温圧の液冷媒となる。
Next, this condensed and liquefied gas refrigerant is
The refrigerant passes through the electromagnetic valve 9 and the distribution pipe 8 and is depressurized by the pressure reducing device 4, becoming a low-temperature liquid refrigerant.

【0017】その後、この液冷媒は室内熱交換器5に入
り、送風機6によって送風される室内空気と熱交換し、
室内空気を冷却するとともに、これにより、液冷媒が蒸
発ガス化され、四方切換弁2を通り、圧縮機1に戻ると
いう冷房時の冷凍サイクルが構成され、以後冷媒は上述
した冷凍サイクル経路内を順次液化、気化を繰り返しな
がら循環される。
After that, this liquid refrigerant enters the indoor heat exchanger 5 and exchanges heat with the indoor air blown by the blower 6.
In addition to cooling the indoor air, a refrigeration cycle during cooling is constructed in which the liquid refrigerant is evaporated and gasified, passes through the four-way switching valve 2, and returns to the compressor 1. From then on, the refrigerant passes through the above-mentioned refrigeration cycle path. It is circulated through repeated liquefaction and vaporization.

【0018】なお、送風機6によって空気側熱交換器5
に送風される送風量がエアーフィルタの汚れなどで少な
くなったり、室内温度が低くなったりした場合、また水
回路15によって送水される循環水の水温が低くなった
りした場合、蒸発圧力が低くなり、蒸発能力が少なくな
るので未蒸発の液冷媒が圧縮機1に戻る。
Note that the air side heat exchanger 5 is
If the amount of air blown to the air filter decreases due to dirt on the air filter, or if the indoor temperature decreases, or if the temperature of the circulating water sent by the water circuit 15 decreases, the evaporation pressure will decrease. , since the evaporation capacity decreases, unevaporated liquid refrigerant returns to the compressor 1.

【0019】したがって、そのとき、低下する圧縮機1
のシェル温をシェル温検出手段11にて検出して、所定
温度以下(20℃以下)になったとき、水側熱交換器3
の分配管7に取り付けられた電磁弁9を閉塞し、液冷媒
が閉塞した水側熱交換器3に溜るようにする。そして、
冷凍サイクルを循環する冷媒量を減少させ、未蒸発の液
冷媒の圧縮機1への液戻り現象を防止する。
[0019] Therefore, when the compressor 1 falls
When the shell temperature of the water side heat exchanger 3 is detected by the shell temperature detection means 11 and becomes below a predetermined temperature (20°C or below), the water side heat exchanger 3
The solenoid valve 9 attached to the distribution pipe 7 is closed so that the liquid refrigerant accumulates in the closed water side heat exchanger 3. and,
The amount of refrigerant circulating through the refrigeration cycle is reduced to prevent unevaporated liquid refrigerant from returning to the compressor 1.

【0020】一方、暖房運転時(冷媒の流れを図中破線
による矢印で示す)には、圧縮機1から吐出された高温
高圧のガス冷媒は、暖房側に切り替えられた四方切換弁
2を通り、空気側熱交換器5に入り、送風機6によって
送風される室内空気と熱交換して、室内空気を加熱する
とともに、これによりガス冷媒が凝縮液化される。この
液冷媒は、減圧装置4で減圧され、低温低圧の液冷媒と
なる。
On the other hand, during heating operation (the flow of the refrigerant is indicated by the dashed arrow in the figure), the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, which is switched to the heating side. The gas refrigerant enters the air-side heat exchanger 5 and exchanges heat with the indoor air blown by the blower 6 to heat the indoor air, and thereby condenses and liquefies the gas refrigerant. This liquid refrigerant is depressurized by the pressure reducing device 4 and becomes a low-temperature, low-pressure liquid refrigerant.

【0021】その後、液冷媒は分配管8および電磁弁9
を通って水側熱交換器3に入り、水回路15によって送
水される循環水と熱交換し、循環水から再熱して循環水
を冷却するとともに、これより液冷媒が蒸発ガス化し、
四方切換弁2を通り、圧縮機1に戻る。このようにして
、暖房時の冷凍サイクルが構成される。
After that, the liquid refrigerant flows through the distribution pipe 8 and the solenoid valve 9.
The refrigerant enters the water-side heat exchanger 3 through the water circuit 15, exchanges heat with the circulating water sent by the water circuit 15, reheats the circulating water, cools the circulating water, and evaporates the liquid refrigerant into gas.
It passes through the four-way switching valve 2 and returns to the compressor 1. In this way, a refrigeration cycle for heating is configured.

【0022】なお、水回路15によって送水される循環
水の水温が高くなったりした場合、液冷媒の蒸発能力が
増大し、液冷媒の高圧圧力が上昇し、高圧カットにより
異常停止する等の問題があるため、水回路15に取り付
けられた水温検出手段10により、循環水の出口温度を
検出し、水側熱交換器3の分配管7に取り付けられた電
磁弁9を閉塞し、水側熱交換器3の1回路を熱交換させ
ないようにする。これにより、液冷媒の蒸発能力が低下
し、高圧圧力を所定使用範囲内に維持する。
[0022] If the temperature of the circulating water fed by the water circuit 15 increases, the evaporation capacity of the liquid refrigerant increases, the high pressure of the liquid refrigerant increases, and problems such as abnormal stoppage due to high pressure cut occur. Therefore, the water temperature detection means 10 attached to the water circuit 15 detects the outlet temperature of the circulating water, closes the solenoid valve 9 attached to the distribution pipe 7 of the water side heat exchanger 3, and removes the water side heat. One circuit of the exchanger 3 is prevented from exchanging heat. This reduces the evaporation capacity of the liquid refrigerant and maintains the high pressure within a predetermined usage range.

【0023】[0023]

【発明の効果】以上説明したように、この発明によれば
、水側熱交換器における複数の分配のうちいずれかに電
磁弁を設けるとともに、水配管の出口および圧縮機シェ
ル部に温度検出手段を設け、冷房運転時に圧縮機シェル
温が所定温度以下になると、前記電磁弁を閉じ、また暖
房運転時に出口水温が所定温度以上になると、電磁弁を
とじるように構成したので、冷房運転時の圧縮機への液
もどり現象防止と、暖房運転時の高圧カットの防止がで
きる効果がある。
As explained above, according to the present invention, a solenoid valve is provided in one of the plurality of distributions in the water side heat exchanger, and a temperature detection means is provided at the outlet of the water pipe and the compressor shell. When the compressor shell temperature falls below a predetermined temperature during cooling operation, the solenoid valve is closed, and when the outlet water temperature rises above a predetermined temperature during heating operation, the solenoid valve is closed. This has the effect of preventing liquid from returning to the compressor and preventing high pressure cuts during heating operation.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例による空気調和装置の冷媒
回路図である。
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.

【図2】従来の空気調和装置の冷媒回路図である。FIG. 2 is a refrigerant circuit diagram of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1  圧縮機 2  四方切換弁 3  水側熱交換器 4  絞り装置 5  空気側熱交換器 6  室内送風機 7,8  分配器 9  電磁弁 10,11  温度換出手段 15  水回路 16  冷媒配管 1 Compressor 2 Four-way switching valve 3 Water side heat exchanger 4 Squeezing device 5 Air side heat exchanger 6 Indoor blower 7, 8 Distributor 9 Solenoid valve 10, 11 Temperature conversion means 15 Water circuit 16 Refrigerant piping

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機、四方切換弁、水側熱交換器、
減圧装置および空気側熱交換器を冷媒配管で順次接続し
てなる冷凍サイクルと、上記水側熱交換器に送水する水
配管出口の温度を換出する第1の温度換出手段と、上記
圧縮機のシェル部の温度を検出する第2の温度換出手段
と、上記水側熱交換機における複数の分配器のうちのい
ずれかに設けられ、冷房運転時に上記第2温度検出手段
で検出された上記圧縮機のシェル温度が所定温度以下に
なったときおよび暖房運転時上記第1の温度検出手段で
検出された上記水配管の出口水温が所定温度以上になる
と、閉塞する電磁弁とを備えた空気調和装置。
[Claim 1] Compressor, four-way switching valve, water side heat exchanger,
a refrigeration cycle formed by sequentially connecting a pressure reducing device and an air side heat exchanger with refrigerant piping; a first temperature exchange means for exchanging the temperature at the outlet of the water piping that supplies water to the water side heat exchanger; A second temperature exchanging means for detecting the temperature of the shell portion of the machine and one of the plurality of distributors in the water side heat exchanger is provided, and the temperature is detected by the second temperature detecting means during cooling operation. and a solenoid valve that closes when the shell temperature of the compressor falls below a predetermined temperature and when the outlet water temperature of the water pipe detected by the first temperature detection means during heating operation becomes above a predetermined temperature. Air conditioner.
JP564991A 1991-01-22 1991-01-22 Air conditioner Pending JPH04263752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP564991A JPH04263752A (en) 1991-01-22 1991-01-22 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP564991A JPH04263752A (en) 1991-01-22 1991-01-22 Air conditioner

Publications (1)

Publication Number Publication Date
JPH04263752A true JPH04263752A (en) 1992-09-18

Family

ID=11616979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP564991A Pending JPH04263752A (en) 1991-01-22 1991-01-22 Air conditioner

Country Status (1)

Country Link
JP (1) JPH04263752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021190235A1 (en) * 2020-03-26 2021-09-30 青岛海尔空调电子有限公司 Control method and system for flow of refrigerant of air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021190235A1 (en) * 2020-03-26 2021-09-30 青岛海尔空调电子有限公司 Control method and system for flow of refrigerant of air conditioner

Similar Documents

Publication Publication Date Title
JPH04263758A (en) Heat pump hot-water supplier
CN107238226B (en) Multi-split system and control method thereof
US20210088260A1 (en) Modular waterside economizer for air-cooled chillers
JPH07208821A (en) Air conditioner
JPH0544675Y2 (en)
CN112577101A (en) Air conditioner and control method thereof
CN116390430A (en) Multi-connected liquid cooling source
JPH04263752A (en) Air conditioner
JPH0682113A (en) Multi-room air-conditioning apparatus
JP2008121995A (en) Air conditioner
JPH07151413A (en) Separate type air conditioner
JP7258616B2 (en) chiller unit
JP7258618B2 (en) chiller unit
JPH03164661A (en) Air conditioner
JPH04324067A (en) Air conditioner
WO2023187998A1 (en) Cooling apparatus and cooling control method
CN215723688U (en) Refrigerant circulation system and air conditioner
JP2007147133A (en) Air conditioner
JPH04297758A (en) Air conditioner
JPS5849863A (en) Refrigerating cycle of heat pump type hot-water supply machine
JPH07117323B2 (en) Air conditioner
JP3791019B2 (en) Air conditioner
JPH0571825A (en) Multiroom type air-conditioner
JP3213992B2 (en) Air conditioner
JP2024089045A (en) Refrigerating device and defrosting method for load cooler