JPH04263723A - Ice heat accumulator - Google Patents

Ice heat accumulator

Info

Publication number
JPH04263723A
JPH04263723A JP1971491A JP1971491A JPH04263723A JP H04263723 A JPH04263723 A JP H04263723A JP 1971491 A JP1971491 A JP 1971491A JP 1971491 A JP1971491 A JP 1971491A JP H04263723 A JPH04263723 A JP H04263723A
Authority
JP
Japan
Prior art keywords
aqueous solution
ice
evaporator
water
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1971491A
Other languages
Japanese (ja)
Other versions
JP2827524B2 (en
Inventor
Yoshihiro Sumida
嘉裕 隅田
Hitoshi Iijima
等 飯島
Takeshi Doi
全 土井
Kazunari Nakao
一成 中尾
Shinichi Wakamoto
慎一 若本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3019714A priority Critical patent/JP2827524B2/en
Publication of JPH04263723A publication Critical patent/JPH04263723A/en
Application granted granted Critical
Publication of JP2827524B2 publication Critical patent/JP2827524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To obtain the above accumulator whereby ice in an aqueous solution is prevented from flowing into an evaporator in a refrigerating machine and highly effective operation is stably performed. CONSTITUTION:A bypass circuit 20, in which one end thereof is connected between a condenser 3 and a first flow control valve 4 and the other end is connected between the first flow control valve 4 and an evaporator 5, is provided, and a heater 22 and a second flow control valve 23 are respectively connected midway on this bypass circuit 20. Furthermore, an ice-detecting means 24 for detecting whether ice exists in the inlet of the heater 22 is provided, and detects the existence of the ice in the inlet of a heater 22. Water or an aqueous solution in a heat-accumulating tank 6 is circulated by a circulating pump 11, and when it is detected at the inlet of the heater 22 that the ice is produced, heat-exchange is done between the water or aqueous solution containing the ice and a refrigerant, and it is heated thereby, following which it is circulated into the evaporator 5.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、氷蓄熱装置に関し、
例えばビル等の空調や、氷温にて冷却,冷蔵される食品
の生産や加工に用いられるものに関する。
[Industrial Field of Application] This invention relates to an ice heat storage device.
For example, it relates to things used in air conditioning of buildings, etc., and in the production and processing of foods that are cooled and refrigerated at freezing temperatures.

【0002】0002

【従来の技術】図5は例えば特願平1−229519号
明細書に記載された従来の氷蓄熱装置を示す構成図であ
る。図において、1は冷凍機で、圧縮機2、凝縮器3、
第1流量制御弁4、蒸発器5を主要構成機器として備え
ている。6は氷と水を蓄える蓄熱槽、7は過冷却を安定
して大きくとれるような添加物、例えばカリウム塩また
はナトリウム塩を添加した水溶液、8は水溶液7に浮遊
した氷、9は過冷却解除手段であり、例えば所定の大き
さの氷塊で過冷却水溶液の出口近傍に設けられている。 10は水溶液7中の氷8をろ過する氷除去手段であるフ
ィルタ−、11は水溶液7を循環させる循環ポンプ、1
2は一方を蓄熱槽6に接続し、フィルタ−10、循環ポ
ンプ11、蒸発器5を順次接続して、蒸発器5によって
冷却された水溶液7を蓄熱槽6へ導く循環路を構成する
水配管である。なお、水溶液7は添加物を加えず、単に
水のみを使用する場合もある。
2. Description of the Related Art FIG. 5 is a block diagram showing a conventional ice heat storage device described in, for example, Japanese Patent Application No. 1-229519. In the figure, 1 is a refrigerator, a compressor 2, a condenser 3,
It is equipped with a first flow control valve 4 and an evaporator 5 as main components. 6 is a heat storage tank that stores ice and water, 7 is an aqueous solution containing additives such as potassium or sodium salts that can stably increase supercooling, 8 is ice floating in the aqueous solution 7, and 9 is a release of supercooling. For example, an ice block of a predetermined size is provided near the outlet of the supercooled aqueous solution. 10 is a filter that is an ice removing means for filtering ice 8 in the aqueous solution 7; 11 is a circulation pump that circulates the aqueous solution 7;
A water pipe 2 has one end connected to the heat storage tank 6, and a filter 10, a circulation pump 11, and an evaporator 5 connected in sequence to constitute a circulation path for guiding the aqueous solution 7 cooled by the evaporator 5 to the heat storage tank 6. It is. Note that the aqueous solution 7 may be simply water without adding any additives.

【0003】次に動作について説明する。水溶液7は冷
凍機1の蒸発器5により氷点以下数度(約ー2℃程度)
まで過冷却される。この水溶液7は配管12を通って蓄
熱槽6上部に設けた所定の大きさの氷塊9により過冷却
状態が破られ、過冷却熱量に相当する小片の氷8となる
。この氷8は、氷とならなかった残りの水溶液7と共に
蓄熱槽6に流入し、蓄熱槽6内で氷点温度の水溶液7の
上部に浮遊する。蓄熱槽6の下部の水溶液7はフィルタ
−10を通り、循環ポンプ11によって冷凍機1に送水
されてサイクルを構成している。
Next, the operation will be explained. The aqueous solution 7 is heated to several degrees below the freezing point (approximately -2℃) by the evaporator 5 of the refrigerator 1.
supercooled to. This aqueous solution 7 passes through a pipe 12 and is broken from its supercooled state by an ice cube 9 of a predetermined size provided above the heat storage tank 6, and becomes small pieces of ice 8 corresponding to the amount of supercooled heat. This ice 8 flows into the heat storage tank 6 together with the remaining aqueous solution 7 that has not turned into ice, and floats on top of the aqueous solution 7 at the freezing point temperature within the heat storage tank 6. The aqueous solution 7 in the lower part of the heat storage tank 6 passes through a filter 10 and is sent to the refrigerator 1 by a circulation pump 11 to form a cycle.

【0004】図6はこの冷凍機1の動作を示す圧力−エ
ンタルピ−線図である。グラフAは飽和線を表わし、グ
ラフBはこの冷凍機1の動作を示している。動作の状態
は矢印の方向に変化する。冷凍機1は凝縮器3出口の冷
媒が飽和液(点C)、蒸発器5出口の冷媒が飽和蒸気(
点D)となるように第1流量制御弁4により制御されて
いる。直線Eの部分が蒸発器5での変化である。
FIG. 6 is a pressure-enthalpy diagram showing the operation of this refrigerator 1. Graph A represents a saturation line, and graph B represents the operation of this refrigerator 1. The operating state changes in the direction of the arrow. In the refrigerator 1, the refrigerant at the outlet of the condenser 3 is a saturated liquid (point C), and the refrigerant at the outlet of the evaporator 5 is a saturated vapor (point C).
The flow rate is controlled by the first flow control valve 4 so that the flow rate reaches point D). The portion of straight line E represents the change in the evaporator 5.

【0005】[0005]

【発明が解決しようとする課題】従来の氷蓄熱装置は以
上のように構成されており、水溶液中の氷8が冷凍機の
蒸発器5に流入し、これが核となって氷が蒸発器5内に
生成して装置を破壊するということを防止するために、
氷のろ過器10を蒸発器5入口側の水配管12に設けて
いる。ところが、これでも以下のような問題点がある。 (1)氷の結晶が数十μm〜数百μmと小さく、この氷
を捕捉するためには氷ろ過器のフィルタ−をかなり細か
いものとする必要があるが、フィルタ−を細かくすると
循環水の流動抵抗が大きくなって循環ポンプの動力が多
くなる。 (2)ろ過器のフィルタ−の目詰まりが発生し、フィル
タ−の目詰まりに対するメンテナンスが必要である。
[Problems to be Solved by the Invention] The conventional ice heat storage device is constructed as described above, and the ice 8 in the aqueous solution flows into the evaporator 5 of the refrigerator, and this serves as a core, and the ice flows into the evaporator 5. In order to prevent this from occurring inside the device and destroying the device,
An ice filter 10 is provided in a water pipe 12 on the inlet side of the evaporator 5. However, this still has the following problems. (1) Ice crystals are small, ranging from tens of micrometers to hundreds of micrometers, and in order to capture this ice, it is necessary to make the filter of the ice filter quite fine. The flow resistance increases and the power of the circulation pump increases. (2) The filter of the filter becomes clogged, and maintenance is required to prevent the filter from clogging.

【0006】この発明は、以上のような問題点を解消す
るためになされたもので、水溶液中の氷8が冷凍機の蒸
発器5に流入するのを防止し、安定して効率の高い運転
の行なえる氷蓄熱装置を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and it prevents the ice 8 in the aqueous solution from flowing into the evaporator 5 of the refrigerator, thereby achieving stable and highly efficient operation. The purpose is to obtain an ice heat storage device that can perform

【0007】[0007]

【課題を解決するための手段】この発明に係わる氷蓄熱
装置は、圧縮機、凝縮器、第1流量制御弁、及び蒸発器
を順次接続して構成され、水または水に添加物を添加し
た水溶液を過冷却する冷凍機、この冷凍機により過冷却
された水または水溶液の過冷却を解除し氷を生成させる
過冷却解除手段、この過冷却解除手段により生成された
氷や過冷却水を蓄える蓄熱槽、この蓄熱槽内の水または
水溶液を蒸発器へ送給して循環させる循環ポンプ、並び
にこれらを順に接続し水または水溶液が循環する循環路
を備える氷蓄熱装置において、一方を凝縮器と第1流量
制御弁の間に接続し、他方を第1流量制御弁と蒸発器の
間に接続するバイパス回路を設け、このバイパス回路の
途中に凝縮器側から加熱器及び第2流量制御弁を順次接
続すると共に、蓄熱槽から蒸発器に送給される水または
水溶液中の氷の存在を検知する検知手段を備え、水また
は水溶液を蓄熱槽から加熱器、蒸発器に順に循環させる
ように構成したものである。
[Means for Solving the Problems] An ice heat storage device according to the present invention is constructed by sequentially connecting a compressor, a condenser, a first flow control valve, and an evaporator, and includes water or an additive added to water. A refrigerator that supercools an aqueous solution, a supercooling release means that releases supercooling of the water or aqueous solution supercooled by the refrigerator and generates ice, and stores the ice and supercooled water generated by the supercooling release means. In an ice heat storage device that includes a heat storage tank, a circulation pump that supplies and circulates water or aqueous solution in the heat storage tank to an evaporator, and a circulation path that connects these in order and circulates the water or aqueous solution, one side is a condenser. A bypass circuit is provided that is connected between the first flow control valve and the other between the first flow control valve and the evaporator, and a heater and the second flow control valve are connected from the condenser side in the middle of this bypass circuit. The device is connected in sequence and includes a detection means for detecting the presence of ice in the water or aqueous solution fed from the heat storage tank to the evaporator, and configured to circulate the water or aqueous solution from the heat storage tank to the heater and the evaporator in order. This is what I did.

【0008】[0008]

【作用】この発明による氷蓄熱装置の水または水溶液は
、冷凍機の蒸発器内で氷点下数度の過冷却状態まで冷却
される。この過冷却水溶液は、蓄熱槽上部で過冷却解除
手段により過冷却状態が解除され、過冷却熱量分に相当
する氷を生成する。氷とならなかった水または水溶液は
蓄熱槽から循環ポンプにより冷凍機の加熱器に送水され
、水または水溶液温度より高温(0℃以上)の冷媒と熱
交換し、水または水溶液の温度が+0.5℃程度に加熱
された後、蒸発器に流入し冷却される。蓄熱槽内には氷
が水または水溶液に浮遊しながら蓄積される。水または
水溶液中の氷が冷凍機の蒸発器に流入するのを防止する
手段として、加熱器と第2流量制御弁を設け、蓄熱槽か
ら蒸発器に送給される水または水溶液中の氷の存在を検
知する検知手段を設けて加熱器の運用状態を制御できる
ように構成している。
[Operation] The water or aqueous solution of the ice heat storage device according to the present invention is cooled to a supercooled state of several degrees below freezing in the evaporator of the refrigerator. The supercooled state of this supercooled aqueous solution is released by the supercooling release means in the upper part of the heat storage tank, and ice corresponding to the amount of heat of supercooling is generated. The water or aqueous solution that has not turned into ice is sent from the heat storage tank to the heater of the refrigerator by a circulation pump, where it exchanges heat with a refrigerant that is higher than the temperature of the water or aqueous solution (0°C or higher), until the temperature of the water or aqueous solution reaches +0. After being heated to about 5°C, it flows into an evaporator and is cooled. Ice is accumulated in the heat storage tank while floating in water or an aqueous solution. As a means to prevent ice in water or aqueous solution from flowing into the evaporator of the refrigerator, a heater and a second flow control valve are provided to prevent ice in water or aqueous solution from flowing into the evaporator from the heat storage tank. A detection means for detecting the presence of the heater is provided so that the operating state of the heater can be controlled.

【0009】[0009]

【実施例】実施例1.以下、この発明の一実施例を図に
ついて説明する。図1はこの発明の一実施例による氷蓄
熱装置を示す構成図である。図において、20は一方を
凝縮器3と第1流量制御弁4との間に接続し、他方を第
1流量制御弁4と蒸発器5の間に接続したバイパス回路
、22,23はこのバイパス回路の途中に設けられた加
熱器,第2流量制御弁である。24、25は加熱器22
の入口と出口とにそれぞれ設けられ水溶液の温度を検知
する第1と第2の温度センサ−である。この温度センサ
−24,25により蓄熱槽6から蒸発器5に送給される
水または水溶液中の氷の存在を検知することができる。 なお、その他の構成については従来と同様であるため説
明を省略する。
[Example] Example 1. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an ice heat storage device according to an embodiment of the present invention. In the figure, 20 is a bypass circuit connected between the condenser 3 and the first flow control valve 4 and the other between the first flow control valve 4 and the evaporator 5, and 22 and 23 are the bypass circuits. A heater and a second flow control valve are provided in the middle of the circuit. 24 and 25 are heaters 22
First and second temperature sensors are provided at the inlet and outlet of the aqueous solution, respectively, to detect the temperature of the aqueous solution. These temperature sensors 24 and 25 can detect the presence of ice in the water or aqueous solution fed from the heat storage tank 6 to the evaporator 5. Note that the other configurations are the same as those of the prior art, so explanations will be omitted.

【0010】次に動作について説明する。水溶液の循環
系の動作は、従来の装置とまったく同じで冷凍機1のみ
の動作が異なるものであるため、冷凍機1のみの動作に
ついて説明する。冷凍機1は加熱器22の入口に設けら
れた第1の温度センサ−24によって検知される水溶液
の温度が0℃以上の場合の第1の運転モ−ドと、水溶液
の温度が0℃に達した場合の第2の運転モ−ドとがあり
、それぞれの運転モ−ドについて以下説明する。
Next, the operation will be explained. The operation of the aqueous solution circulation system is exactly the same as that of the conventional apparatus, and only the operation of the refrigerator 1 is different, so the operation of only the refrigerator 1 will be described. The refrigerator 1 operates in a first operation mode when the temperature of the aqueous solution detected by the first temperature sensor 24 provided at the inlet of the heater 22 is 0°C or higher, and in a first operation mode when the temperature of the aqueous solution reaches 0°C. There is a second operation mode for when the limit is reached, and each operation mode will be explained below.

【0011】第1の運転モ−ドは、第1温度センサ−2
4で検出した配管12内の水溶液の温度が0℃以上の場
合の動作である。例えば氷蓄熱装置の起動時などにこの
モ−ドとなる。図2は第1の運転モード時の冷凍機の動
作を表す圧力ーエンタルピー線図である。このモ−ドで
は、バイパス回路20の第2流量制御弁23を閉じ、圧
縮機2から吐出されたガス冷媒を凝縮器3で冷却液化し
て第1流量制御弁4で低圧まで減圧する。この低圧とな
った冷媒は蒸発器5に流入し、水溶液と熱交換して水溶
液を冷却し、ガス状態となって再び圧縮機2に吸入され
る。即ち、この第1の運転モ−ドでは、図2に示すよう
に加熱器22は動作しない。水または水溶液は、蒸発器
5により氷点下数度まで冷却されて蓄熱槽6に戻る。
[0011] In the first operation mode, the first temperature sensor 2
This is the operation when the temperature of the aqueous solution in the pipe 12 detected in step 4 is 0° C. or higher. For example, this mode is entered when starting up the ice heat storage device. FIG. 2 is a pressure-enthalpy diagram showing the operation of the refrigerator in the first operation mode. In this mode, the second flow control valve 23 of the bypass circuit 20 is closed, the gas refrigerant discharged from the compressor 2 is cooled and liquefied in the condenser 3, and the pressure is reduced to a low pressure by the first flow control valve 4. This low-pressure refrigerant flows into the evaporator 5, exchanges heat with the aqueous solution, cools the aqueous solution, becomes a gas, and is sucked into the compressor 2 again. That is, in this first operation mode, the heater 22 does not operate as shown in FIG. The water or aqueous solution is cooled down to several degrees below freezing by the evaporator 5 and returned to the heat storage tank 6 .

【0012】第1の運転モ−ドでの運転により水溶液の
温度が低下し、水溶液中に氷の核が混入するようになる
と、加熱器22の水溶液入口部に設けられた第1温度セ
ンサ−24で水溶液の温度が0℃に達したと検出される
。この時、第2の運転モ−ドとなる。図3は第2の運転
モード時の冷凍機の動作を表す圧力ーエンタルピー線図
である。このモ−ドではバイパス回路20の第2流量制
御弁23を開き、加熱器22を凝縮器として動作させる
。圧縮機2から吐出された冷媒ガスは、凝縮器3で冷却
液化し飽和液となる。この液冷媒の一部は、バイパス回
路20に流入して加熱器22で水または水溶液と熱交換
して加熱する。この冷媒は第2流量制御弁23により低
圧まで減圧され、第1流量制御弁4により低圧まで減圧
された冷媒と合流し、蒸発器5に流入する。ここで冷媒
は水溶液と熱交換して水溶液を冷却し、圧縮機2に吸入
される。この時、第1流量制御弁4は蒸発器5の出口冷
媒が若干過熱するように制御され、第2流量制御弁23
は加熱器22の出口に設けられた第2の温度センサ−2
5によって検知される水溶液の温度が+0.5℃程度と
なるように制御される。従って、第2の運転モードでは
循環ポンプ11によって蓄熱槽6から送水された0℃の
水溶液7は加熱器22により氷の核が十分溶解する+0
.5℃程度に加熱された後、蒸発器5により過冷却状態
まで冷却されて蓄熱槽6に戻る。図3における区間Fが
加熱器22による動作部分である。
When the temperature of the aqueous solution decreases due to operation in the first operation mode and ice nuclei become mixed into the aqueous solution, the first temperature sensor provided at the aqueous solution inlet of the heater 22 At 24, it is detected that the temperature of the aqueous solution has reached 0°C. At this time, the second operation mode is entered. FIG. 3 is a pressure-enthalpy diagram showing the operation of the refrigerator in the second operation mode. In this mode, the second flow control valve 23 of the bypass circuit 20 is opened and the heater 22 is operated as a condenser. The refrigerant gas discharged from the compressor 2 is cooled and liquefied in the condenser 3 to become a saturated liquid. A portion of this liquid refrigerant flows into the bypass circuit 20 and is heated by exchanging heat with water or an aqueous solution in the heater 22. This refrigerant is reduced in pressure to a low pressure by the second flow control valve 23, merges with the refrigerant reduced to low pressure by the first flow control valve 4, and flows into the evaporator 5. Here, the refrigerant exchanges heat with the aqueous solution to cool the aqueous solution, and is sucked into the compressor 2. At this time, the first flow control valve 4 is controlled so that the refrigerant at the outlet of the evaporator 5 is slightly overheated, and the second flow control valve 23
is the second temperature sensor 2 provided at the outlet of the heater 22
The temperature of the aqueous solution detected by 5 is controlled to be approximately +0.5°C. Therefore, in the second operation mode, the 0° C. aqueous solution 7 sent from the heat storage tank 6 by the circulation pump 11 is heated to +0°C where the ice cores are sufficiently melted by the heater 22.
.. After being heated to about 5° C., it is cooled to a supercooled state by the evaporator 5 and returned to the heat storage tank 6. Section F in FIG. 3 is the operating portion by the heater 22.

【0013】この実施例では、氷の結晶核が蒸発器5に
流入して凍結することがなく、安定して連続運転を行な
うことができる。さらに、冷凍機1の冷媒の熱により水
または水溶液の加熱をしているため、蒸発器5の冷却能
力が増加する。また、従来装置のろ過器が不要となり循
環ポンプ11の動力の低減が図れ、効率の高い運転が可
能となる。
In this embodiment, ice crystal nuclei do not flow into the evaporator 5 and freeze, allowing stable continuous operation. Furthermore, since the water or aqueous solution is heated by the heat of the refrigerant of the refrigerator 1, the cooling capacity of the evaporator 5 increases. Furthermore, the filter of the conventional device is not required, the power of the circulation pump 11 can be reduced, and highly efficient operation is possible.

【0014】実施例2.実施例1では第1の運転モ−ド
においては、第2流量制御弁23を閉じバイパス回路2
0への冷媒の流入を防いでいるが、図4に示す実施例2
では凝縮器3と加熱器22との間のバイパス回路20に
開閉弁21を設けている。この実施例2によれば第1の
運転モ−ドの時、開閉弁21を閉じてバイパス回路20
への冷媒の流入を防ぐことにより、上記実施例における
効果に加えて、加熱器22内への冷媒の寝込みを防止す
ることができる。
Example 2. In the first embodiment, in the first operation mode, the second flow control valve 23 is closed and the bypass circuit 2 is closed.
Embodiment 2 shown in FIG.
In this case, an on-off valve 21 is provided in a bypass circuit 20 between the condenser 3 and the heater 22. According to this second embodiment, in the first operation mode, the on-off valve 21 is closed and the bypass circuit 20 is closed.
By preventing the refrigerant from flowing into the heater 22, in addition to the effects of the embodiments described above, it is possible to prevent the refrigerant from staying inside the heater 22.

【0015】なお、上記実施例では、加熱器22を循環
ポンプ11と蒸発器5との間に設置したものについて説
明したが、蓄熱槽6と循環ポンプ11との間に設けても
同様の効果がある。
In the above embodiment, the heater 22 is installed between the circulation pump 11 and the evaporator 5, but the same effect can be obtained even if the heater 22 is installed between the heat storage tank 6 and the circulation pump 11. There is.

【0016】また、上記実施例では、第2の運転モード
時に第1流量制御弁4を蒸発器5の出口冷媒が若干過熱
するように制御するものについて説明したが、凝縮器3
の出口冷媒が若干過冷却するように制御してもよい。
Furthermore, in the above embodiment, the first flow control valve 4 is controlled so that the refrigerant at the outlet of the evaporator 5 is slightly overheated in the second operation mode.
may be controlled so that the outlet refrigerant is slightly supercooled.

【0017】また、上記実施例では、加熱器22入口に
第1の温度センサ−24を設けるものについて説明した
が光の透過量等を検知して氷の核を検知してもよい。
Further, in the above embodiment, the first temperature sensor 24 is provided at the entrance of the heater 22, but ice cores may be detected by detecting the amount of light transmitted.

【0018】さらに、上記実施例では過冷却解除手段は
過冷却水溶液の出口近傍に設けられた所定の大きさの氷
塊として説明したが、ステンレス鋼などの金属製の板状
の物などでもよい。
Further, in the above embodiment, the supercooling canceling means is described as an ice block of a predetermined size provided near the outlet of the supercooled aqueous solution, but it may also be a plate-shaped object made of metal such as stainless steel.

【0019】[0019]

【発明の効果】以上のようにこの発明によれば、圧縮機
、凝縮器、第1流量制御弁、及び蒸発器を順次接続して
構成され、水または水に添加物を添加した水溶液を過冷
却する冷凍機、この冷凍機により過冷却された水または
水溶液の過冷却を解除し氷を生成させる過冷却解除手段
、この過冷却解除手段により生成された氷や過冷却水を
蓄える蓄熱槽、この蓄熱槽内の水または水溶液を蒸発器
へ送給して循環させる循環ポンプ、並びにこれらを順に
接続し水または水溶液が循環する循環路を備える氷蓄熱
装置において、一方を凝縮器と第1流量制御弁の間に接
続し、他方を第1流量制御弁と蒸発器の間に接続するバ
イパス回路を設け、このバイパス回路の途中に凝縮器側
から加熱器及び第2流量制御弁を順次接続すると共に、
蓄熱槽から蒸発器に送給される水または水溶液中の氷の
存在を検知する検知手段を備え、水または水溶液を蓄熱
槽から加熱器、蒸発器に順に循環させるように構成した
ことにより、氷の結晶核が蒸発器に流入するのを防止し
て、安定して効率の高い運転が行なえる氷蓄熱装置が得
られる可能がある。
As described above, according to the present invention, the compressor, the condenser, the first flow control valve, and the evaporator are sequentially connected to each other, and it is possible to filtrate water or an aqueous solution of water with additives. A refrigerator for cooling, a supercooling release means for releasing supercooling of water or aqueous solution supercooled by the refrigerator to generate ice, a heat storage tank for storing ice and supercooled water generated by the supercooling release means, In an ice heat storage device equipped with a circulation pump that supplies and circulates the water or aqueous solution in the heat storage tank to the evaporator, and a circulation path that connects these in sequence and circulates the water or aqueous solution, one side is connected to the condenser and the other is connected to the first flow rate. A bypass circuit is provided that is connected between the control valves and the other is connected between the first flow control valve and the evaporator, and a heater and the second flow control valve are connected in sequence from the condenser side in the middle of this bypass circuit. With,
It is equipped with a detection means for detecting the presence of ice in the water or aqueous solution fed from the heat storage tank to the evaporator, and is configured to circulate the water or aqueous solution from the heat storage tank to the heater and the evaporator in order. By preventing the crystal nuclei from flowing into the evaporator, it is possible to obtain an ice heat storage device that can operate stably and with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の実施例1による氷蓄熱装置を示す構
成図である。
FIG. 1 is a configuration diagram showing an ice heat storage device according to a first embodiment of the present invention.

【図2】この発明の実施例1の第1の運転モード時の冷
凍機の動作を表す圧力ーエンタルピー線図である。
FIG. 2 is a pressure-enthalpy diagram showing the operation of the refrigerator in the first operation mode according to the first embodiment of the present invention.

【図3】この発明の実施例1の第2の運転モード時の冷
凍機の動作を表す圧力ーエンタルピー線図である。
FIG. 3 is a pressure-enthalpy diagram showing the operation of the refrigerator in the second operation mode according to the first embodiment of the present invention.

【図4】この発明の実施例2による氷蓄熱装置を示す構
成図である。
FIG. 4 is a configuration diagram showing an ice heat storage device according to a second embodiment of the present invention.

【図5】従来の氷蓄熱装置を示す構成図である。FIG. 5 is a configuration diagram showing a conventional ice heat storage device.

【図6】従来の氷蓄熱装置の冷凍機の動作を表す圧力ー
エンタルピー線図である。
FIG. 6 is a pressure-enthalpy diagram showing the operation of a refrigerator of a conventional ice heat storage device.

【符号の説明】[Explanation of symbols]

1  冷凍装置 2  圧縮機 3  凝縮器 4  第1流量制御弁 5  蒸発器 6  蓄熱槽 7  水溶液 8  氷 9  過冷却解除手段 11  循環ポンプ 20  バイパス回路 22  加熱器 23  第2流量制御弁 24  氷検出手段 1 Refrigeration equipment 2 Compressor 3 Condenser 4 First flow control valve 5 Evaporator 6 Heat storage tank 7 Aqueous solution 8 Ice 9 Supercooling release means 11 Circulation pump 20 Bypass circuit 22 Heater 23 Second flow control valve 24 Ice detection means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機、凝縮器、第1流量制御弁、及
び蒸発器を順次接続して構成され、水または水に添加物
を添加した水溶液を過冷却する冷凍機、この冷凍機によ
り過冷却された上記水または水溶液の過冷却を解除し氷
を生成させる過冷却解除手段、この過冷却解除手段によ
り生成された氷や過冷却水を蓄える蓄熱槽、この蓄熱槽
内の水または水溶液を上記蒸発器へ送給して循環させる
循環ポンプ、並びにこれらを順に接続し上記水または水
溶液が循環する循環路を備える氷蓄熱装置において、一
方を上記凝縮器と第1流量制御弁の間に接続し、他方を
第1流量制御弁と上記蒸発器の間に接続するバイパス回
路を設け、このバイパス回路の途中に上記凝縮器側から
加熱器及び第2流量制御弁を順次接続すると共に、上記
蓄熱槽から上記蒸発器に送給される上記水または水溶液
中の氷の存在を検知する検知手段を備え、上記水または
水溶液を上記蓄熱槽から上記加熱器、上記蒸発器に順に
循環させるように構成したことを特徴とする氷蓄熱装置
Claim 1: A refrigerator configured by sequentially connecting a compressor, a condenser, a first flow control valve, and an evaporator, and supercools water or an aqueous solution of water with additives; A supercooling release means that releases the supercooling of the cooled water or aqueous solution to generate ice, a heat storage tank that stores the ice or supercooled water generated by the supercooling release means, and a heat storage tank that stores the water or aqueous solution in the heat storage tank. An ice heat storage device comprising a circulation pump that supplies and circulates the water or aqueous solution to the evaporator, and a circulation path that connects these in sequence and circulates the water or aqueous solution, one of which is connected between the condenser and the first flow control valve. A bypass circuit is provided in which the other side is connected between the first flow control valve and the evaporator, and a heater and a second flow control valve are sequentially connected from the condenser side to the middle of this bypass circuit, and the heat storage The apparatus includes a detection means for detecting the presence of ice in the water or aqueous solution fed from the tank to the evaporator, and is configured to circulate the water or aqueous solution from the heat storage tank to the heater and the evaporator in order. An ice heat storage device characterized by:
JP3019714A 1991-02-13 1991-02-13 Ice storage device Expired - Fee Related JP2827524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3019714A JP2827524B2 (en) 1991-02-13 1991-02-13 Ice storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3019714A JP2827524B2 (en) 1991-02-13 1991-02-13 Ice storage device

Publications (2)

Publication Number Publication Date
JPH04263723A true JPH04263723A (en) 1992-09-18
JP2827524B2 JP2827524B2 (en) 1998-11-25

Family

ID=12006963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3019714A Expired - Fee Related JP2827524B2 (en) 1991-02-13 1991-02-13 Ice storage device

Country Status (1)

Country Link
JP (1) JP2827524B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347475A (en) * 1991-05-22 1992-12-02 Mitsubishi Heavy Ind Ltd Overcooling type ice making device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222372A (en) * 1990-04-18 1992-08-12 Daikin Ind Ltd Heat accumulating type air conditioning apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222372A (en) * 1990-04-18 1992-08-12 Daikin Ind Ltd Heat accumulating type air conditioning apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347475A (en) * 1991-05-22 1992-12-02 Mitsubishi Heavy Ind Ltd Overcooling type ice making device

Also Published As

Publication number Publication date
JP2827524B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
CN104350338B (en) Aircondition
JP5984965B2 (en) Air conditioning and hot water supply complex system
JP5809872B2 (en) Heating device
CN101589277A (en) Refrigeration device
KR101095483B1 (en) Heat pump heating and cooling system using sea water source
CN108413661A (en) A kind of water cooling oil cooling but circulating frozen system
JP2021156506A (en) Water cooler
JP2005331183A (en) Freezer
JPH04263723A (en) Ice heat accumulator
JPH04263722A (en) Ice heat accumulator
JP2768020B2 (en) Ice storage device
JPH04263721A (en) Ice heat accumulator
JP5260684B2 (en) Refrigeration circuit
JP2002022337A (en) Liquid temperature controller of cooler
JP2566078B2 (en) Ice heat storage device
JPS6399442A (en) Defrosting controller of air conditioner
JP2006275414A (en) Operation control method of water cooler, and water cooler
JPH06193921A (en) Supercooling type ice heat storage apparatus
JP2006112652A (en) Ice making method and device for heat storage
JP3788391B2 (en) Ice heat storage device
JP2000074469A (en) Cooling and heating device
JPH09145104A (en) Dynamic ice heat storing device
JPH04306471A (en) Ice heat accumulating device
JP2002115873A (en) Heat exchange system
JPH10170086A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees