JPH0426333B2 - - Google Patents

Info

Publication number
JPH0426333B2
JPH0426333B2 JP21857784A JP21857784A JPH0426333B2 JP H0426333 B2 JPH0426333 B2 JP H0426333B2 JP 21857784 A JP21857784 A JP 21857784A JP 21857784 A JP21857784 A JP 21857784A JP H0426333 B2 JPH0426333 B2 JP H0426333B2
Authority
JP
Japan
Prior art keywords
ultraviolet
composition
energy
curing
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21857784A
Other languages
Japanese (ja)
Other versions
JPS6198740A (en
Inventor
Ikuzo Usami
Shimizu Oota
Keiji Kamimura
Sakae Amamya
Hiroyuki Mita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThreeBond Co Ltd
Original Assignee
ThreeBond Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThreeBond Co Ltd filed Critical ThreeBond Co Ltd
Priority to JP21857784A priority Critical patent/JPS6198740A/en
Publication of JPS6198740A publication Critical patent/JPS6198740A/en
Publication of JPH0426333B2 publication Critical patent/JPH0426333B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の属する技術分野〕 本発明は例えばエポキシ樹脂およびカチオン重
合触媒からなる紫外線硬化型樹脂組成物の硬化処
理方法に係り、特に注型ないしは塗布工程後の紫
外線エネルギー照射による硬化処理工程を省略し
うる紫外線硬化型樹脂組成物の硬化処理方法に関
する。 〔従来技術とその問題点〕 エポキシ樹脂組成物等のカチオン重合系光硬化
型樹脂組成物は紫外線等の光エネルギー照射によ
り重合硬化するため、これを注型により所望の形
状に加工し、あるいは塗布により所望の施工部位
に適用し、次いで紫外線エネルギーを照射して、
酸化処理することにより各種成形品、皮膜、接
着、シール剤等の用途に広く利用されている。 この種の組成物の硬化処理に当り、従来、例え
ば成形品を製造する場合には前記組成物を成形型
に注型して所望の形状に加工の後、これに紫外線
エネルギーを照射することにより硬化させてお
り、また、皮膜を得る場合には組成物を塗布機に
より所望の施工部位に塗布の後、この塗膜に紫外
線エネルギーを照射することにより硬化させてお
り、さらに接着シール剤を得る場合には組成物を
吐出機械の吐出口から所望の施工部位(溝等)に
注型して肉盛し、この肉盛にやはり前述と同様、
紫外線を照射することにより硬化を行つていた。 しかし、前述の硬化方法はいずれも組成物を所
望の形状に注型の後、あるいは所望の施工部位に
塗布の後、紫外線エネルギーの照射を施すもので
あるので、注型品が複雑な形状であつて紫外線エ
ネルギー照射の受けられない個所を有する場合に
はその個所の組成物が硬化されず、また塗布個所
が紫外線エネルギーの照射を受けられないような
隠れた場所の場合にはその個所の組成物が硬化さ
れず、したがつて、これらのいずれの場合にも前
述の硬化方法は適用不可能であつた。 〔発明の目的〕 本発明の目的は注型ないしは塗布後の紫外線エ
ネルギー照射による硬化処理を行わずに硬化し
得、このため紫外線エネルギーの照射を受けられ
ないような複雑な形状の注型品であつても、ある
いは紫外線エネルギーの照射を受けられないよう
な隠れた場所の塗膜であつても容易に硬化する、
前述の公知技術に存する欠点を改良した紫外線硬
化型樹脂組成物の硬化処理方法を提供することに
ある。 〔発明の要点〕 前述の目的を達成するため、本発明によれば、
紫外線硬化型樹脂組成物を紫外線エネルギーの照
射により重合硬化するに当り、前記組成物の所望
の用途に適用するための注型ないしは塗布工程よ
りも以前の段階で前記組成物に紫外線エネルギー
を万遍無く照射してあらかじめ重合反応を惹起さ
せておくことを特徴とする。 〔発明の実施例〕 以下、本発明を第1図を用いて説明する。第1
図は本発明方法を実施する装置の構成図である。
1は紫外線硬化型樹脂組成物Aの装填された石英
管またはガラス管であつて、先端に吐出口2を有
するとともに、吐出口2に至る途中の部分が細管
1aとなつており、ここで後述のように紫外線エ
ネルギーが組成物Aに照射される。照射の際には
石英管またはガラス管は細管1aである方が組成
物Aが全体にわたつて紫外線エネルギーにより万
遍なく照射されやすくなるので好ましい。また、
細管1aの一方の側辺には紫外線ランプ3が配置
され、かつこの紫外線ランプ3を囲むようにアル
ミ製反射板4が配置され、さらに細管1aの他方
の側辺であつて紫外線ランプ3と対向する位置に
もアルミ製反射板5が配置され、紫外線ランプ3
からの紫外線エネルギーが効率よく細管1aに照
射されるように構成されている。 上述の装置を用いて、樹脂組成物Aを石英管ま
たはガラス管1に通過させれば、組成物Aは吐出
口2から吐出される以前の段階、すなわち、組成
物Aが所望の形状に注型され、あるいは所望の施
工部位に塗布される以前の段階で全体にわたり万
遍無く、かつ容易に紫外線エネルギーの照射を受
けて重合反応が惹起されるが、吐出口2から吐出
されるときにはまだ液状を保つており、ここで所
望の形状に注型され、あるいは所望の施工部位に
塗布され、その後紫外線エネルギーの照射なしに
伝播重合して硬化される。 上述のとおり、本発明では従来のように注型後
ないしは塗布後の紫外線エネルギー照射による重
合硬化処理を必要とせず、したがつて紫外線エネ
ルギーの照射を受けられないような複雑な形状の
注型品であつても、あるいは紫外線エネルギーの
照射を受けられないような隠れた場所の塗膜であ
つて容易に硬化する。 本発明に用いられる樹脂はエポキシ樹脂であ
る。これは従来公知の芳香族エポキシ樹脂、環状
脂肪族エポキシ樹脂、脂肪族エポキシ樹脂等が挙
げられる。 ここで、芳香族エポキシ樹脂として特に好まし
いものは、少なくとも1個の芳香族核を有する多
価フエノールまたはそのアルキレンオキサイド付
加体のポリグリシジルエーテルであつて、例えば
ビスフエノールAまたはそのアルキレンオキサイ
ド付加体とエピクロルヒドリジンとの反応によつ
て製造されるグリシジルエーテル、エポキシノボ
ラツク樹脂が挙げられる。また環状脂肪族エポキ
シ樹脂として特に好ましいものは少なくとも1個
の脂環を有する多価アルコールのポリグリシジル
エーテルまたはシクロヘキセンまたはシクロペン
テン環含有化合物を過酸化水素、過酢酸等の適当
な酸化剤でエポキシ化することによつて得られる
シクロヘキセンオキサイドまたはシクロペンテン
オキサイド含有化合物である。ポリグリシジルエ
ーテルの代表例としては、水素添加ビスフエノー
ルAまたはそのアルキレンオキサイド付加体とエ
ピクロヒドリンとの反応によつて製造されるグリ
シジルエーテルが挙げられる。また、シクロヘキ
センオキサイドまたはシクロペンテンオキサイド
含有化合物の代表例としては下記の式で表わされ
るものが挙げられる。 さらに脂肪族エポキシ樹脂として特に好ましい
ものは脂肪族多価アルコールまたはそのアルキレ
ンオキサイド付加物のポリグリシジルエーテルが
あり、その代表例としては、1,4−ブタンジオ
ールのジグリシジルエーテル、1,6−ヘキサン
ジオールのジグリシジルエーテル、グリセリンの
トリグリシジエーテル、トリメチロールプロパン
のトリグリシジルエーテル、ポリエチレングリコ
ールのジグリシジルエーテル、ポリプロピレング
リコールのジグリシジルエーテル、エチレングリ
コール、プロピレングリコール、グリセリン等の
脂肪族多価アルコールに1種または2種以上のア
ルキレンオキサイド(エチレンオキサイド、プロ
ピレンオキサイド)を付加することにより得られ
るポリエーテルポリオールのポリグリシジルエー
テルが挙げられる。さらに脂肪族高級アルコール
のモノグリシジルエーテルやフエノール、クレゾ
ール、ブチルフエノールまたはこれらにアルキレ
ンオキサイドを付加することにより得られるポリ
エーテルアルコールのモノグリシジルエーテル等
も希釈剤として配合する事ができる。 本発明に用いられるエポキシ系樹脂はこれらの
芳香族エポキシ樹脂、環状脂肪族エポキシ樹脂ま
たは脂肪族エポキシ樹脂を単独でも使用すること
ができるが、所望の性能に応じて適当に配合する
ことが望ましい。 本発明に用いられるカチオン重合触媒としては
照射により重合開始能のあるルイス酸を放出する
オニウム塩である複塩の一群のものである。かか
る化合物は基本的には一般式〔R1aR2bR3cR4dZ〕
+m〔MXo+n-m〔式中カチオンはオニウムであ
り、ZはN≡N、S、Se、Te、P、As、Sb、
Bi、O、ハロゲン(たとえばI、Br、Cl)であ
り、R1、R2、R3、R4は同一でも異なつてもよい
有機の基である。a、b、c、dはそれぞれ0〜
3の整数であつてa+b+c+dはZの価数に等
しい。Mはハロゲン化物錯体の中心原子である金
属又は半金属(metalloid)であり、B、P、
As、Sb、Fe、Sn、Bi、Al、Ca、In、Ti、Zn、
So、V、Cr、Mn、Co等である。Xはハロゲン
であり、mはハロゲン化物錯体イオンの正味の電
荷であり、nはハロゲン化物錯体イオン中のハロ
ゲン原子の数である。〕で表わされる。 この種のカチオン重合触媒として具体的にはト
リアリールスルホニウム塩あるいはジアリールヨ
ードニウム塩が多く用いられる。これらは紫外線
照射の下で分解してエポキシ樹脂の重合または架
橋を引き起しうるものであつて、前者は一般式 を有する化合物であつて、式中、MはSb、P、
As、等であり、Xはハロゲン元素であり、nは
Mによつて変化しうる整数であり、例えばMが
SbでXがFの場合、nは6である。 また、後者は一般式 を有する化合物であつて、M、X、nは前者と同
じである。 実施例 1 紫外線硬化型エポキシ樹脂組成物として次の配
合物を調整した。 配合物 1 *1 エピコート828 100(重量部) *3 UVE−1014 0.1( 〃 ) 配合物 2 *1 エピコート828 100(重量部) *2 KBM202 4( 〃 ) *3 UVE−1014 0.1( 〃 ) *(1) ビスフエノールA型エポキシ樹脂(シエル
化学社製) *(2) ジフエニルジメトキシシラン(信越化学工
業社製) *(3) トリアリールスルホニウム塩のプロピレン
カーボネート50%溶液(GE社製) 上記配合物1、2をそれぞれ第1図の石英管1
(細管1aの直径1mm、石英管壁の厚さ0.3mm)中
に圧入して通過せしめ、細管1aの部分で紫外線
ランプ3((株)オーク製作所製ハンデー#300型機。
出力300Wのランプを使用。)からの紫外線エネル
ギーを約40mW/cm2のエネルギー量で10秒間照射
の後、吐出口2から20〓×10mmのポリエチレン製
容器に吐出注型し、常温で暗所にて放置し、その
硬化状況を観察し、表−1の結果を得た。 なお、エネルギー量は(株)オーク製作所製、紫外
線照度計M−01、UV−25センサーにより測定し
た。このエネルギー量は吐出速度を調整すること
により定めた。
[Technical field to which the invention pertains] The present invention relates to a method for curing an ultraviolet curable resin composition comprising, for example, an epoxy resin and a cationic polymerization catalyst, and in particular, a method for curing an ultraviolet curable resin composition comprising, for example, an epoxy resin and a cationic polymerization catalyst. The present invention relates to a method for curing a UV curable resin composition. [Prior art and its problems] Cationic polymerization type photocurable resin compositions such as epoxy resin compositions are polymerized and cured by irradiation with light energy such as ultraviolet rays, so they are processed into a desired shape by casting or coated. is applied to the desired construction area, and then irradiated with ultraviolet energy,
After oxidation treatment, it is widely used for various molded products, coatings, adhesives, sealants, etc. Conventionally, in the curing treatment of this type of composition, for example, when manufacturing a molded article, the composition is cast into a mold and processed into a desired shape, and then irradiated with ultraviolet energy. In addition, when obtaining a film, the composition is applied to the desired construction site using a coating machine, and then this coating film is cured by irradiating ultraviolet energy to obtain an adhesive sealant. In this case, the composition is poured into the desired construction area (grooves, etc.) from the discharge port of the dispensing machine and overlaid, and the same as described above is applied to this overlay.
It was cured by irradiating it with ultraviolet light. However, in all of the above-mentioned curing methods, the composition is cast into the desired shape or applied to the desired area and then irradiated with ultraviolet energy, so it is difficult for the cast product to have a complex shape. If there is a part that cannot be irradiated with ultraviolet energy, the composition in that part will not be cured, and if the applied part is a hidden place that cannot be irradiated with ultraviolet energy, the composition in that part will not be cured. The material was not cured and therefore the above-mentioned curing method was not applicable in either of these cases. [Object of the Invention] The object of the present invention is to cure cast products with complex shapes that cannot be irradiated with ultraviolet energy and that can be cured without undergoing curing treatment by irradiation with ultraviolet energy after casting or coating. It cures easily even if the coating is in a hidden location where it cannot be exposed to UV energy.
The object of the present invention is to provide a method for curing an ultraviolet curable resin composition, which improves the drawbacks of the above-mentioned known techniques. [Summary of the Invention] In order to achieve the above-mentioned object, according to the present invention,
When polymerizing and curing an ultraviolet curable resin composition by irradiating it with ultraviolet energy, the composition is uniformly irradiated with ultraviolet energy at a stage prior to the casting or coating process for applying the composition to the desired use. It is characterized in that the polymerization reaction is induced in advance by irradiation without any radiation. [Embodiments of the Invention] The present invention will be described below with reference to FIG. 1st
The figure is a block diagram of an apparatus for carrying out the method of the present invention.
Reference numeral 1 is a quartz tube or glass tube filled with ultraviolet curable resin composition A, which has a discharge port 2 at its tip, and a portion on the way to the discharge port 2 is a thin tube 1a, which will be described later. Composition A is irradiated with ultraviolet energy as follows. At the time of irradiation, it is preferable that the quartz tube or the glass tube be a thin tube 1a, since the composition A can be easily irradiated evenly over the entire area with ultraviolet energy. Also,
An ultraviolet lamp 3 is arranged on one side of the thin tube 1a, and an aluminum reflector 4 is placed so as to surround this ultraviolet lamp 3, and an aluminum reflector 4 is placed on the other side of the thin tube 1a, facing the ultraviolet lamp 3. An aluminum reflector plate 5 is also placed at the position where the ultraviolet lamp 3
The structure is such that the ultraviolet energy from the tube is efficiently irradiated onto the thin tube 1a. When the resin composition A is passed through the quartz tube or glass tube 1 using the above-mentioned device, the composition A is poured into a desired shape before being discharged from the discharge port 2. Before it is molded or applied to the desired construction site, it is uniformly and easily irradiated with ultraviolet energy to induce a polymerization reaction, but when it is discharged from the discharge port 2, it is still in a liquid state. It is then cast into the desired shape or applied to the desired application site, and then cured by propagation polymerization without irradiation with ultraviolet energy. As mentioned above, the present invention does not require polymerization curing treatment by irradiation with ultraviolet energy after casting or coating as in the past, and therefore cast products with complex shapes that cannot be irradiated with ultraviolet energy. It cures easily even if the coating is in a hidden location where it cannot be exposed to ultraviolet energy. The resin used in the present invention is an epoxy resin. Examples of this include conventionally known aromatic epoxy resins, cycloaliphatic epoxy resins, aliphatic epoxy resins, and the like. Here, particularly preferable aromatic epoxy resins are polyglycidyl ethers of polyvalent phenols having at least one aromatic nucleus or their alkylene oxide adducts, such as bisphenol A or its alkylene oxide adducts. Examples include glycidyl ethers and epoxy novolac resins produced by reaction with epichlorohydridine. Particularly preferable cycloaliphatic epoxy resins include polyglycidyl ethers of polyhydric alcohols having at least one alicyclic ring, or compounds containing cyclohexene or cyclopentene rings, which are epoxidized with a suitable oxidizing agent such as hydrogen peroxide or peracetic acid. cyclohexene oxide or cyclopentene oxide containing compounds. Typical examples of polyglycidyl ethers include glycidyl ethers produced by reacting hydrogenated bisphenol A or its alkylene oxide adduct with epichlorohydrin. Furthermore, representative examples of cyclohexene oxide or cyclopentene oxide-containing compounds include those represented by the following formula. Particularly preferable aliphatic epoxy resins are aliphatic polyhydric alcohols or their alkylene oxide adducts, polyglycidyl ethers, representative examples of which are diglycidyl ether of 1,4-butanediol and 1,6-hexane. 1 for aliphatic polyhydric alcohols such as diglycidyl ether of diol, triglycidyl ether of glycerin, triglycidyl ether of trimethylolpropane, diglycidyl ether of polyethylene glycol, diglycidyl ether of polypropylene glycol, ethylene glycol, propylene glycol, and glycerin. Examples include polyglycidyl ethers of polyether polyols obtained by adding a species or two or more alkylene oxides (ethylene oxide, propylene oxide). Furthermore, monoglycidyl ethers of aliphatic higher alcohols, phenol, cresol, butylphenol, or monoglycidyl ethers of polyether alcohols obtained by adding alkylene oxide to these may also be blended as diluents. As the epoxy resin used in the present invention, these aromatic epoxy resins, cycloaliphatic epoxy resins, or aliphatic epoxy resins can be used alone, but it is desirable to blend them appropriately depending on the desired performance. The cationic polymerization catalyst used in the present invention is a group of double salts, which are onium salts that release Lewis acids capable of initiating polymerization upon irradiation. Such compounds basically have the general formula [R 1 aR 2 bR 3 cR 4 dZ]
+m [MX o+n ] -m [In the formula, the cation is onium, Z is N≡N, S, Se, Te, P, As, Sb,
Bi, O, halogen (for example, I, Br, Cl), and R 1 , R 2 , R 3 and R 4 are organic groups which may be the same or different. a, b, c, d are each 0~
A+b+c+d is an integer of 3 and is equal to the valence of Z. M is a metal or metalloid that is the central atom of the halide complex, B, P,
As, Sb, Fe, Sn, Bi, Al, Ca, In, Ti, Zn,
These include So, V, Cr, Mn, Co, etc. X is a halogen, m is the net charge of the halide complex ion, and n is the number of halogen atoms in the halide complex ion. ]. Specifically, triarylsulfonium salts or diaryliodonium salts are often used as this type of cationic polymerization catalyst. These are substances that can decompose under ultraviolet irradiation and cause polymerization or crosslinking of epoxy resins; A compound having the formula, where M is Sb, P,
As, etc., X is a halogen element, n is an integer that can vary depending on M, for example,
When X is F in Sb, n is 6. Also, the latter is a general formula , where M, X, and n are the same as the former. Example 1 The following formulation was prepared as an ultraviolet curable epoxy resin composition. Compound 1 *1 Epicote 828 100 (parts by weight) *3 UVE-1014 0.1 (〃) Compound 2 *1 Epicote 828 100 (parts by weight) *2 KBM202 4 (〃) *3 UVE-1014 0.1 (〃) * (1) Bisphenol A type epoxy resin (manufactured by Schiel Chemical) *(2) Diphenyldimethoxysilane (manufactured by Shin-Etsu Chemical) *(3) 50% solution of triarylsulfonium salt in propylene carbonate (manufactured by GE) Above Mixtures 1 and 2 were placed in quartz tube 1 in Figure 1, respectively.
(The diameter of the thin tube 1a is 1 mm, and the thickness of the quartz tube wall is 0.3 mm).
Uses a lamp with an output of 300W. ) for 10 seconds with an energy amount of approximately 40 mW/cm 2 , and then discharged from the discharge port 2 into a 20 mm x 10 mm polyethylene container and left in a dark place at room temperature to harden. The situation was observed and the results shown in Table 1 were obtained. The energy amount was measured using an ultraviolet luminometer M-01 manufactured by Oak Seisakusho Co., Ltd. and a UV-25 sensor. This amount of energy was determined by adjusting the discharge speed.

【表】 尚、比較として、配合物を同エネルギー量で60
秒照射し完全硬化させたものの24時間後の硬度を
測定し、結果はNo.1が74、No.2が77であつた。従
つて、上記方法により吐出した樹脂は、24時間後
の硬化状態は完全であるとみなされる。 実施例 2 吐出速度を15秒間照射されるよう調整する事を
除いては、実施例1と同様に実験を行い表−2の
結果を得た。
[Table] For comparison, the formulation with the same energy content is 60
After 24 hours of irradiation and complete hardening, the hardness was measured, and the hardness was 74 for No. 1 and 77 for No. 2. Therefore, the resin discharged by the above method is considered to be completely cured after 24 hours. Example 2 An experiment was conducted in the same manner as in Example 1, except that the discharge speed was adjusted so that the irradiation was performed for 15 seconds, and the results shown in Table 2 were obtained.

【表】 この場合、吐出後のオープンタイムは一層短か
くなつたが、最終硬度には実施例1の場合とほと
んど差がなく、硬度は完全であつた。 実施例 3 実施例1の配合物No.2を用いて、実施例1のポ
リエチレン容器を金型(離型処理済)に替えた以
外は実施例1と同様の方法で前記金型へ注型し
た。30分後に金型をとりはずし硬化物を得た。 比較例として同配合物を金型に注入の後、従来
の硬化方法に従い注入口より同じ照度の紫外線を
5分間照射し、30分後金型をとりはずし硬化物を
観察した。 得られた硬化物は前者の本実施例の場合、金型
通りの完全な形状の硬化物が得られたが、後者の
比較例の場合、紫外線のあたる部分のみが硬化
し、影となる部分はほとんど未硬化であつた。 実施例 4 紫外線硬化型エポキシ樹脂組成物として次の配
合物を調整して、接着剤として有効であるかどう
か検討した。 *(7) ER−200C 20重量部 *(8) エピコート#815 80 〃 上記配合物を実施例1と同様に紫外線エネルギ
ー照射の後、それぞれ3片の鉄およびラワン材の
試験片上に吐出して重ね合わせ、表−3に示され
る各時間放置した。その後、各試料について引張
剪断試験を行ない、結果をそれぞれ表−3に示し
た。 *(7) 紫外線硬化型エポキシ樹脂配合物(旭電化
工業社製) *(8) ビスフエノールA型エポキシ樹脂(シエル
化学社製)
[Table] In this case, the open time after discharge was even shorter, but the final hardness was almost the same as in Example 1, and the hardness was perfect. Example 3 Using formulation No. 2 of Example 1, it was poured into the mold in the same manner as in Example 1, except that the polyethylene container of Example 1 was replaced with a mold (released). did. After 30 minutes, the mold was removed to obtain a cured product. As a comparative example, the same compound was injected into a mold and then irradiated with ultraviolet rays of the same intensity from the injection port for 5 minutes according to the conventional curing method. After 30 minutes, the mold was removed and the cured product was observed. In the case of the former example, the obtained cured product had the perfect shape as the mold, but in the case of the latter comparative example, only the part exposed to ultraviolet rays was cured, leaving the part that was in the shadow. was almost uncured. Example 4 The following formulation was prepared as an ultraviolet curable epoxy resin composition, and its effectiveness as an adhesive was investigated. *(7) ER-200C 20 parts by weight *(8) Epikote #815 80 The above formulation was irradiated with ultraviolet energy in the same manner as in Example 1, and then discharged onto three pieces of iron and three lauan test pieces. The samples were stacked and left for the various times shown in Table 3. Thereafter, a tensile shear test was conducted on each sample, and the results are shown in Table 3. *(7) Ultraviolet curable epoxy resin compound (manufactured by Asahi Denka Kogyo Co., Ltd.) *(8) Bisphenol A type epoxy resin (manufactured by Ciel Chemical Co., Ltd.)

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明にかかる硬化処理方法に
よれば、組成物に注型ないしは塗布工程の以前の
段階で紫外線エネルギーを万遍なく照射するよう
にし、従来のように注型ないしは塗布後の紫外線
エネルギー照射による重合硬化処理を省略したか
ら、紫外線エネルギーの照射を受けられないよう
な複雑な形状の注型品であつても、あるいは紫外
線エネルギーの照射を受けられないような隠れた
場所の塗膜であつても容易に硬化しうる。
As described above, according to the curing treatment method of the present invention, the composition is uniformly irradiated with ultraviolet energy before the casting or coating process, and unlike the conventional method, the composition is irradiated with ultraviolet energy evenly before the casting or coating process. Because the polymerization curing process using energy irradiation is omitted, it is possible to coat cast products with complex shapes that cannot be exposed to UV energy irradiation, or in hidden places that cannot be exposed to UV energy irradiation. It can be easily cured even if it is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する装置の一具体的
構成図を示す。 1……石英管ガラス管、2……吐出口、3……
紫外線ランプ、4,5……反射板、1a……細
管、A……樹脂組成物。
FIG. 1 shows a specific configuration diagram of an apparatus for carrying out the method of the present invention. 1...Quartz tube glass tube, 2...Discharge port, 3...
Ultraviolet lamp, 4, 5... Reflection plate, 1a... Capillary tube, A... Resin composition.

Claims (1)

【特許請求の範囲】 1 紫外線硬化型樹脂組成物を紫外線エネルギー
の照射により重合硬化するに当り、前記組成物の
所望の用途に適用するための注型ないしは塗布工
程よりも以前の段階で前記組成物に紫外線エネル
ギーを万遍無く照射してあらかじめ重合反応を惹
起させておくことを特徴とする紫外線硬化型樹脂
組成物の硬化処理方法。 2 特許請求の範囲第1項に記載の処理方法にお
いて、紫外線硬化型樹脂組成物がエポキシ樹脂と
カチオン重合触媒との混合物である方法。
[Scope of Claims] 1. When polymerizing and curing an ultraviolet curable resin composition by irradiation with ultraviolet energy, the composition may be cured at a stage prior to a casting or coating process for applying the composition to a desired use. A method for curing an ultraviolet curable resin composition, which comprises irradiating an object with ultraviolet energy evenly to induce a polymerization reaction in advance. 2. The treatment method according to claim 1, wherein the ultraviolet curable resin composition is a mixture of an epoxy resin and a cationic polymerization catalyst.
JP21857784A 1984-10-19 1984-10-19 Method of curing treatment of ultraviolet-curing type resin composition Granted JPS6198740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21857784A JPS6198740A (en) 1984-10-19 1984-10-19 Method of curing treatment of ultraviolet-curing type resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21857784A JPS6198740A (en) 1984-10-19 1984-10-19 Method of curing treatment of ultraviolet-curing type resin composition

Publications (2)

Publication Number Publication Date
JPS6198740A JPS6198740A (en) 1986-05-17
JPH0426333B2 true JPH0426333B2 (en) 1992-05-07

Family

ID=16722125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21857784A Granted JPS6198740A (en) 1984-10-19 1984-10-19 Method of curing treatment of ultraviolet-curing type resin composition

Country Status (1)

Country Link
JP (1) JPS6198740A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3702999C2 (en) * 1987-02-02 2003-03-06 Siemens Ag Apparatus for processing UV-curable reaction resin compositions and their use
US8197911B2 (en) 2007-06-08 2012-06-12 Toyota Motor Engineering & Manufacturing North America, Inc. Method of applying polymer coating to a substrate
JP2015512331A (en) 2012-03-22 2015-04-27 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Method and apparatus for producing cured coating film
US9339832B2 (en) 2012-03-22 2016-05-17 Basf Se Spraygun for producing cured coating films and methods of use thereof

Also Published As

Publication number Publication date
JPS6198740A (en) 1986-05-17

Similar Documents

Publication Publication Date Title
JP3161583B2 (en) Active energy ray-curable composition
TW467924B (en) Novel resin-curing process enabling the actinic radiation cure of resins containing shieldings against actinic radiations; composition for the process, moldings, and molding process
JP2679586B2 (en) Active energy ray-curable composition
JP4828063B2 (en) UV curable composition
DE2559718A1 (en) PROCESS FOR CATIONIC POLYMERIZATION OF EPOXY RESIN
JP2001040068A (en) Photopolymerizable composition
JPS6311944B2 (en)
JPH0413374B2 (en)
JPH055006A (en) Cationically polymerizable organic material composition and method for stabilizing the same composition
JPH06102716B2 (en) Delayed curing type UV curable epoxy resin composition
JPH11140279A (en) Active energy ray-curing type composition
CN108137789A (en) For the curable adhesive composition of flexible substrates
DE19534594B4 (en) Cationic curing, flexible epoxy resin compositions and their use for applying thin layers
JPH0762082A (en) Active-energy-ray-curable composition
JPH0426333B2 (en)
JPS61136563A (en) Photo-curing adhesive composition and bonding using same
JPH07118369A (en) Uv-curable resin composition
JP3203438B2 (en) New resin systems at lower molding temperatures
US5057551A (en) Adhesives that continue to harden in darkness after photoinitiation
JPS6121126A (en) Ultraviolet-curable resin composition
JPH07173279A (en) Production of cured material
JP3402520B2 (en) Energy ray-curable composition and cured product thereof
JP4837187B2 (en) Active energy ray-curable resin composition
JPS639529B2 (en)
JPS6160720A (en) Resin composition