JPH04262853A - Manufacture of die for plastic forming - Google Patents
Manufacture of die for plastic formingInfo
- Publication number
- JPH04262853A JPH04262853A JP2209891A JP2209891A JPH04262853A JP H04262853 A JPH04262853 A JP H04262853A JP 2209891 A JP2209891 A JP 2209891A JP 2209891 A JP2209891 A JP 2209891A JP H04262853 A JPH04262853 A JP H04262853A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- zinc
- casting
- copper
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000004033 plastic Substances 0.000 title claims abstract description 8
- 238000005266 casting Methods 0.000 claims abstract description 21
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 17
- 239000011701 zinc Substances 0.000 claims abstract description 17
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 16
- 239000000956 alloy Substances 0.000 claims abstract description 16
- 239000010949 copper Substances 0.000 claims abstract description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 5
- 239000011777 magnesium Substances 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 238000012805 post-processing Methods 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052790 beryllium Inorganic materials 0.000 claims description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 239000000110 cooling liquid Substances 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 4
- 239000000498 cooling water Substances 0.000 abstract 1
- 150000001879 copper Chemical class 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 8
- 238000000465 moulding Methods 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 238000003754 machining Methods 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000010137 moulding (plastic) Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- 229910000975 Carbon steel Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000010962 carbon steel Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000007847 structural defect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- -1 Polypropylene Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 102220259718 rs34120878 Human genes 0.000 description 1
- 238000007528 sand casting Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、ピンホール、引け巣
等の鋳造欠陥の発生が少なく、強度や硬度等の機械的物
性に優れた、プラスチック成形用金型の製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a mold for plastic molding which has fewer casting defects such as pinholes and shrinkage cavities and which has excellent mechanical properties such as strength and hardness.
【0002】0002
【従来の技術】従来、プラスチック成形用金型、特に射
出成形用金型の素材としては、S55C系の機械構造用
炭素鋼が汎用されていた。この機械構造用炭素鋼は、強
度、溶接性、しぼ加工性、磨き加工性等が良好であるば
かりでなく、被削性にも優れており、かつ、金型用素材
の中では比較的安価であるという特徴を有しているから
である。一方、特に鏡面仕上げを必要とする金型におい
ては、プレハードン鋼等が用いられていた。BACKGROUND OF THE INVENTION Conventionally, S55C carbon steel for mechanical structures has been widely used as a material for plastic molding molds, particularly injection molding molds. This carbon steel for machine structures not only has good strength, weldability, graining workability, polishing workability, etc., but also excellent machinability, and is relatively inexpensive among mold materials. This is because it has the following characteristics. On the other hand, pre-hardened steel and the like have been used especially in molds that require a mirror finish.
【0003】近年、事務用機器等の各種機器のハウジン
グや構成部材、自動車構成部材等がプラスチック化され
るとともに、これらの性能の向上やデザインの変更に伴
い、頻繁なモデルチェンジが行われている。これに伴い
、プラスチック成形品のライフサイクルが短くなり、多
品種少量生産となってきている。そのため、そのような
プラスチック成形品を成形するための金型に関し、低コ
スト化や短納期化の要求が強くなってきている。[0003] In recent years, housings and constituent parts of various types of equipment such as office equipment, and automobile constituent parts have been made of plastic, and frequent model changes are being made to improve their performance and change their designs. . As a result, the life cycle of plastic molded products has become shorter, leading to high-mix, low-volume production. Therefore, there is an increasing demand for lower costs and shorter delivery times for molds for molding such plastic molded products.
【0004】ところで、上記機械構造用炭素鋼等の鍛造
鋼材を用いて金型を製作する場合には、機械加工工程を
多く必要とし、この機械加工費が金型制作コストの大半
を占めることになるので、金型の低価格化や短納期化が
図れないという問題があった。そこで、試作金型用とし
てZAS(商品名、三井金属工業社製)などの低融点で
加工性のよい亜鉛基合金を砂型鋳造することにより、切
削加工等の機械加工を極力削減した形状に賦形し、これ
に倣い加工や研磨等の仕上げ工程を施して金型を製作す
る方法が提案されている。[0004] By the way, when making a mold using forged steel such as carbon steel for machine structures, many machining steps are required, and this machining cost accounts for most of the mold production cost. Therefore, there was a problem in that it was not possible to reduce the price of the mold or shorten the delivery time. Therefore, by sand casting a zinc-based alloy with a low melting point and good workability, such as ZAS (trade name, manufactured by Mitsui Kinzoku Kogyo Co., Ltd.), for the prototype mold, it was formed into a shape that required as little machining as possible, such as cutting. A method has been proposed in which a metal mold is manufactured by shaping the mold and subjecting it to finishing processes such as copying and polishing.
【0005】これによれば、量産金型のように、鍛造し
た大型鋼材ブロックの切削加工により製作する金型に比
べ、加工速度が早いため、安価になるとともに、納期の
短縮につながるという利点を有している。しかし、上記
の亜鉛基合金は、強度や硬度等の機械的物性が劣るため
、設計上かなりの余裕をみて設計せねばならず、また、
鏡面仕上げができず使用できる製品の範囲が限られてい
た。さらに、ピンホール、引け巣等の鋳造欠陥の発生を
防ぐことが難しく、溶接等の補修が必須であるが、冷却
条件が溶接部近傍で著しく変化するため、組織にむらが
発生し、それが成形品に転写されるなどの問題を有して
いた。[0005] According to this, compared to a mass-produced mold that is manufactured by cutting a large forged steel block, the machining speed is faster, which has the advantage of being cheaper and shortening the delivery time. have. However, the above zinc-based alloys have poor mechanical properties such as strength and hardness, so a considerable margin must be taken into consideration in the design.
The range of products that could be used was limited because mirror finishing was not possible. Furthermore, it is difficult to prevent the occurrence of casting defects such as pinholes and shrinkage cavities, and repairs such as welding are essential. However, as the cooling conditions change significantly near the weld, unevenness occurs in the structure, which can cause There were problems such as transfer to molded products.
【0006】また、アルミニウム合金や銅合金も、同目
的に使用されているが、前者のアルミニウム合金は、硬
度が低いために鏡面性に劣るとともに鋳造欠陥やピンホ
ールができ易く、溶接性も著しく悪く、一旦生じた鋳造
欠陥の補修、加工ミスに起因する金型の補修は実質上不
可能であった。後者の銅合金については、鋳造温度が高
いため鋳肌が悪くなり、放電加工性も悪い等の問題点が
あった。[0006] Aluminum alloys and copper alloys are also used for the same purpose, but the former aluminum alloys have low hardness, resulting in poor specularity, easy casting defects and pinholes, and extremely poor weldability. Unfortunately, it was virtually impossible to repair casting defects once they had occurred or to repair molds caused by processing errors. The latter copper alloy has problems such as poor casting surface due to high casting temperature and poor electrical discharge machinability.
【0007】[0007]
【発明が解決しようとする課題】これらの金型用素材の
中で、低融点で鋳造が容易であり、溶接性にも優れた亜
鉛基合金が見直されており、機械的強度の改良について
様々な試みがなされている。例えば、特公昭51−53
42号公報、特開昭62−287030号公報等に開示
されているように、アルミニウムや銅の組成比率を増や
したり、特定の元素を添加したりして組織の微細化を図
ることにより機械的強度の向上を試みている。[Problems to be Solved by the Invention] Among these materials for molds, zinc-based alloys, which have a low melting point, are easy to cast, and have excellent weldability, are being reconsidered, and various improvements in mechanical strength are being made. Attempts are being made. For example,
As disclosed in Japanese Patent Publication No. 42 and Japanese Patent Application Laid-open No. 62-287030, mechanical Trying to improve strength.
【0008】しかし、この方法によるものは、ピンホー
ルや引け巣等の鋳造欠陥に対しては改良されずむしろ増
える場合が多かった。また、特開平2−187308号
公報には、亜鉛基合金からなる素材ブロックを機械加工
することにより金型を製作することが開示されている。
この方法によれば、加工速度は早いものの、機械加工の
工数が増加し、鋳造金型としての前記した利点(短納期
、低価格)が十分に生かされていない。However, with this method, casting defects such as pinholes and shrinkage cavities are often not improved but rather increased. Further, Japanese Patent Application Laid-Open No. 2-187308 discloses that a mold is manufactured by machining a raw material block made of a zinc-based alloy. According to this method, although the processing speed is high, the number of machining steps increases, and the above-mentioned advantages (short delivery time, low price) of the casting mold are not fully utilized.
【0009】この発明は、上記のような現状に鑑み、金
型のように複雑な形状を有する鋳造物においても、ピン
ホールや引け巣等の鋳造欠陥を防止し得て、しかも安価
な鋳造方法により、プラスチック成形用金型を製造する
ことを目的とする。In view of the above-mentioned current situation, the present invention provides an inexpensive casting method that can prevent casting defects such as pinholes and shrinkage cavities even in cast products having complex shapes such as molds. The purpose is to manufacture molds for plastic molding.
【0010】0010
【課題を解決するための手段】この発明のプラスチック
成形用金型の製造方法は、重量百分率でアルミニウム8
〜15%、銅5〜13%、マグネシウム0.01〜0.
5%を含む亜鉛基合金を、型内に冷却管を配設し該冷却
管に冷却液を流している鋳型に注湯して、最終金型形状
に近い形状に鋳造し、該鋳造物を後加工工程において最
終形状に仕上げることを特徴とするものである。[Means for Solving the Problems] The method for manufacturing a plastic molding die of the present invention has a weight percentage of aluminum 8.
~15%, copper 5-13%, magnesium 0.01-0.
A zinc-based alloy containing 5% zinc-based alloy is poured into a mold in which a cooling pipe is installed and a cooling liquid is flowed through the cooling pipe, and the casting is cast into a shape close to the final mold shape. It is characterized in that it is finished into the final shape in a post-processing process.
【0011】この発明において用いられる亜鉛基合金に
おいて、アルミニウムの含有率を重量百分率で8〜15
%としているのは、8%未満では十分な機械的強度ある
いは硬度が得られず、15%を超えるとアルミニウムの
偏析が生ずるからである。銅の含有率を重量百分率で5
〜13%としているのは、5%未満では十分な機械的強
度あるいは硬度が得られず、13%を超えると靱性がな
くなり後加工の際割れ易くなるからである。[0011] In the zinc-based alloy used in this invention, the aluminum content is 8 to 15% by weight.
% because if it is less than 8%, sufficient mechanical strength or hardness cannot be obtained, and if it exceeds 15%, segregation of aluminum will occur. Copper content in weight percentage 5
The reason why it is set at ~13% is that if it is less than 5%, sufficient mechanical strength or hardness cannot be obtained, and if it exceeds 13%, it will lose its toughness and become prone to cracking during post-processing.
【0012】また、マグネシウムは、粒界腐食の抑制の
ために必要であり、その含有率が重量百分率で0.01
〜0.5%としているのは、0.01%未満ではその抑
制効果が十分でなく、0.5%を超えると脆くなるから
である。さらに、この発明の亜鉛基合金においては、上
記成分以外に、イットニウム、ベリリウム、チタニウム
、ジルコニウム、クロム、ニッケル、コバルト、マンガ
ン、ランタン系元素、銀から選ばれた一種以上の元素を
含有していることが好ましい。このことにより、機械的
強度の改善、構造欠陥の発生抑制、時効による寸法変化
の遅延等に対して寄与するものであり、その含有率は、
重量百分率で0.01%未満では十分な効果が得られず
、2%を超えるとそれ以上を含有させた効果が期待でき
ないばかりか、脆くなるので、総量で0.01〜2%と
するのが好ましい。[0012] Furthermore, magnesium is necessary for suppressing intergranular corrosion, and its content is 0.01% by weight.
The reason why it is set at ~0.5% is that if it is less than 0.01%, the suppressing effect is not sufficient, and if it exceeds 0.5%, it becomes brittle. Furthermore, in addition to the above-mentioned components, the zinc-based alloy of the present invention contains one or more elements selected from yttium, beryllium, titanium, zirconium, chromium, nickel, cobalt, manganese, lanthanum-based elements, and silver. Preferably. This contributes to improving mechanical strength, suppressing the occurrence of structural defects, delaying dimensional changes due to aging, etc., and its content is as follows:
If the weight percentage is less than 0.01%, a sufficient effect will not be obtained, and if it exceeds 2%, the effect of containing more than that cannot be expected, and it will become brittle, so the total amount should be 0.01 to 2%. is preferred.
【0013】上記の亜鉛基合金においては、上記の元素
以外に混入の可能性のある全ての元素(不可避的不純物
)を含有しているよい。その含有量については、粒界腐
食がどの程度問題になるかでその許容量は変わってくる
が、通常、重量百分率で0.1%以内とするのが好まし
い。また、当然のことながら、粒界腐食が著しく問題と
なる場合には、鉛、カドミウム、錫等の混入をさらに抑
制することが望ましい。The above-mentioned zinc-based alloy preferably contains all elements (inevitable impurities) that may be mixed in other than the above-mentioned elements. The allowable amount varies depending on the extent to which intergranular corrosion becomes a problem, but it is usually preferably within 0.1% by weight. Naturally, if intergranular corrosion becomes a serious problem, it is desirable to further suppress the incorporation of lead, cadmium, tin, etc.
【0014】鋳型内に配設する冷却管は、銅パイプ等の
ように、曲げ易く、熱伝導のよい材料で製せられるのが
よく、金型として強度が許される限り、金型表面近くに
なるよう配設するのが好ましい。プラスチック成形時に
成形金型の冷却孔としてより有効であるからである。な
お、冷却管材料に銅を用いると、鋳造の際、銅が溶出し
合金の強度、硬度等の機械的強度の向上が図れる利点も
ある。[0014] The cooling pipe arranged inside the mold is preferably made of a material that is easy to bend and has good thermal conductivity, such as copper pipe, and is placed near the mold surface as long as the strength of the mold allows. It is preferable to arrange it so that This is because they are more effective as cooling holes in a mold during plastic molding. In addition, when copper is used for the cooling pipe material, there is an advantage that the copper is eluted during casting, and the mechanical strength such as strength and hardness of the alloy can be improved.
【0015】また、鋳造の際、押湯やトップヒート方式
を併用することは勿論可能であり、そのことにより構造
欠陥の発生をより確実に抑制できる。この発明において
、鋳造物を後加工工程において最終形状に仕上げる手段
としては、従来と特に変わるものでなく、切削加工、倣
い加工、研磨等の手段があげられる。その結果、所望形
状に仕上げられたり、或いは鏡面仕上げされ、成形用金
型が完成される。[0015] Furthermore, it is of course possible to use a feeder or a top heat method in combination during casting, thereby making it possible to more reliably suppress the occurrence of structural defects. In this invention, the means for finishing the casting into the final shape in the post-processing step is not particularly different from conventional methods, and includes means such as cutting, copying, and polishing. As a result, the mold is finished into a desired shape or mirror-finished, and the mold is completed.
【0016】[0016]
【作用】この発明は、以上のとおりであるから、鋳造時
、冷却管を流れる液体により亜鉛基合金の凝固速度が早
められる結果、相分離が生じ難く、引け巣が発生し難く
なる。また、285℃付近でα変態による発熱も抑えら
れ、結晶化速度が遅延されることがなく結晶の粗大化が
生じない。[Function] Since the present invention is as described above, the solidification rate of the zinc-based alloy is accelerated by the liquid flowing through the cooling pipe during casting, so that phase separation is less likely to occur and shrinkage cavities are less likely to occur. Furthermore, heat generation due to α transformation is suppressed at around 285° C., the crystallization rate is not delayed, and crystals do not become coarse.
【0017】また、冷却管がすでに埋め込まれることに
なって、その後金型に冷却孔等の切削工程が省略される
。[0017] Furthermore, since the cooling pipes are already embedded, the subsequent process of cutting cooling holes and the like in the mold is omitted.
【0018】[0018]
【実施例】次に、この発明の実施例を説明する。
(実施例1〜15、比較例1〜17)表1及び表2に示
すとおりの組成の亜鉛基合金(実施例1〜15、比較例
1〜17)の所定量をクレイカーボンの坩堝に溶解し、
これをCO2 鋳型により、自動車用レンズカバー成形
用キャビティ型を鋳造した。鋳造後鋳型を解体して15
0〜800磨紙で仕上げを施して自動車用レンズカバー
成形用キャビティを得た。[Example] Next, an example of the present invention will be described. (Examples 1 to 15, Comparative Examples 1 to 17) A predetermined amount of zinc-based alloy (Examples 1 to 15, Comparative Examples 1 to 17) having the composition shown in Tables 1 and 2 was dissolved in a clay carbon crucible. death,
This was cast into a cavity mold for molding an automobile lens cover using a CO2 mold. After casting, dismantle the mold 15
A cavity for molding an automobile lens cover was obtained by finishing with 0-800 polishing paper.
【0019】なお、実施例1〜15、比較例16、17
においては、上記CO2 鋳型には径10mmの冷却銅
管を配設し、比較例1〜15においては、そのような冷
却管を配設しなかった。これらのキャビティ型について
、研磨面を顕微鏡観察により成形品外面に対応する型面
の引け巣状態について、50μm 以上の引け巣を計数
するとともに、そのパーティングライン面の表面硬度(
ブリネル硬度)を測定した。その結果を表1及び表2に
併せ示す。Note that Examples 1 to 15, Comparative Examples 16 and 17
In Comparative Examples 1 to 15, no such cooling pipe was provided in the CO2 mold. For these cavity molds, the polished surface was observed under a microscope to determine the state of shrinkage cavities on the mold surface corresponding to the outer surface of the molded product, and the shrinkage cavities of 50 μm or more were counted, and the surface hardness of the parting line surface (
Brinell hardness) was measured. The results are also shown in Tables 1 and 2.
【0020】表1及び表2から明らかなとおり、比較例
1〜15、17においては微小巣の発生があるのに対し
、実施例1〜15においては、微小巣の発生がみられな
かった。また、ブリネル硬度も170以上であり、成形
用金型に用いられる足る十分な硬度を有していた。なお
、比較例16は微小巣の発生はみられなかったものの硬
度が極めて低いものであった。As is clear from Tables 1 and 2, in Comparative Examples 1 to 15 and 17, microscopic nests were generated, whereas in Examples 1 to 15, no microscopic nests were observed. Further, the Brinell hardness was 170 or more, and had sufficient hardness to be used in a mold. In addition, in Comparative Example 16, although no microporosity was observed, the hardness was extremely low.
【0021】[0021]
【表1】[Table 1]
【0022】[0022]
【表2】[Table 2]
【0023】(実施例16)140トンの射出成形機に
、表1に示す実施例1のキャビティ型を用いた金型を取
付け、成形を行った(射出圧;700kg/cm2、使
用プラスチック原料;ポリプロピレン(三井ノーブレン
社製;JHH−G))。この場合、50000ショット
成形後にも、キャビティ型に変形、表面粗さ等の変化は
生じなかった。
(比較例18)表2に示す比較例1のキャビティ型の成
形品外面に対応する面の微小巣を補修し、これをキャビ
ティ型とする金型を140トンの射出成形機に取付け、
実施例16と同様に成形を行ったところ、7500ショ
ット成形後、成形品のばりが著しくなり、成形を中断せ
ざるを得なかった。(Example 16) A mold using the cavity mold of Example 1 shown in Table 1 was attached to a 140-ton injection molding machine, and molding was performed (injection pressure: 700 kg/cm2, plastic raw materials used; Polypropylene (manufactured by Mitsui Noblen Co., Ltd.; JHH-G). In this case, even after 50,000 shots of molding, no deformation or change in surface roughness occurred in the cavity mold. (Comparative Example 18) Repairing the microscopic cavities on the surface corresponding to the outer surface of the molded product of the cavity mold of Comparative Example 1 shown in Table 2, and installing the mold with this as the cavity mold into a 140 ton injection molding machine,
Molding was carried out in the same manner as in Example 16, but after 7,500 shots, the molded product had significant burrs, and the molding had to be discontinued.
【0024】[0024]
【発明の効果】この発明は、以上のとおりであるから、
鋳造時、冷却管を流れる液体により亜鉛基合金の凝固速
度が早められる結果、相分離が生じ難く、引け巣が発生
し難くなる。また、285℃付近でα変態による発熱も
抑えられ、結晶化速度が遅延されることがなく結晶の粗
大化が生じない。そのため、鋳造後において、引け巣の
補修が必要でなく、機械的強度や硬度等が向上する。ま
た、冷却管がすでに埋め込まれることになって、その後
冷却孔等の切削工程が省略される。[Effect of the invention] Since the present invention is as described above,
During casting, the liquid flowing through the cooling pipe accelerates the solidification rate of the zinc-based alloy, making it difficult for phase separation to occur and shrinkage cavities to occur. Furthermore, heat generation due to α transformation is suppressed at around 285° C., the crystallization rate is not delayed, and crystals do not become coarse. Therefore, after casting, there is no need to repair shrinkage cavities, and mechanical strength, hardness, etc. are improved. Furthermore, since the cooling pipes are already embedded, the subsequent process of cutting cooling holes and the like is omitted.
【0025】したがって、金型製造期間が短縮され、低
価格化に大いに寄与し、多品種少量生産に適合した金型
を提供できる。[0025] Therefore, the mold manufacturing period is shortened, greatly contributing to lower prices, and a mold suitable for high-mix, low-volume production can be provided.
Claims (2)
、銅5〜13%、マグネシウム0.01〜0.5%を含
む亜鉛基合金を、型内に冷却管を配設し該冷却管に冷却
液を流している鋳型に注湯して、最終金型形状に近い形
状に鋳造し、該鋳造物を後加工工程において最終形状に
仕上げることを特徴とするプラスチック成形用金型の製
造方法。[Claim 1] 8-15% aluminum by weight percentage
, a zinc-based alloy containing 5 to 13% copper and 0.01 to 0.5% magnesium is poured into a mold with cooling pipes arranged inside the mold and a cooling liquid flowing through the cooling pipes. A method for producing a plastic mold, which comprises casting into a shape close to the shape of the mold, and finishing the cast into the final shape in a post-processing step.
ウム8〜15%、銅5〜13%、マグネシウム0.01
〜0.5%、イットニウム、ベリリウム、チタニウム、
ジルコニウム、クロム、ニッケル、コバルト、マンガン
、ランタン系元素、銀から選ばれた少なくとも一種0.
01〜2%、残部が亜鉛からなることを特徴とする請求
項第1項記載のプラスチック成形金型の製造方法。2. The zinc-based alloy contains 8 to 15% aluminum, 5 to 13% copper, and 0.01% magnesium by weight percentage.
~0.5%, yttium, beryllium, titanium,
At least one selected from zirconium, chromium, nickel, cobalt, manganese, lanthanum-based elements, and silver.
2. The method of manufacturing a plastic mold according to claim 1, wherein the zinc content is 0.01 to 2% and the remainder is zinc.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2209891A JPH04262853A (en) | 1991-02-15 | 1991-02-15 | Manufacture of die for plastic forming |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2209891A JPH04262853A (en) | 1991-02-15 | 1991-02-15 | Manufacture of die for plastic forming |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04262853A true JPH04262853A (en) | 1992-09-18 |
Family
ID=12073409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2209891A Pending JPH04262853A (en) | 1991-02-15 | 1991-02-15 | Manufacture of die for plastic forming |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04262853A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0902097A1 (en) * | 1997-08-25 | 1999-03-17 | Mitsui Mining & Smelting Co., Ltd. | Zinc-base alloy for mold, zinc-base alloy block for mold and method for preparing the same |
-
1991
- 1991-02-15 JP JP2209891A patent/JPH04262853A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0902097A1 (en) * | 1997-08-25 | 1999-03-17 | Mitsui Mining & Smelting Co., Ltd. | Zinc-base alloy for mold, zinc-base alloy block for mold and method for preparing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102597784B1 (en) | A aluminum alloy and for die casting and method for manufacturing the same, die casting method | |
CN102717032B (en) | Precision casting method for automobile turbocharger casing part | |
US9174415B2 (en) | Composite and preparation method of joining amorphous alloy material to heterogeneous material | |
CN103320651B (en) | Fine-grained zinc-based alloy for die and preparation process thereof | |
CN109295351B (en) | Die-casting aluminum alloy and preparation method and application thereof | |
CN114932199B (en) | Casting process of centrifugal double-suction pump | |
CN103192051A (en) | Manufacturing method of ultra thin-walled light metal alloy housing or frame | |
JP2009108409A (en) | Al-Mg TYPE ALUMINUM ALLOY FOR FORGING, WITH EXCELLENT TOUGHNESS, AND CAST MEMBER COMPOSED THEREOF | |
US20210180159A1 (en) | Aluminum alloy for die casting and method of manufacturing cast aluminum alloy using the same | |
CN101054633A (en) | Waste copper recasting process | |
CN103567391A (en) | Novel casting mould structure for car brake disc | |
CN102719688B (en) | Process method capable of improving thermal fatigue property of polynary zinc-aluminum alloy | |
JPH059632A (en) | Zinc alloy casting and production thereof | |
JPH04262853A (en) | Manufacture of die for plastic forming | |
KR100960268B1 (en) | A manufacturing method of vessel engine cylinder cover and maunfactured vessel engine cylinder cover thereof | |
JPH057987A (en) | Production of metallic mold for molding plastic | |
CN100513007C (en) | Cooling mould for casting light metal casting materials and use of the cooling mould and a casting material | |
JPH04218640A (en) | Die stock | |
EP0902097A1 (en) | Zinc-base alloy for mold, zinc-base alloy block for mold and method for preparing the same | |
JP3696844B2 (en) | Aluminum alloy with excellent semi-melt formability | |
JPH04259344A (en) | Alloy for metal mold for molding | |
CN206677153U (en) | A kind of kirsite photoelectricity bracket Belt-type tools | |
JP3929033B2 (en) | Magnesium alloy parts and manufacturing method thereof | |
JPH07204782A (en) | Aluminum-made metallic mold | |
CN111054901A (en) | Method for solving streamline defect at lower end of ZL210A alloy casting linear chilling block |