JPH04262680A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPH04262680A
JPH04262680A JP3044263A JP4426391A JPH04262680A JP H04262680 A JPH04262680 A JP H04262680A JP 3044263 A JP3044263 A JP 3044263A JP 4426391 A JP4426391 A JP 4426391A JP H04262680 A JPH04262680 A JP H04262680A
Authority
JP
Japan
Prior art keywords
charge transfer
horizontal
section
transfer
horizontal charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3044263A
Other languages
Japanese (ja)
Inventor
Tetsuji Kimura
哲司 木村
Akihiro Kono
明啓 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3044263A priority Critical patent/JPH04262680A/en
Publication of JPH04262680A publication Critical patent/JPH04262680A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To attain the interchangeability of solid-state image pickup devices whose formats are different by permitting the length of a transfer stage in a connection part between an electric charge detection output amplifier part and an effective horizontal charge transferring part to be longer than that of the effective horizontal charge transferring part. CONSTITUTION:When the measure format of an image pickup area 1 is reduced from 1/2 inch to 1/3 inch, for example, the effective horizontal charge transferring part 6a of a horizontal charge transferring resistor 6 corresponds to a vertical charge transferring resistor 3 and horizontal transfer electrodes are arranged at the intervals of 9.6mum. The horizontal transferring part stage part of the connecting part 6b executes agreement to the number of the transfer stage in the case of 1/2 inch format. Therefore, the length of one transfer stage is set to be 12. 6mum in order to secure about 100mum which is necessary for preventing interference in the chip arrangement of a vertical electrode leading wiring part 4 and the electric charge detection output amplifier part 7. Thus, a same signal system as the large image pickup format drives the solid-state image pickup device even if the image pickup format is permitted to be small by the same image element number.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、固体撮像素子に関し、
特にインターライン転送方式2次元固体撮像素子に関す
る。
[Industrial Application Field] The present invention relates to a solid-state image sensor,
In particular, the present invention relates to an interline transfer type two-dimensional solid-state image sensor.

【0002】0002

【従来の技術】図4はこの種従来の固体撮像素子の概略
平面図である。同図に示されるように、撮像領域1は、
マトリックス状に配置された複数の光電変換用フォトダ
イオード2と、その水平画素数に対応した本数の垂直電
荷転送レジスタ3とから構成され、撮像領域1の両側に
は、撮像領域を構成する垂直電荷転送レジスタの各電極
を引き出し該電極を例えば4相クロック配線と接続する
ための垂直電極引き出し配線部4、5が設けられている
2. Description of the Related Art FIG. 4 is a schematic plan view of a conventional solid-state image sensing device of this type. As shown in the figure, the imaging area 1 is
It is composed of a plurality of photoelectric conversion photodiodes 2 arranged in a matrix and vertical charge transfer registers 3 corresponding to the number of horizontal pixels. Vertical electrode lead wiring sections 4 and 5 are provided for leading out each electrode of the transfer register and connecting the electrode to, for example, four-phase clock wiring.

【0003】これらの垂直電極引き出し配線部4、5は
、撮像領域中央部でのクロック信号のなまりを防止する
ために、両端からクロックを印加できるように通常撮像
領域の両側に設けられているのである。
These vertical electrode lead wiring sections 4 and 5 are usually provided on both sides of the imaging area so that clocks can be applied from both ends in order to prevent clock signals from becoming dull in the center of the imaging area. be.

【0004】一方、水平電荷転送レジスタ6は、撮像領
域の水平画素数と同一数の垂直電荷転送レジスタ3の電
荷を受け取るための、水平画素数分の段数を持つ有効水
平電荷転送部6aと、該電荷転送部6aを、信号電荷を
電気信号に変換する電荷検出出力アンプ部7へ接続する
ための10段前後の接続部6bとで構成されている。
On the other hand, the horizontal charge transfer register 6 includes an effective horizontal charge transfer section 6a having the number of stages equal to the number of horizontal pixels for receiving the charges of the vertical charge transfer register 3 of the same number as the number of horizontal pixels in the imaging area; The charge transfer section 6a is composed of about 10 stages of connection sections 6b for connecting the charge transfer section 6a to a charge detection output amplifier section 7 that converts signal charges into electrical signals.

【0005】この水平電荷転送レジスタの接続部6bは
有効水平電荷転送部6aと同一の電極間隔および電極寸
法で構成されており、その転送段数には、電荷検出出力
アンプ部7と垂直電極引き出し配線部4とがチップ配置
上干渉しない距離が確保できる段数が選ばれている。こ
の干渉しない距離は、垂直電極引き出し配線部の設計方
法にもよるが、通常、有効水平電荷転送部6aから直線
的に接続部6bを形成した場合、100μm程度が必要
となる。したがって、図4に示す撮像素子が1/2イン
チフォーマット・25万画素の場合では、水平画素間隔
を12.7μmとすると8画素分の段数が必要であり、
また、1/2インチフォーマット・38万画素の場合、
水平画素間隔を8.4μmとすると12画素分の段数が
必要となる。
The connection section 6b of this horizontal charge transfer register is configured with the same electrode spacing and electrode dimensions as the effective horizontal charge transfer section 6a, and the number of transfer stages includes the charge detection output amplifier section 7 and the vertical electrode lead-out wiring. The number of stages is selected to ensure a distance that will not interfere with the chip arrangement. Although this interference-free distance depends on the design method of the vertical electrode lead-out wiring section, normally, when the connecting section 6b is formed linearly from the effective horizontal charge transfer section 6a, a distance of about 100 μm is required. Therefore, when the image sensor shown in FIG. 4 has a 1/2 inch format and has 250,000 pixels, if the horizontal pixel interval is 12.7 μm, the number of stages for 8 pixels is required.
In addition, in the case of 1/2 inch format / 380,000 pixels,
If the horizontal pixel interval is 8.4 μm, stages for 12 pixels are required.

【0006】[0006]

【発明が解決しようとする課題】このような設計条件に
おいて、画素数が異なる場合は、水平転送クロック周波
数が異なるため、接続部6bの段数が異なっても、それ
ぞれ異なるクロック信号発生器を設計し使用するため、
重大な問題を生じることは無い。ところが、画素数を一
定のまま撮像フォーマットを1/2インチフォーマット
から例えば1/3インチフォーマットに変更して小型化
を図る場合、当然水平画素間隔は小さくなるが、垂直電
極引き出し配線部の寸法はほとんど変わらないため、例
えば1/3インチフォーマット・25万画素とすると水
平画素間隔は9.6μmとなり、干渉を避けるためには
11画素分が必要となる。これは従来の1/2インチフ
ォーマットでは8画素分であったのに対し3画素分増加
したことになり、同一クロック信号発生器で駆動した場
合、1/3インチフォーマット設計の撮像素子では3画
素分撮像信号が遅れるという問題を生じ、本来同一画素
数であれば変える必要ない駆動信号回路を設計変更しな
ければならないという重大な問題が生じる。すなわち、
従来例では画素数を同一としても撮像フォーマットを変
更すると互換性が保てないという問題点があった。
[Problem to be Solved by the Invention] Under such design conditions, if the number of pixels is different, the horizontal transfer clock frequency is different, so even if the number of stages of the connection section 6b is different, it is necessary to design different clock signal generators. In order to use
No serious problems will occur. However, when reducing the size by changing the imaging format from 1/2 inch format to, for example, 1/3 inch format while keeping the number of pixels constant, the horizontal pixel spacing will naturally become smaller, but the dimensions of the vertical electrode lead wiring section will decrease. Since there is almost no difference, for example, in the case of 1/3 inch format and 250,000 pixels, the horizontal pixel interval is 9.6 μm, and 11 pixels are required to avoid interference. This is an increase of 3 pixels compared to 8 pixels in the conventional 1/2 inch format, and when driven by the same clock signal generator, an image sensor with a 1/3 inch format design has 3 pixels. This causes a problem that the image pickup signal is delayed by 30 minutes, and a serious problem arises in that the design of the drive signal circuit, which does not need to be changed if the number of pixels is the same, has to be changed. That is,
In the conventional example, even if the number of pixels is the same, there is a problem that compatibility cannot be maintained if the imaging format is changed.

【0007】[0007]

【課題を解決するための手段】本発明の固体撮像素子は
、2次元的に配置された複数の光電変換領域と、該光電
変換領域において光電変換された信号電荷を受け取りこ
れを垂直方向に転送する複数の垂直電荷転送レジスタと
、これら垂直電荷転送レジスタによって転送されてきた
信号電荷を受け取りこれを順次水平方向に転送する水平
電荷転送レジスタと、前記水平電荷転送レジスタから送
られて来る信号電荷を電気信号出力に変換して出力する
電荷検出出力アンプ部と、を備えるものであり、そして
前記水平電荷転送レジスタが、前記垂直電荷転送レジス
タから信号電荷の転送を受ける有効水平電荷転送部と、
該有効水平電荷転送部と前記電荷検出出力アンプ部との
間に設けられた接続部水平電荷転送部と、から構成され
ており、かつ、前記接続部水平電荷転送部の各転送段の
電荷転送方向の長さが前記有効水平電荷転送部の各転送
段のそれとは異なっていることを特徴としている。
[Means for Solving the Problems] A solid-state image sensor of the present invention includes a plurality of photoelectric conversion regions arranged two-dimensionally, and receives signal charges photoelectrically converted in the photoelectric conversion regions and transfers them in a vertical direction. a horizontal charge transfer register that receives signal charges transferred by these vertical charge transfer registers and sequentially transfers them horizontally; and a horizontal charge transfer register that receives signal charges sent from the horizontal charge transfer registers. a charge detection output amplifier section that converts the signal into an electrical signal output and outputs the signal; and an effective horizontal charge transfer section in which the horizontal charge transfer register receives signal charge transfer from the vertical charge transfer register;
a connection horizontal charge transfer section provided between the effective horizontal charge transfer section and the charge detection output amplifier section, and charge transfer of each transfer stage of the connection horizontal charge transfer section. It is characterized in that the length in the direction is different from that of each transfer stage of the effective horizontal charge transfer section.

【0008】[0008]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は本発明の第1の実施例の構成を示す
模式図である。同図に示されるように、本実施例は、複
数の光電変換用フォトダイオード2と水平画素数に対応
した本数の垂直電荷転送レジスタ3から構成される撮像
領域1と、垂直電荷転送レジスタの各電極を引き出し4
相クロック線に接続するための垂直電極引き出し配線部
4、5と、2相駆動方式水平電荷転送レジスタ6と、電
荷検出出力アンプ部7とから構成されている。
Embodiments Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of a first embodiment of the present invention. As shown in the figure, this embodiment includes an imaging area 1 consisting of a plurality of photodiodes 2 for photoelectric conversion and a number of vertical charge transfer registers 3 corresponding to the number of horizontal pixels, and each of the vertical charge transfer registers. Pull out the electrode 4
It is composed of vertical electrode lead wiring sections 4 and 5 for connection to phase clock lines, a two-phase drive type horizontal charge transfer register 6, and a charge detection output amplifier section 7.

【0009】水平電荷転送レジスタ6は、垂直電荷転送
レジスタ3と同数の転送段数を持つ有効水平電荷転送部
6aと、該有効水平電荷転送部6aと電荷検出出力アン
プ部7との間を接続する接続部6bとから構成されてい
る。
The horizontal charge transfer register 6 connects an effective horizontal charge transfer section 6a having the same number of transfer stages as the vertical charge transfer register 3, and between the effective horizontal charge transfer section 6a and the charge detection output amplifier section 7. It is composed of a connecting portion 6b.

【0010】本実施例の固体撮像素子の撮像領域1は1
/3インチフォーマットに対応しており、水平方向には
画素間隔9.6μmで512画素、垂直方向には画素間
隔7.5μmで493画素配置されている。
The imaging area 1 of the solid-state imaging device of this embodiment is 1
/3 inch format, with 512 pixels arranged at a pixel pitch of 9.6 μm in the horizontal direction and 493 pixels arranged at a pixel pitch of 7.5 μm in the vertical direction.

【0011】水平電荷転送レジスタの有効水平電荷転送
部6aは512列の垂直電荷転送レジスタに対応してお
り、ここでは9.6μm間隔で512段の水平転送電極
が配置されている。一方、接続部6bは、有効水平電荷
転送部6aから直線的に設けられており、この部分の水
平転送部段数は、従来の1/2インチ撮像フォーマット
の場合の転送段数に合致させるため、8画素分の転送段
数となっている。そこで、1転送段の長さは、垂直電極
引き出し配線部4と電荷検出アンプ部7とのチップ配置
上の干渉を避けるために必要となる約100μmを確保
するべく、12.6μmに設定されている。この寸法は
有効水平電荷転送部6aの1転送段の長さ9.6μmに
対して約30%大きな寸法となっている。
The effective horizontal charge transfer section 6a of the horizontal charge transfer register corresponds to 512 columns of vertical charge transfer registers, and here, 512 stages of horizontal transfer electrodes are arranged at intervals of 9.6 μm. On the other hand, the connecting portion 6b is provided linearly from the effective horizontal charge transfer portion 6a, and the number of horizontal transfer portions in this portion is 8 to match the number of transfer steps in the conventional 1/2 inch imaging format. This is the number of transfer stages for pixels. Therefore, the length of one transfer stage is set to 12.6 μm to ensure approximately 100 μm, which is necessary to avoid interference between the vertical electrode lead-out wiring section 4 and the charge detection amplifier section 7 in terms of chip arrangement. There is. This dimension is about 30% larger than the length of one transfer stage of the effective horizontal charge transfer section 6a, which is 9.6 μm.

【0012】一般に、電荷転送方向に対して電極寸法を
変化させた場合、転送方向に対して電極面積が減少する
場合は途中で転送しきれない不都合が生じるが、逆に、
転送方向に対して電極面積が増大している場合は、転送
電荷量の制限を生ずることは無い。従って、本発明の場
合には電荷転送が妨げられる恐れは全く無い。
In general, when changing the electrode dimensions in the charge transfer direction, if the electrode area decreases in the transfer direction, there will be a problem that the transfer will not be completed halfway;
If the electrode area increases in the transfer direction, there is no restriction on the amount of transferred charge. Therefore, in the case of the present invention, there is no possibility that charge transfer will be hindered.

【0013】図2は、有効水平電荷転送部6aと接続部
6bの境界近傍の水平電荷転送レジスタの断面図であっ
て、電極長の変化部分を詳細に示した図である。同図に
おいて、8はp型半導体領域、9はn型電荷転送領域、
10はp型の電位障壁領域、11は障壁電極、12は蓄
積電極、13、14はそれぞれ水平電荷転送レジスタの
障壁部と蓄積部である。
FIG. 2 is a sectional view of the horizontal charge transfer register near the boundary between the effective horizontal charge transfer section 6a and the connection section 6b, showing in detail the portion where the electrode length changes. In the figure, 8 is a p-type semiconductor region, 9 is an n-type charge transfer region,
10 is a p-type potential barrier region, 11 is a barrier electrode, 12 is a storage electrode, and 13 and 14 are a barrier portion and a storage portion of a horizontal charge transfer register, respectively.

【0014】本実施例の水平電荷転送レジスタは、2相
駆動方式を採用しており、2つの蓄積電極と2つの障壁
電極をもって1段の転送部を構成している。
The horizontal charge transfer register of this embodiment employs a two-phase drive system, and includes two storage electrodes and two barrier electrodes to form a one-stage transfer section.

【0015】本実施例では、有効水平電荷転送部6aは
1.3μmの障壁部13と3.5μmの蓄積部14を各
2個ずつで1段が構成されているので、その長さは9.
6μmであり、一方、接続部では各障壁部13、蓄積部
14はともに30%大きく、それぞれ1.8μmと4.
5μmとなされており、1転送段の長さは12.6μm
となされている。
In this embodiment, each stage of the effective horizontal charge transfer section 6a is composed of two barrier sections 13 of 1.3 .mu.m and two storage sections 14 of 3.5 .mu.m, so the length thereof is 9. ..
On the other hand, in the connection part, each barrier part 13 and accumulation part 14 are both 30% larger, and are 1.8 μm and 4.6 μm, respectively.
5μm, and the length of one transfer stage is 12.6μm.
It is said that

【0016】以上のように構成することにより、従来の
1/2インチフォーマットの場合と同一出力タイミング
で1/3インチフォーマットの撮像素子が実現できる。
With the above configuration, a 1/3 inch format image sensor can be realized with the same output timing as in the conventional 1/2 inch format.

【0017】図3は本発明の第2の実施例の有効水平電
荷転送部6aと接続部6bの境界近傍の水平電荷転送レ
ジスタの断面図であって、電極長の変化部を詳細に示し
た図である。本実施例では、有効水平電荷転送部6aと
接続部6bとの障壁部13の長さを1.3μmと一定と
する一方、接続部の蓄積部14の寸法を、有効水平電荷
転送部の3.5μmから5μmと42%大きくすること
によって1転送段の長さを9.6μmから12.6μm
へ増大させている。
FIG. 3 is a cross-sectional view of the horizontal charge transfer register near the boundary between the effective horizontal charge transfer section 6a and the connection section 6b according to the second embodiment of the present invention, showing in detail the part where the electrode length changes. It is a diagram. In this embodiment, the length of the barrier section 13 between the effective horizontal charge transfer section 6a and the connection section 6b is kept constant at 1.3 μm, while the dimension of the storage section 14 of the connection section is By increasing the length by 42% from 5μm to 5μm, the length of one transfer stage was increased from 9.6μm to 12.6μm.
is increasing to.

【0018】このように障壁部の寸法を一定とした場合
、これら障壁部と隣接する蓄積部の電位によって障壁部
の電位変調が転送電極間隔を拡大してもあまり大きく変
化しないため、有効水平電荷転送部6aと接続部6bで
最低駆動電圧がほぼ一定となり、結果として本実施例は
水平電荷転送部の駆動電圧を図2に示す実施例に対して
低くできる利点がある。
When the dimensions of the barrier portions are kept constant in this way, the potential modulation of the barrier portions due to the potentials of the storage portions adjacent to these barrier portions does not change much even if the transfer electrode spacing is increased, so that the effective horizontal charge The lowest driving voltage is almost constant between the transfer section 6a and the connection section 6b, and as a result, this embodiment has the advantage that the driving voltage of the horizontal charge transfer section can be lower than that of the embodiment shown in FIG.

【0019】[0019]

【発明の効果】以上説明したように、本発明は、電荷検
出出力アンプ部と有効水平電荷転送部との間の接続部の
電極長を有効水平電荷転送部のそれより長くして、接続
部の転送段数を増加させることなく、電荷検出出力アン
プ部と垂直電極引き出し配線部との配置上の干渉を防ぐ
距離を確保できるようにしたものであるので、本発明に
よれば、同一画素数で撮像フォーマットを小さくしても
大きな撮像フォーマットと同一の信号系で撮像素子を駆
動できるようになる。したがって、本発明によれば、フ
ォーマットの異なる固体撮像素子間の互換性を高めるこ
とができる。
As explained above, the present invention makes the electrode length of the connection part between the charge detection output amplifier part and the effective horizontal charge transfer part longer than that of the effective horizontal charge transfer part, so that the connection part According to the present invention, it is possible to secure a distance to prevent interference in arrangement between the charge detection output amplifier section and the vertical electrode lead-out wiring section without increasing the number of transfer stages. Even if the imaging format is made smaller, the imaging element can be driven by the same signal system as in a larger imaging format. Therefore, according to the present invention, compatibility between solid-state imaging devices of different formats can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例の構成を示す模式図。FIG. 1 is a schematic diagram showing the configuration of a first embodiment of the present invention.

【図2】本発明の第1の実施例の部分詳細断面図。FIG. 2 is a partially detailed sectional view of the first embodiment of the invention.

【図3】本発明の第2の実施例の部分詳細断面図。FIG. 3 is a partially detailed sectional view of a second embodiment of the invention.

【図4】従来例の構成を示す模式図。FIG. 4 is a schematic diagram showing the configuration of a conventional example.

【符号の説明】[Explanation of symbols]

1  撮像領域 4、5  垂直電極引き出し配線部 6  水平電荷転送レジスタ 6a  有効水平電荷転送部 6b  接続部 7  電荷検出出力アンプ部 8  p型半導体領域 9  n型電荷転送領域 11  障壁電極 12  蓄積電極 13  障壁部 14  蓄積部 1 Imaging area 4, 5 Vertical electrode lead wiring section 6 Horizontal charge transfer register 6a Effective horizontal charge transfer section 6b Connection part 7 Charge detection output amplifier section 8 p-type semiconductor region 9 N-type charge transfer region 11 Barrier electrode 12 Storage electrode 13 Barrier part 14 Accumulation section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  2次元的に配置された複数の光電変換
領域と、該光電変換領域において光電変換された信号電
荷を受け取りこれを垂直方向に転送する複数の垂直電荷
転送レジスタと、これら垂直電荷転送レジスタによって
転送されてきた信号電荷を受け取りこれを順次水平方向
に転送する水平電荷転送レジスタと、前記水平電荷転送
レジスタから送られて来る信号電荷を電気信号出力に変
換して出力する電荷検出出力アンプ部と、を備え、前記
水平電荷転送レジスタが、前記垂直電荷転送レジスタか
ら信号電荷の転送を受ける有効水平電荷転送部と、該有
効水平電荷転送部と前記電荷検出出力アンプ部との間に
設けられた接続部水平電荷転送部と、から構成されてい
る固体撮像素子において、前記接続部水平電荷転送部の
各転送段の電荷転送方向の長さが前記有効水平電荷転送
部の各転送段のそれとは異なっていることを特徴とする
固体撮像素子。
1. A plurality of photoelectric conversion regions arranged two-dimensionally, a plurality of vertical charge transfer registers that receive signal charges photoelectrically converted in the photoelectric conversion regions and transfer them in a vertical direction, and A horizontal charge transfer register that receives the signal charge transferred by the transfer register and sequentially transfers it horizontally, and a charge detection output that converts the signal charge sent from the horizontal charge transfer register into an electrical signal output and outputs it. an amplifier section, wherein the horizontal charge transfer register receives signal charge transfer from the vertical charge transfer register; an effective horizontal charge transfer section between the effective horizontal charge transfer section and the charge detection output amplifier section; In a solid-state imaging device, the length in the charge transfer direction of each transfer stage of the connection horizontal charge transfer section is equal to the length of each transfer stage of the effective horizontal charge transfer section. A solid-state imaging device characterized by being different from that of.
JP3044263A 1991-02-15 1991-02-15 Solid-state image pickup device Pending JPH04262680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3044263A JPH04262680A (en) 1991-02-15 1991-02-15 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3044263A JPH04262680A (en) 1991-02-15 1991-02-15 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPH04262680A true JPH04262680A (en) 1992-09-18

Family

ID=12686628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3044263A Pending JPH04262680A (en) 1991-02-15 1991-02-15 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPH04262680A (en)

Similar Documents

Publication Publication Date Title
EP0365000B1 (en) CCD image sensor with vertical overflow drain
KR0149734B1 (en) Solid state image pickup device comprising power feeding wires each divided into plural ones
US4949183A (en) Image sensor having multiple horizontal shift registers
US5379067A (en) CCD linear sensor and method of reading-out charges therefrom
US20060072026A1 (en) Solid-state image pickup device and method for driving the same
US5365093A (en) Solid-state imaging device with tapered channel regions
US5393997A (en) CCD having transfer electrodes of 3 layers
US5748232A (en) Image sensor and driving method for the same
JPH061829B2 (en) Two-dimensional CCD image sensor
JPH09321938A (en) Color linear image sensor and its drive method
US5237191A (en) Solid-state charge-coupled-device imager
US6552747B1 (en) Solid state image pickup device
JPH04262680A (en) Solid-state image pickup device
JPS62208668A (en) Charge transfer type solid-state image sensing element
JP2001119010A (en) Multi-output solid-state image pickup device
US7173298B2 (en) Solid-state image pickup device
JP2820019B2 (en) Solid-state imaging device
JP3397151B2 (en) Driving method of solid-state imaging device
JP3002365B2 (en) Charge transfer device and driving method thereof
US5091922A (en) Charge transfer device type solid state image sensor having constant saturation level
JP4238398B2 (en) Solid-state imaging device
JPH0666346B2 (en) Charge coupled device and driving method thereof
JP2525796B2 (en) Solid-state imaging device
JPH06268923A (en) Drive method for solid-state image pickup device
JP2940803B2 (en) Solid-state imaging device