JPH04260006A - Optical branching and coupling device and production thereof - Google Patents
Optical branching and coupling device and production thereofInfo
- Publication number
- JPH04260006A JPH04260006A JP3021950A JP2195091A JPH04260006A JP H04260006 A JPH04260006 A JP H04260006A JP 3021950 A JP3021950 A JP 3021950A JP 2195091 A JP2195091 A JP 2195091A JP H04260006 A JPH04260006 A JP H04260006A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- refractive index
- coupling
- substrate
- optical waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 107
- 230000008878 coupling Effects 0.000 title claims abstract description 57
- 238000010168 coupling process Methods 0.000 title claims abstract description 57
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 238000009792 diffusion process Methods 0.000 claims abstract description 18
- 239000000126 substance Substances 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 11
- 230000000694 effects Effects 0.000 abstract description 4
- 230000007423 decrease Effects 0.000 abstract description 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 8
- 239000000395 magnesium oxide Substances 0.000 description 8
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 8
- 239000010936 titanium Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 229910003327 LiNbO3 Inorganic materials 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
- G02F1/313—Digital deflection, i.e. optical switching in an optical waveguide structure
- G02F1/3132—Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、光導波路を有する光分
岐結合器、及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical branching coupler having an optical waveguide and a method for manufacturing the same.
【0002】0002
【従来の技術】従来より知られる光分岐結合器の一つに
方向性結合器があり、これについては西原らによる著書
(光集積回路 p.264 〜p.267)に示され
ている。2. Description of the Related Art One of the conventionally known optical branching couplers is a directional coupler, which is described in the book by Nishihara et al. (Optical Integrated Circuits, pages 264-267).
【0003】図5は、その方向性結合器の作製工程を斜
視図で示したものである。光導波路を形成するためのT
i(チタン)パターン3が形成された基板1(同図(a
)図示)を、所定温度に設定した拡散炉中で所定時間熱
処理することにより、基板1にはTiが拡散されて高屈
折率とされた光導波路31が形成される(同図(b)図
示)。FIG. 5 is a perspective view showing the manufacturing process of the directional coupler. T for forming an optical waveguide
Substrate 1 on which i (titanium) pattern 3 is formed (see figure (a)
) is heat-treated for a predetermined time in a diffusion furnace set at a predetermined temperature, an optical waveguide 31 having a high refractive index by diffusing Ti is formed in the substrate 1 (see Fig. 1(b)). ).
【0004】このように作製された方向性結合器は、2
本の光導波路31が互いに平行を保って近接する領域を
有している。この近接した領域は結合部6と呼ばれ、こ
の部分で光導波路31の相互間の光の結合が生じる。こ
の結合部6における2本の光導波路31の距離間隔は数
μm 程度であり、その結合部6以外の部分(例えば光
入射部7)では光の結合が起こらないように光導波路3
1の間隔が広げられている。[0004] The directional coupler manufactured in this way has two
The book optical waveguides 31 have regions that are close to each other while remaining parallel to each other. This close region is called a coupling portion 6, and light coupling between the optical waveguides 31 occurs in this portion. The distance between the two optical waveguides 31 in this coupling part 6 is approximately several μm, and the optical waveguide 3
1 has been widened.
【0005】[0005]
【発明が解決しようとする課題】上述の方向性結合器で
は、図5(b)に示される結合部6と光入射部7との間
の光導波路31が曲がることによって生じる光損失を抑
えるために、その曲率半径を大きくし、光導波路31を
徐々に曲げている。従って、結合部6の端部では光導波
路31の間隔がまだそれ程大きくなっていないので、双
方の光導波路31中の光が基板1ににじみ出て光の結合
が生じる。そのため、所望の結合比を得るためにシミュ
レーション等で計算された結合長(例えばL0 )で設
計・作製しても、実質的な結合長はL0 よりも大きく
なってしまい、設計通りの結合比を得ることができない
という問題があった。[Problems to be Solved by the Invention] In the above-mentioned directional coupler, in order to suppress the optical loss caused by bending of the optical waveguide 31 between the coupling part 6 and the light incidence part 7 shown in FIG. In addition, the radius of curvature is increased to gradually bend the optical waveguide 31. Therefore, since the spacing between the optical waveguides 31 has not yet become so large at the end of the coupling portion 6, the light in both optical waveguides 31 leaks into the substrate 1, causing optical coupling. Therefore, even if the design and fabrication are performed using a bond length (for example, L0) calculated by simulation etc. in order to obtain the desired bond ratio, the actual bond length will be larger than L0, and the designed bond ratio will not be achieved. The problem was that I couldn't get it.
【0006】そこで本発明では、上述の問題点を解決し
、設計値通りの分岐比および結合比を得ることのできる
光分岐結合器と、その製造方法を提供する。SUMMARY OF THE INVENTION Accordingly, the present invention provides an optical branching/coupling device that solves the above-mentioned problems and can obtain branching ratios and coupling ratios as designed values, and a method for manufacturing the same.
【0007】[0007]
【課題を解決するための手段】本発明は、少なくとも2
本の光導波路が相互に平行に配設され、かつ分岐部もし
くは結合部でこれら光導波路が相互に近接して形成され
た光分岐結合器において、分岐部もしくは結合部の端部
である光導波路相互間の基板の屈折率が、その部分以外
の基板の屈折率よりも低いことを特徴とする。[Means for Solving the Problems] The present invention provides at least two
In an optical branching coupler in which optical waveguides are arranged parallel to each other and these optical waveguides are formed close to each other at a branching part or a coupling part, the optical waveguide that is the end of the branching part or coupling part It is characterized in that the refractive index of the substrates between them is lower than the refractive index of the substrates other than that portion.
【0008】なお、上述の光分岐結合器は、部分的に平
行に近接することで分岐部もしくは結合部を形成する少
なくとも2本の光導波路を、基板中に屈折率上昇用の第
1の物質をドープすることで形成する工程と、分岐部も
しくは結合部の端部である光導波路間の基板内に、第1
の物質よりも大きい拡散係数を有し、かつ基板の屈折率
を下げる性質を有する第2の物質をドープする工程によ
り製造される。[0008] The above-mentioned optical branching coupler has at least two optical waveguides that are partially parallel to each other to form a branching part or a coupling part, and a first material for increasing the refractive index is formed in the substrate. A step of doping the optical waveguide with a first
The second material is doped with a second material that has a diffusion coefficient larger than that of the second material and has the property of lowering the refractive index of the substrate.
【0009】[0009]
【作用】本発明によれば、光分岐結合器の分岐部もしく
は結合部の端部における少なくとも2本の光導波路とそ
の光導波路相互間の基板との屈折率差は、分岐部もしく
は結合部の端部以外の部分での光導波路とその光導波路
相互間の基板との屈折率差よりも大きくなる。[Operation] According to the present invention, the refractive index difference between at least two optical waveguides at the end of the branching part or coupling part of the optical branching/coupling device and the substrate between the optical waveguides is This is larger than the refractive index difference between the optical waveguide and the substrate between the optical waveguides at the portions other than the end portions.
【0010】また、前述の屈折率差を大きくするために
基板にドープする物質は、その拡散係数が光導波路を高
屈折率化する物質よりも大きいため、光導波路の形成後
に、分岐・結合部の端部間に低屈折率化するための物質
をドープする拡散処理をしても、光導波路の構造に影響
を与えることがない。[0010] Furthermore, since the diffusion coefficient of the substance doped into the substrate in order to increase the refractive index difference described above is larger than that of the substance that increases the refractive index of the optical waveguide, branching/coupling parts are formed after forming the optical waveguide. Even if a diffusion treatment is performed to dope a material between the ends of the optical waveguide to lower the refractive index, the structure of the optical waveguide will not be affected.
【0011】[0011]
【実施例】以下、添付図面を参照して本発明の実施例を
説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
【0012】図1は、実施例に係る光分岐結合器の斜視
図、及び上面図である。同図(a)及び(b)に示され
るように、基板1の表面には拡散により光導波路31が
形成されている。この光導波路31の結合部6の端部で
ある光導波路相互間の基板(以下、結合部端部4という
)には基板1の屈折率を低下させる物質(以下、屈折率
低下物質41という)がドープされている。従って、結
合部端部4の屈折率は他の部分の基板よりも低下するの
で、結合部端部4とそれをはさんで位置する2本の光導
波路31との屈折率差は大きくなる。FIG. 1 is a perspective view and a top view of an optical branching coupler according to an embodiment. As shown in FIGS. 1A and 2B, an optical waveguide 31 is formed on the surface of the substrate 1 by diffusion. A substance that lowers the refractive index of the substrate 1 (hereinafter referred to as a refractive index lowering substance 41) is provided on the substrate between the optical waveguides (hereinafter referred to as the joint part end 4) which is the end of the coupling part 6 of the optical waveguide 31. is doped. Therefore, the refractive index of the coupling part end 4 is lower than that of the other parts of the substrate, so that the difference in refractive index between the coupling part end 4 and the two optical waveguides 31 sandwiched therebetween becomes large.
【0013】このような構造において、例えば光入射部
7に入射した光は屈折率の高い光導波路31内を伝搬し
、それら2本の光導波路31の相互の間隔が狭くなる結
合部6に到達する。前述したように、これら光導波路3
1は、結合部6に向かって徐々にその相互間の間隔が狭
められているが、結合部端部4の屈折率が屈折率低下物
質41により大きく低下して光導波路31との屈折率差
が大きくなっているため、光導波路31内の光は結合部
端部4ににじみ出ることがない。従って、結合部6以外
の部分での不必要な光結合を防ぐことができる。In such a structure, for example, light incident on the light incidence section 7 propagates within the optical waveguide 31 having a high refractive index, and reaches the coupling section 6 where the distance between the two optical waveguides 31 becomes narrow. do. As mentioned above, these optical waveguides 3
1, the distance between them gradually narrows toward the coupling part 6, but the refractive index of the coupling part end 4 is greatly reduced by the refractive index lowering substance 41, resulting in a refractive index difference with the optical waveguide 31. is large, so that the light within the optical waveguide 31 does not leak into the coupling portion end 4. Therefore, unnecessary optical coupling at portions other than the coupling portion 6 can be prevented.
【0014】次に、図2を用いて実施例に係る光分岐結
合器の製造方法を説明する。まず、強誘電体の基板1上
にフォトレジストを塗布し、フォトリソグラフィ技術を
用いて、基板1の光導波路形成領域に開口を有するレジ
ストマスク2を形成する。このレジストマスク2及び開
口により露出している基板1上に、蒸着法またはスパッ
タ法を用いて高屈折率化させる物質からなる金属膜30
を形成する(同図(a)図示)。次に、リフトオフ法に
よって光導波路形成領域の基板1上に、前述の金属から
なる光導波路パターン3を形成する(同図(b)図示)
。この後、基板1を所定温度の雰囲気中に所定時間加熱
することにより、光導波路パターン3の金属が基板1内
に拡散し、光導波路31が形成される(図2(c)図示
)。この光導波路31が形成された基板1の結合部端部
4の領域に開口を有するレジストマスク21を形成する
(図2(d)図示)。その後、レジストマスク21上お
よび開口により露出している基板1上に、屈折率低下物
質41を蒸着させる(同図(e)図示)。次にリフトオ
フ法を用いて、基板1の結合部端部4にその屈折率低下
物質41を残し、拡散処理を行う(同図(f)図示)。
これにより、結合部端部4と光導波路31との屈折率差
を他の部分よりも大きくすることができるので、光導波
路31内の光は結合部端部4ににじみ出ることがない。
なお、ここで用いる屈折率低下物質41は、光導波路3
1を構成する物質よりもその拡散係数が大きいものでな
くてはならない。拡散処理によって光導波路31中の高
屈折率化物質が再拡散し、その特性が劣化して装置の特
性が影響を受けてはならないからである。Next, a method of manufacturing the optical branching coupler according to the embodiment will be explained using FIG. First, a photoresist is applied onto a ferroelectric substrate 1, and a resist mask 2 having an opening in an optical waveguide forming region of the substrate 1 is formed using photolithography. On the resist mask 2 and the substrate 1 exposed through the opening, a metal film 30 made of a substance to have a high refractive index is formed using a vapor deposition method or a sputtering method.
(Illustrated in FIG. 3(a)). Next, the optical waveguide pattern 3 made of the metal described above is formed on the substrate 1 in the optical waveguide forming area by a lift-off method (as shown in FIG. 2(b)).
. Thereafter, by heating the substrate 1 in an atmosphere at a predetermined temperature for a predetermined time, the metal of the optical waveguide pattern 3 is diffused into the substrate 1, and an optical waveguide 31 is formed (as shown in FIG. 2(c)). A resist mask 21 having an opening is formed in the region of the coupling end 4 of the substrate 1 where the optical waveguide 31 is formed (as shown in FIG. 2(d)). Thereafter, a refractive index lowering material 41 is deposited on the resist mask 21 and on the substrate 1 exposed through the opening (as shown in FIG. 3(e)). Next, by using a lift-off method, the refractive index lowering substance 41 is left at the joint end portion 4 of the substrate 1, and a diffusion process is performed (as shown in FIG. 4(f)). Thereby, the difference in refractive index between the coupling part end 4 and the optical waveguide 31 can be made larger than that of other parts, so that the light inside the optical waveguide 31 does not leak into the coupling part end 4. Note that the refractive index lowering substance 41 used here is the optical waveguide 3
The diffusion coefficient of the substance must be larger than that of the substance that makes up 1. This is because the high refractive index material in the optical waveguide 31 should not be re-diffused by the diffusion treatment and the properties of the material should not be deteriorated and the properties of the device should not be affected.
【0015】上述の製造方法を用いることにより、光導
波路31の特性を劣化させることなく、不必要な光結合
の発生を防ぐことができる。By using the above-described manufacturing method, unnecessary optical coupling can be prevented from occurring without deteriorating the characteristics of the optical waveguide 31.
【0016】ここで図3を用い、前述の実施例について
、その工程による作用も併せて具体的に説明する。まず
、強誘電体であるニオブ酸リチウム(LiNbO3 )
の基板1の光導波路形成領域上に、リフトオフ法を用い
て厚さ70nmの金属(チタン;Ti)膜による光導波
路パターン3を形成する。この導波路パターン3を装荷
した基板1を1050℃の雰囲気中に6時間放置して拡
散処理を施すことにより、光導波路31を形成する。作
製した光導波路31の寸法は、その幅が7μm で、結
合部6における導波路間隔が5μm 、結合部の長さは
12mm (同図(b)図示)である。このような寸
法を有する結合部6における計算上のクロストークは−
30dBであった。しかしながら、結合部6の端部で2
本の光導波路31が互いに接近している部分では光結合
が生じやすくなっているので、クロストークの劣化を防
止するため、さらに以下に述べる工程を経ることが必要
である。The above-mentioned embodiment will now be described in detail with reference to FIG. 3, together with the effects of its steps. First, the ferroelectric material lithium niobate (LiNbO3)
An optical waveguide pattern 3 made of a metal (titanium; Ti) film with a thickness of 70 nm is formed on the optical waveguide formation region of the substrate 1 using a lift-off method. The substrate 1 loaded with this waveguide pattern 3 is left in an atmosphere at 1050° C. for 6 hours and subjected to a diffusion treatment, thereby forming an optical waveguide 31. The manufactured optical waveguide 31 has a width of 7 μm, a waveguide spacing in the coupling portion 6 of 5 μm, and a length of the coupling portion of 12 mm (as shown in FIG. 3(b)). The calculated crosstalk in the joint 6 with such dimensions is -
It was 30dB. However, at the end of the joint 6
Since optical coupling is likely to occur in portions where the optical waveguides 31 are close to each other, it is necessary to further perform the steps described below in order to prevent deterioration of crosstalk.
【0017】まず、上述した方法で光導波路31を作製
後、その表面にレジスト材を塗布して、基板1の結合部
端部4に開口を有するレジストマスク21を形成する(
同図(b)図示)。このレジストマスク21上及び開口
によって露出している結合部端部4上に、屈折率低下物
質41である酸化マグネシウム(MgO)を10nmの
厚さに蒸着する。その後、リフトオフ法を用いてMgO
を結合部端部4上にパターンニングする(図3(c)図
示)。次に、この基板を950℃の拡散処理炉中に4時
間放置し、拡散処理を行う(同図(d)図示)。この工
程により、MgOが基板1の結合部端部4内に拡散する
と、拡散部分の屈折率が下がる。なお、MgOの拡散係
数はTiに比べて非常に大きいので、950℃雰囲気中
での拡散処理はTiの分布にほとんど影響を与えない。First, after producing the optical waveguide 31 by the method described above, a resist material is applied to its surface to form a resist mask 21 having an opening at the joint end 4 of the substrate 1 (
Figure (b) shown). Magnesium oxide (MgO), which is a refractive index reducing substance 41, is deposited to a thickness of 10 nm on the resist mask 21 and on the joint end portion 4 exposed by the opening. Then, using the lift-off method, MgO
is patterned on the joint end portion 4 (as shown in FIG. 3(c)). Next, this substrate is left in a diffusion treatment furnace at 950° C. for 4 hours to perform a diffusion treatment (as shown in FIG. 4(d)). Through this step, when MgO diffuses into the bonding end 4 of the substrate 1, the refractive index of the diffused portion decreases. Note that since the diffusion coefficient of MgO is much larger than that of Ti, the diffusion treatment in an atmosphere of 950° C. has almost no effect on the distribution of Ti.
【0018】以上述べた工程によって、結合部端部4に
MgOがドープされて屈折率が下がり、光導波路31と
の屈折率差が大きくなる。このため、この結合部端部4
では光のにじみが減少して光の結合が起こりにくくなる
ため、設計値通りのクロストークを得ることができる。Through the above-described steps, the end portion 4 of the coupling portion is doped with MgO, its refractive index is lowered, and the difference in refractive index with the optical waveguide 31 is increased. Therefore, this joint end 4
In this case, light bleeding is reduced and light coupling becomes less likely to occur, so crosstalk can be obtained as designed.
【0019】次に、図4を用い、従来の製造方法による
光導波路と本発明に係る製造方法によって作製された光
導波路の屈折率分布について比較する。 同図(a)
及び(b)は従来の光導波路の上面図、及びその屈折率
分布を示し、同図(c)及び(d)は本発明に係る製造
方法を経た光導波路の上面図、及びその屈折率分布を示
す。同図(a)及び(b)に示されているように、結合
部6の端部の光導波路31は、その曲率半径を大きくし
て光損失を抑えようとしているため、やや接近している
。そのため、双方の光導波路31中からにじみ出した光
は、互いに結合しやすい。しかし本発明に係る製造方法
を用いた場合には、結合部6の端部であって曲線を描い
ている双方の光導波路31間の基板1内に、MgOが拡
散により投入されている(同図(c)及び(d)図示)
。従って、そのMgOの拡散部分の屈折率は、同図(d
)に示されているように他の部分の基板よりも低下し、
光導波路31との間に大きな屈折率差を生む。このため
、光導波路31内を伝搬する光は基板1内ににじみにく
くなり、光結合は生じない。Next, using FIG. 4, the refractive index distributions of an optical waveguide manufactured by a conventional manufacturing method and an optical waveguide manufactured by a manufacturing method according to the present invention will be compared. Figure (a)
and (b) show a top view of a conventional optical waveguide and its refractive index distribution, and (c) and (d) of the same figure show a top view of an optical waveguide produced by the manufacturing method according to the present invention and its refractive index distribution. shows. As shown in (a) and (b) of the same figure, the optical waveguides 31 at the ends of the coupling portion 6 are slightly closer to each other because the radius of curvature is increased to suppress optical loss. . Therefore, the light seeping out from both optical waveguides 31 is likely to couple with each other. However, when the manufacturing method according to the present invention is used, MgO is injected into the substrate 1 by diffusion into the substrate 1 between the curved optical waveguides 31 at the ends of the coupling portion 6 (the same Figures (c) and (d) shown)
. Therefore, the refractive index of the diffused portion of MgO is
) is lower than other parts of the board, as shown in
A large refractive index difference is produced between the optical waveguide 31 and the optical waveguide 31. Therefore, the light propagating within the optical waveguide 31 is less likely to leak into the substrate 1, and optical coupling does not occur.
【0020】以上、説明した通り、本発明では誘電体(
LiNbO3 )導波路について示したが、半導体やガ
ラス導波路についても屈折率低下物質を選定して用いる
ことにより同様の効果を生むことが十分可能である。As explained above, in the present invention, the dielectric (
Although the above description has been made regarding the LiNbO3 (LiNbO3) waveguide, it is fully possible to produce similar effects for semiconductor or glass waveguides by selecting and using a refractive index lowering material.
【0021】なお、基板内の屈折率差を変化させて所望
の光分岐比・結合比を得る場合にイオン交換法を用いる
方法が特開昭61−241706号に示されているが、
光導波路の結合部端部に生じる不要な光結合を防止する
ための対策は、とられていない。[0021] Note that Japanese Patent Laid-Open No. 61-241706 discloses a method using an ion exchange method to obtain a desired optical branching ratio/coupling ratio by changing the refractive index difference within the substrate.
No measures have been taken to prevent unnecessary optical coupling occurring at the coupling end of the optical waveguide.
【0022】[0022]
【発明の効果】本発明によれば、結合部の端部の基板に
屈折率低下物質がドープされることにより、結合部以外
での不必要な光の結合を抑えることができる。従って、
設計値通りの結合長を有する光分岐結合器を製造するこ
とができ、所望の分岐比、及び結合比を得ることができ
る。According to the present invention, by doping the substrate at the end of the coupling portion with a refractive index lowering substance, unnecessary coupling of light outside the coupling portion can be suppressed. Therefore,
An optical branching/coupling device having a coupling length as designed can be manufactured, and a desired branching ratio and coupling ratio can be obtained.
【0023】また、屈折率低下物質として、その拡散係
数が光導波路を構成する物質よりも大きい物質を用いる
ため、屈折率低下物質の拡散処理時の諸条件によって光
導波路の特性は影響を受けるおそれがない。従って、良
好な特性の光分岐結合器を得ることができる。Furthermore, since a substance whose diffusion coefficient is larger than that of the material constituting the optical waveguide is used as the refractive index reducing substance, the characteristics of the optical waveguide may be affected by various conditions during the diffusion process of the refractive index reducing substance. There is no. Therefore, an optical branching coupler with good characteristics can be obtained.
【0024】さらに、電極等を配置することにより、高
い消光比を有するスイッチの製造も可能となる。Furthermore, by arranging electrodes and the like, it is possible to manufacture a switch having a high extinction ratio.
【図1】本発明の実施例に係る製造方法を経た光分岐結
合器を示す図である。FIG. 1 is a diagram showing an optical branching coupler that has undergone a manufacturing method according to an embodiment of the present invention.
【図2】本発明の実施例に係る製造方法を示す工程別素
子断面図である。FIG. 2 is a cross-sectional view of an element according to steps showing a manufacturing method according to an embodiment of the present invention.
【図3】本発明の実施例に係る製造方法を示す工程別素
子上面図である。FIG. 3 is a top view of an element according to steps showing a manufacturing method according to an embodiment of the present invention.
【図4】従来、及び本発明に係る光分岐結合器の上面図
とその屈折率分布を示す図である。FIG. 4 is a top view of a conventional optical branching coupler and a diagram showing the refractive index distribution of the optical branching coupler according to the present invention.
【図5】従来の製造方法による光分岐結合器の斜視図で
ある。FIG. 5 is a perspective view of an optical branching coupler manufactured by a conventional manufacturing method.
1…誘電体基板 2及び21…レジストマスク 3…光導波路パターン 31…光導波路 4…結合部端部 41…屈折率低下物質 6…結合部 1...Dielectric substrate 2 and 21...Resist mask 3...Optical waveguide pattern 31...Optical waveguide 4…Connection end 41...Refractive index lowering substance 6...Joining part
Claims (2)
行に配設され、かつ分岐部もしくは結合部でこれら光導
波路が相互に近接して形成された光分岐結合器において
、前記分岐部もしくは結合部の端部である前記光導波路
相互間の基板の屈折率が、当該部分以外の基板の屈折率
よりも低いことを特徴とする光分岐結合器。1. An optical branching/coupling device in which at least two optical waveguides are arranged parallel to each other and these optical waveguides are formed close to each other at a branching section or coupling section, wherein the branching section or coupling section An optical branching/coupling device characterized in that the refractive index of the substrate between the optical waveguides, which is the end portion of the portion, is lower than the refractive index of the substrate other than the portion.
もしくは結合部を形成する少なくとも2本の光導波路を
、基板中に屈折率上昇用の第1の物質をドープすること
で形成する工程と、前記分岐部もしくは結合部の端部で
ある前記光導波路間の前記基板内に、前記第1の物質よ
りも大きい拡散係数を有し、かつ前記基板の屈折率を下
げる性質を有する第2の物質をドープする工程とを備え
ることを特徴とする光分岐結合器の製造方法。2. A step of forming at least two optical waveguides that are partially parallel and close to each other to form a branching part or a coupling part by doping a first substance for increasing the refractive index into the substrate. and a second material having a diffusion coefficient larger than that of the first material and having a property of lowering the refractive index of the substrate, in the substrate between the optical waveguides that are the ends of the branching part or the coupling part. 1. A method for manufacturing an optical branching coupler, comprising the step of doping with a substance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3021950A JPH04260006A (en) | 1991-02-15 | 1991-02-15 | Optical branching and coupling device and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3021950A JPH04260006A (en) | 1991-02-15 | 1991-02-15 | Optical branching and coupling device and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04260006A true JPH04260006A (en) | 1992-09-16 |
Family
ID=12069346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3021950A Pending JPH04260006A (en) | 1991-02-15 | 1991-02-15 | Optical branching and coupling device and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04260006A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6404957B1 (en) | 1997-11-05 | 2002-06-11 | Samsung Electronics, Co., Ltd. | Optical power divider and fabrication method thereof |
-
1991
- 1991-02-15 JP JP3021950A patent/JPH04260006A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6404957B1 (en) | 1997-11-05 | 2002-06-11 | Samsung Electronics, Co., Ltd. | Optical power divider and fabrication method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2809517B2 (en) | Branch and multiplex optical waveguide circuit | |
JPH04234005A (en) | Manufacture of lightguide tube by ion exchange method | |
WO1999012062A1 (en) | Integrated optical polariser | |
US20210356664A1 (en) | Optical waveguide tuning element | |
KR970072031A (en) | Manufacturing method of optical wave optical circuit on flat plane | |
JP2621519B2 (en) | Optical waveguide and method of manufacturing the same | |
JPH05173030A (en) | Bending structure of optical waveguide | |
JPH04260006A (en) | Optical branching and coupling device and production thereof | |
JP2655678B2 (en) | Integrated optical waveguide, method of manufacturing the same, and electro-optic modulator using integrated optical waveguide | |
JPH04131806A (en) | Optical directional coupler | |
US7499613B2 (en) | Y branch circuit and method for manufacturing the same | |
US6650819B1 (en) | Methods for forming separately optimized waveguide structures in optical materials | |
JP3220003B2 (en) | Polarization separation element | |
JPS63184708A (en) | Thin film optical circuit | |
JPS5960405A (en) | Optical waveguide and its manufacture | |
JPH07270634A (en) | Manufacture of optical waveguide and optical waveguide substrate | |
JPS63147111A (en) | Optical waveguide circuit | |
JPH10197737A (en) | Production of optical waveguide circuit | |
JP2705790B2 (en) | Optical waveguide and method for forming the same | |
JP3965060B2 (en) | Manufacturing method of waveguide type optical component with thin film heater | |
JPH05257021A (en) | Production of optical waveguide | |
JPH0312640A (en) | Optical coupler, its manufacture, and optical switch | |
JPH03155505A (en) | Optical waveguide and its manufacture | |
KR100374345B1 (en) | Method for manufacturing buried optical waveguide | |
JPH03252610A (en) | Production of optical waveguide |