JPH04259853A - Water immersion type ultrasonic flaw detection - Google Patents

Water immersion type ultrasonic flaw detection

Info

Publication number
JPH04259853A
JPH04259853A JP3020999A JP2099991A JPH04259853A JP H04259853 A JPH04259853 A JP H04259853A JP 3020999 A JP3020999 A JP 3020999A JP 2099991 A JP2099991 A JP 2099991A JP H04259853 A JPH04259853 A JP H04259853A
Authority
JP
Japan
Prior art keywords
flaw detection
probe
echo
ultrasonic flaw
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3020999A
Other languages
Japanese (ja)
Other versions
JP2863328B2 (en
Inventor
Shinichi Fukuda
真一 福田
Mitsuhiro Ikemoto
池本 満博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3020999A priority Critical patent/JP2863328B2/en
Publication of JPH04259853A publication Critical patent/JPH04259853A/en
Application granted granted Critical
Publication of JP2863328B2 publication Critical patent/JP2863328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect a micro defect present in the vicinity of the surface of a steel material with high sensitivity by setting the water distance of a probe of a specific frequency and a specific focal length so that ultrasonic beams are converged in a specific range including the surface of the material. CONSTITUTION:The water distance (distance from a probe to the surface of a material to be inspected) for a probe having a frequency of not smaller than 15MHz and not larger than 50MHz and a focal length of not smaller than 12.7mm and not larger than 38.1mm is set so that ultrasonic beams are converged in the range of 2mm below the surface of water including the surface of the material. When this kinds of point convergent ultrasonic waves is brought into the material from the surface perpendicularly within + or -5 degrees, a multi- reflecting echo generated from a micro defect within 2mm from the surface can be detected. Therefore, a defect below the surface can be detected by utilizing the multi-reflecting echo. If a wide-band probe having a narrow pulse width is used, the insensitivity band of the surface echo can be reduced more.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は板、管および棒材等の鋼
材の表面近傍(以下皮下と記す)に存在する微小欠陥を
検出するための超音波探傷方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection method for detecting minute defects existing near the surface (hereinafter referred to as "subcutaneous") of steel materials such as plates, pipes, and bars.

【0002】0002

【従来の技術】近年、サワーガス用のラインパイプ等、
使用条件の厳しい製品が増加し、品質の均一性保証に対
する要求が強くなってきている。特に、水素誘起割れ(
以下HlCと記す)を生じて問題となる非金属介在物に
おいて、5〜500μm 程度の大きさの硫化物系(M
nS等)の微小介在物は肉厚中央部に存在することが多
い。一方、5〜500μm 程度の大きさの酸化物系(
Al2 O3 等)の微小介在物は表面直下1mm以内
に存在することが多い。
[Prior Art] In recent years, line pipes for sour gas, etc.
As the number of products that require strict usage conditions increases, there is a growing demand for guaranteed quality uniformity. In particular, hydrogen-induced cracking (
Among the nonmetallic inclusions that cause problems (hereinafter referred to as HLC), sulfide-based inclusions (M
Microscopic inclusions (such as nS) are often present in the center of the wall thickness. On the other hand, oxides with a size of about 5 to 500 μm (
Microscopic inclusions (such as Al2O3) often exist within 1 mm directly below the surface.

【0003】一般的な超音波探傷方法として被検材の表
面から垂直に超音波を入射する垂直法では、日本学術振
興会・日刊工業新聞社発行(昭和52年12月20日)
の「超音波探傷法(改訂新版)」と題する文献中の17
9〜180頁において示されているように、肉厚中央部
の内質部の欠陥は十分検出可能であるが、表面から数m
m以内の皮下欠陥は送信パルス(水浸法の場合は表面エ
コー)による探傷不能領域いわゆる不感帯が生じて、探
傷できない部位が残るという不都合がある。
[0003] As a general ultrasonic flaw detection method, the perpendicular method in which ultrasonic waves are incident perpendicularly from the surface of the test material is described in the paper published by the Japan Society for the Promotion of Science and Nikkan Kogyo Shimbun (December 20, 1978).
17 in the document entitled "Ultrasonic flaw detection method (revised new edition)"
As shown on pages 9 to 180, defects in the endoplasmic part at the center of the wall thickness can be sufficiently detected, but
Subcutaneous defects within m are disadvantageous in that a so-called dead zone, which cannot be detected by transmitted pulses (in the case of water immersion method, surface echo), occurs, leaving areas that cannot be detected.

【0004】鋼材表面および皮下に存在する欠陥を検出
する手段としては、前記文献に論じられているように表
面波を使用して表層部のみを探傷する超音波探傷法があ
る。表面波法は波長の2倍以内(例えば周波数が10M
Hz の場合には0.6mm程度である)の皮下に存在
する欠陥は検出可能であるが、一般的な垂直探傷法の不
感帯を確実に補えるものではない。周波数を低くするこ
とにより表面波の浸透深さは深くなるが欠陥の検出限界
寸法は波長に比例することより、検出特性は逆に低下し
、微小欠陥の検出が困難となる。従って、皮下に存在す
る内質部の微小欠陥を確実に検出する高精密探傷法の確
立が望まれている。
[0004] As a means for detecting defects existing on the surface of steel materials and under the skin, there is an ultrasonic flaw detection method that uses surface waves to detect flaws only in the surface layer, as discussed in the above-mentioned literature. The surface wave method is used when the frequency is within twice the wavelength (for example, the frequency is 10M).
Although it is possible to detect defects existing under the skin (approximately 0.6 mm in the case of Hz), it cannot reliably compensate for the dead zone of the general vertical flaw detection method. By lowering the frequency, the penetration depth of the surface waves becomes deeper, but since the detection limit size of defects is proportional to the wavelength, the detection characteristics conversely deteriorate, making it difficult to detect minute defects. Therefore, it is desired to establish a high-precision flaw detection method that reliably detects minute defects in the endoplasmic part existing under the skin.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
従来方法の欠点をなくすためになされたもので、高周波
数、集束超音波を被検材に対して垂直入射し、鋼材の表
面から2mm以内の領域に存在する微小欠陥から発生す
る多重反射エコーを検出することにより微小欠陥を高感
度で検出することを目的とする。
[Problems to be Solved by the Invention] The present invention was made in order to eliminate the drawbacks of such conventional methods. The purpose is to detect micro defects with high sensitivity by detecting multiple reflection echoes generated from micro defects existing in an area of 2 mm or less.

【0006】[0006]

【課題を解決するための手段】周波数が15MHz 以
上50MHz 以下、且つ焦点距離が12.7mm以上
38.1mm以下の探触子を被検材の表面を含む皮下2
mmの範囲で超音波ビームが集束するように水距離を設
定し、該点集束超音波を被検材に対して表面から垂直入
射し、表面から2mm以内の領域に存在する微小欠陥か
ら発生する多重反射エコーを検出することを特徴とする
水浸式超音波探傷方法である。
[Means for solving the problem] A probe with a frequency of 15 MHz or more and 50 MHz or less and a focal length of 12.7 mm or more and 38.1 mm or less is placed under the skin 2, including the surface of the specimen.
The water distance is set so that the ultrasonic beam is focused in the range of mm, and the point-focused ultrasonic wave is perpendicularly incident on the surface of the material to be inspected, and is generated from minute defects existing within an area of 2 mm from the surface. This is a water immersion ultrasonic flaw detection method characterized by detecting multiple reflected echoes.

【0007】図1は従来の水浸法による垂直超音波探傷
法を示す。図1に示すように、探触子1から水2を介し
て超音波ビーム3を被検材4内に垂直入射したときの超
音波探傷器5のブラウン管図形6としては、超音波ビー
ム3が入射した点Sにて、表面エコーS1 が現れ、裏
面側のB点にて底面エコーB1 が現れる。この場合、
表面近傍2mm以内は表面エコーS1 の不感帯(図1
の斜線部)となり探傷不能であった。
FIG. 1 shows a conventional vertical ultrasonic flaw detection method using a water immersion method. As shown in FIG. 1, the cathode ray tube figure 6 of the ultrasonic flaw detector 5 when the ultrasonic beam 3 is perpendicularly incident into the test material 4 from the probe 1 through the water 2 is the ultrasonic beam 3. A surface echo S1 appears at the incident point S, and a bottom echo B1 appears at a point B on the back side. in this case,
The area within 2 mm near the surface is the dead zone of surface echo S1 (Fig. 1
(shaded area), making it impossible to detect flaws.

【0008】以下、本発明の詳細を図面により説明する
。本発明者等は種々の実験を重ね、超音波波形を解析し
た結果、探傷条件の最適化によって表面から2mm以内
に存在する欠陥から多重反射エコーが得られることを見
出した。従って、この多重反射エコーを利用することに
より、皮下欠陥が検出できるとの確信を得た。図2は表
面から0.3mmの位置に存在する微小欠陥からの多重
反射エコーの発生状況を示す図である。この図に示すよ
うに、高周波数、集束超音波ビームを被検材に対して垂
直入射することによって、表面エコーによる不感帯を少
なくでき、表面近傍に存在する微小欠陥から多重反射エ
コーFが得られることが判明し、従来の垂直超音波探傷
法では表面エコーに隠れ、検出困難であった皮下欠陥が
確実に検出できることを確認した。なお図2の破線が従
来の垂直超音波探傷法の表面エコーの領域を示す。この
多重反射エコーの発生は周波数と焦点距離により大きく
影響される。表1(a)は表面から0.1mmの位置の
0.5mmφ平底ドリル穴を各種探傷条件により探傷し
た結果を示す。表1(b)は表面から2.0mmの位置
の0.5mmφ平底ドリル穴を各種探傷条件により探傷
した結果を示す。表中の○印は0.5mmφ平底ドリル
穴を検出でき、×印は検出不能であることを示す。
The details of the present invention will be explained below with reference to the drawings. As a result of various experiments and analysis of ultrasonic waveforms, the present inventors found that by optimizing the flaw detection conditions, multiple reflected echoes could be obtained from defects existing within 2 mm from the surface. Therefore, we were confident that subcutaneous defects could be detected by using this multiple reflection echo. FIG. 2 is a diagram showing how multiple reflected echoes are generated from a minute defect located 0.3 mm from the surface. As shown in this figure, by making a high-frequency, focused ultrasonic beam perpendicularly incident on the specimen, the dead zone caused by surface echoes can be reduced, and multiple reflection echoes F can be obtained from minute defects existing near the surface. It was confirmed that subcutaneous defects, which were hidden by surface echoes and difficult to detect using conventional vertical ultrasonic flaw detection methods, could be reliably detected. Note that the broken line in FIG. 2 indicates the surface echo area of the conventional vertical ultrasonic flaw detection method. The occurrence of multiple reflection echoes is greatly influenced by frequency and focal length. Table 1(a) shows the results of flaw detection of a 0.5 mmφ flat bottom drill hole located 0.1 mm from the surface under various flaw detection conditions. Table 1(b) shows the results of flaw detection of a 0.5 mmφ flat bottom drill hole located 2.0 mm from the surface under various flaw detection conditions. The circle mark in the table indicates that a 0.5 mmφ flat bottom drill hole can be detected, and the cross mark indicates that it cannot be detected.

【0009】[0009]

【表1】[Table 1]

【0010】0010

【表2】[Table 2]

【0011】表1に示すように周波数が15MHz 以
上50MHz 以下、焦点距離が12.7mm以上38
.1mm以下の点集束超音波によって、皮下0.1〜2
.0mmの範囲の微小欠陥から多重反射エコーが得られ
ることが認められた。なお、多重反射エコーを得るため
には、水距離の設定は表面を含む皮下2mmの範囲にお
いて超音波ビームを集束し、入射角の設定は±5度以内
で垂直探傷する必要がある。図3は表面から欠陥までの
距離を種々変えた場合の多重反射エコーの発生状況の一
例を示す。探傷条件は周波数25MHz 、振動子寸法
10mmφ、焦点距離25.4mmの点集束広帯域型探
触子を被検材の表面から1mmの深さの位置で、超音波
ビームを集束するように水距離(探触子から被検材表面
までの距離)を設定した。欠陥は板の裏面側から0.5
mmφの平底ドリル穴を加工した。なお、表面側から0
.1mm未満の深さの平底ドリル穴は加工困難であるの
で、検出特性の確認は出来なかった。この図に示すよう
に表面から0.1〜2.0mmの範囲では多重反射エコ
ーが得られ、確実に皮下欠陥の検出ができる。なお、探
触子としてパルス幅の狭い広帯域型探触子を使用するこ
とにより表面エコーの不感帯をより少なくすることが可
能である。
As shown in Table 1, the frequency is 15 MHz or more and 50 MHz or less, and the focal length is 12.7 mm or more.
.. Subcutaneously 0.1 to 2
.. It was observed that multiple reflection echoes were obtained from minute defects in the range of 0 mm. In order to obtain multiple reflected echoes, it is necessary to set the water distance so that the ultrasonic beam is focused within a range of 2 mm below the skin, including the surface, and to set the incident angle for vertical flaw detection within ±5 degrees. FIG. 3 shows an example of how multiple reflection echoes occur when the distance from the surface to the defect is varied. The flaw detection conditions were to use a point-focusing broadband type probe with a frequency of 25 MHz, a transducer size of 10 mm, and a focal length of 25.4 mm at a depth of 1 mm from the surface of the material being tested, and at a water distance ( The distance from the probe to the surface of the material being tested was set. The defect is 0.5 from the back side of the board.
A flat bottom drill hole of mmφ was machined. In addition, 0 from the surface side
.. Since it is difficult to machine a flat-bottomed drill hole with a depth of less than 1 mm, it was not possible to confirm the detection characteristics. As shown in this figure, multiple reflected echoes can be obtained within a range of 0.1 to 2.0 mm from the surface, making it possible to reliably detect subcutaneous defects. Note that by using a broadband probe with a narrow pulse width as the probe, it is possible to further reduce the dead zone of the surface echo.

【0012】0012

【実施例】周波数25MHz 、振動子寸法10mmφ
、焦点距離25.4mmの点集束広帯域型探触子を被検
材の表面から1mmの深さの位置で、超音波ビームを集
束するように水距離を設定し、探傷ゲートを表面エコー
の立ち上がりから0.5〜2.5mmの範囲に設定し、
水浸超音波試験装置により0.1mmピッチで方形走査
し探傷した。なお、被検材はHlC試験後の平板(幅2
0mm、長さ100mm、板厚10mm)を用いた。図
4はHlC試験片の超音波探傷結果および切断試験結果
の一例を示す。図4(a)は被検材探傷後のCスコープ
図形(平面図)を示し、図4(b)はCスコープ図形の
X−X′断面を切断試験した結果を示す。この図に示す
ように、表面直下から0.1mmの位置に存在する割れ
が確実に検出できることが、切断試験から確認できた。
[Example] Frequency 25MHz, vibrator size 10mmφ
, the water distance was set to focus the ultrasonic beam using a point-focusing broadband probe with a focal length of 25.4 mm at a depth of 1 mm from the surface of the material to be inspected, and the flaw detection gate was set at the rising edge of the surface echo. Set in the range of 0.5 to 2.5 mm from
Flaws were detected by scanning rectangularly at a pitch of 0.1 mm using a water immersion ultrasonic testing device. The material to be tested is a flat plate (width 2
0 mm, length 100 mm, and plate thickness 10 mm). FIG. 4 shows an example of the ultrasonic flaw detection results and cutting test results of the HIC test piece. FIG. 4(a) shows the C scope figure (plan view) after flaw detection of the test material, and FIG. 4(b) shows the result of a cutting test on the XX' cross section of the C scope figure. As shown in this figure, it was confirmed from the cutting test that cracks existing at a position 0.1 mm from just below the surface could be reliably detected.

【0013】[0013]

【発明の効果】本発明によれば、従来の水浸垂直探傷法
では表面エコーの不感帯となっていた表面から2.0m
m以内に存在する内質部の微小欠陥を確実に検出するこ
とができ、鋼材の表面近傍の品質保証精度を著しく向上
させることができる。
[Effect of the invention] According to the present invention, it is possible to improve the accuracy by 2.0 m from the surface, which was a dead zone for surface echoes in the conventional water immersion vertical flaw detection method.
It is possible to reliably detect micro-defects in the internal parts that exist within m, and it is possible to significantly improve quality assurance accuracy near the surface of steel materials.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】従来の水浸法による垂直超音波探傷法を示す図
FIG. 1 is a diagram showing a vertical ultrasonic flaw detection method using a conventional water immersion method.

【図2】表面から0.3mmの位置に存在する微小欠陥
からの多重反射エコーの発生状況を示す図。
FIG. 2 is a diagram showing how multiple reflected echoes are generated from a minute defect located 0.3 mm from the surface.

【図3】表面から欠陥までの距離を種々変えた場合の多
重反射エコーの発生状況の一例を示す図。
FIG. 3 is a diagram showing an example of how multiple reflection echoes occur when the distance from the surface to the defect is varied.

【図4】HIC試験片の超音波探傷結果および切断試験
結果の一例を示す図。
FIG. 4 is a diagram showing an example of ultrasonic flaw detection results and cutting test results of a HIC test piece.

【符号の説明】[Explanation of symbols]

1    探触子 2    水 3    超音波ビーム 4    被検材 5    超音波探傷器 6    ブラウン管図形 S1   表面エコー B1   底面エコー F    多重反射エコー 1. Probe 2 Water 3 Ultrasonic beam 4 Test material 5 Ultrasonic flaw detector 6 CRT diagram S1 Surface echo B1 Bottom echo F Multiple reflection echo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  周波数が15MHz 以上50MHz
 以下、且つ焦点距離が12.7mm以上38.1mm
以下の探触子を被検材の表面を含む皮下2mmの範囲で
超音波ビームが集束するように水距離を設定し、該点集
束超音波を被検材に対して表面から±5度以内で垂直入
射し、表面から2mm以内の領域に存在する微小欠陥か
ら発生する多重反射エコーを検出することを特徴とする
水浸式超音波探傷方法。
[Claim 1] Frequency is 15MHz or more and 50MHz
or less, and the focal length is 12.7 mm or more and 38.1 mm
Set the water distance so that the ultrasonic beam is focused within a range of 2 mm subcutaneously, including the surface of the test material, using the following probe, and apply the point-focused ultrasound to the test material within ±5 degrees from the surface. A water immersion ultrasonic flaw detection method characterized by detecting multiple reflected echoes generated from minute defects existing within 2 mm from the surface by vertically incident on the surface.
JP3020999A 1991-02-14 1991-02-14 Water immersion ultrasonic inspection method Expired - Lifetime JP2863328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3020999A JP2863328B2 (en) 1991-02-14 1991-02-14 Water immersion ultrasonic inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3020999A JP2863328B2 (en) 1991-02-14 1991-02-14 Water immersion ultrasonic inspection method

Publications (2)

Publication Number Publication Date
JPH04259853A true JPH04259853A (en) 1992-09-16
JP2863328B2 JP2863328B2 (en) 1999-03-03

Family

ID=12042812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3020999A Expired - Lifetime JP2863328B2 (en) 1991-02-14 1991-02-14 Water immersion ultrasonic inspection method

Country Status (1)

Country Link
JP (1) JP2863328B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2883640A1 (en) * 2005-03-23 2006-09-29 Snecma Moteurs Sa Ultrasonic examination device for SPFDB type blade, has tank filled with water, and transducer emitting beam of ultrasonic waves with specific frequency, where water column between transducer and blade is equal to focal length of transducer
JP2007271267A (en) * 2006-03-30 2007-10-18 Sumiju Shiken Kensa Kk Method of inspecting damage and corrosion thickness reduction phenomenon, caused by hydrogen
WO2017090572A1 (en) 2015-11-27 2017-06-01 Jfeスチール株式会社 Method and device for measuring hydrogen-induced cracking

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552230B2 (en) * 2005-06-02 2010-09-29 住友金属工業株式会社 Ultrasonic flaw detection method and apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2883640A1 (en) * 2005-03-23 2006-09-29 Snecma Moteurs Sa Ultrasonic examination device for SPFDB type blade, has tank filled with water, and transducer emitting beam of ultrasonic waves with specific frequency, where water column between transducer and blade is equal to focal length of transducer
JP2007271267A (en) * 2006-03-30 2007-10-18 Sumiju Shiken Kensa Kk Method of inspecting damage and corrosion thickness reduction phenomenon, caused by hydrogen
JP4511487B2 (en) * 2006-03-30 2010-07-28 住重試験検査株式会社 Inspection method of damage and corrosion thinning phenomenon caused by hydrogen
WO2017090572A1 (en) 2015-11-27 2017-06-01 Jfeスチール株式会社 Method and device for measuring hydrogen-induced cracking
KR20180070661A (en) 2015-11-27 2018-06-26 제이에프이 스틸 가부시키가이샤 Method and apparatus for measuring hydrogen organic cracking
US10788461B2 (en) 2015-11-27 2020-09-29 Jfe Steel Corporation Method and apparatus for measuring hydrogen-induced cracking

Also Published As

Publication number Publication date
JP2863328B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
US6125704A (en) Ultrasonic technique for inspection of weld and heat-affected zone for localized high temperature hydrogen attack
CN108802191A (en) A kind of water logging defect detection on ultrasonic basis of rolled steel defect
JPH05333000A (en) Ultrasonic flaw detector
JPH04259853A (en) Water immersion type ultrasonic flaw detection
US4596142A (en) Ultrasonic resonance for detecting changes in elastic properties
Kays et al. Air-coupled ultrasonic non-destructive testing of aerospace components
Gauthier et al. EMAT generation of horizontally polarized guided shear waves for ultrasonic pipe inspection
JPS6318263A (en) Ultrasonic flaw detection for bolt
GB2292610A (en) Crack detection in a sheet of material around a fastener hole
Alers et al. Visualization of surface elastic waves on structural materials
RU2813144C1 (en) Method for setting up ultrasonic flaw detector when inspecting ceramic products
JPH10221308A (en) Method and device of detecting ruptured part in metal and probe
Chiou et al. Ultrasonic detection of cracks below bolts in aircraft skins
Hesse et al. Defect detection in rails using ultrasonic surface waves
Prabhakaran et al. Time of flight diffraction: an alternate non-destructive testing procedure to replace traditional methods
JPH07325070A (en) Ultrasonic method for measuring depth of defect
Seiger et al. Ultrasonic inspection of the spherically shaped perforated areas of light water reactor pressure vessels
Grimsley et al. Harmonic Imaging of Local Plastic Regions in Metals By Mode Converted Transverse Wave and Longitudinal Thickness-Mode Local Resonance Techniques
JPS6285859A (en) Ultrasonic flaw detecting method for stainless steel coated tube
Rao et al. Time-of-flight measurements with shear horizontal waves
JP2005201800A (en) Ultrasonic flaw detection method for end part of steel sheet
JPH05332996A (en) Detection of surface defect of steel pipe
Mustafa et al. Julie Gauthier
Kim et al. The development of simplified ultrasonic CT system and its application to the evaluation of weld metal
Gauthier et al. EMAT generation of polarized shear waves for pipe inspection

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981117