JPH0425966B2 - - Google Patents

Info

Publication number
JPH0425966B2
JPH0425966B2 JP59108089A JP10808984A JPH0425966B2 JP H0425966 B2 JPH0425966 B2 JP H0425966B2 JP 59108089 A JP59108089 A JP 59108089A JP 10808984 A JP10808984 A JP 10808984A JP H0425966 B2 JPH0425966 B2 JP H0425966B2
Authority
JP
Japan
Prior art keywords
poly
antithrombotic
polyurethane
methyl
oxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59108089A
Other languages
Japanese (ja)
Other versions
JPS60252617A (en
Inventor
Kenichi Sasaki
Naoki Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP59108089A priority Critical patent/JPS60252617A/en
Publication of JPS60252617A publication Critical patent/JPS60252617A/en
Publication of JPH0425966B2 publication Critical patent/JPH0425966B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はすぐれた抗血栓性を有する熱可塑性エ
ラストマーに関するものである。 本来高分子材料は生体にとつて異物であり、血
液が異物に接触すると血漿蛋白の吸着が起り、続
いて血小板が粘着凝集して血栓を形成する。その
ため血液と接触する医用高分子材料としては、抗
血栓性を備えていなければならないことが第一の
条件である。具体的には人工心臓、補助人工心
臓、血管カテーテル、血液バツク、血液ポンプ等
の材料が挙げられる。 〔従来の技術〕 このような材料としては数多く提案されている
が、特に機械的な強度と抗血栓性の点からセグメ
ント化ポリウレタンが優れており、例えば米国
Ethicon社のBiomer、米国特許第3562352号に記
載されているポリシロキサンとポリウレタンの共
重合体が商品名Cardiothaneとして実用に供せら
れている。また公開特許公報昭57−211358では、
抗血栓性と力学的性質をあわせもつた新規抗血栓
性エラストマーとして、主鎖中に有機珪素重合体
と含有したポリウレタンまたはポリウレタンウレ
アが提案されている。 〔発明が解決しようとする問題点〕 一方、抗血栓性材料の臨床例が数多く積重ねら
れるに従いますますよりすぐれた抗血栓性材料が
望まれるに至つている。例えばセグメント化ポリ
ウレタンやCardiothaneを用いた補助心臓の臨床
例によれば、心臓回復に伴い補助心臓の役割を軽
減して血液流量を少くした場合、また血液ポンプ
の拍出量に変動が出た場合、血栓形成の危険が出
てくるし、血液流速を確保するためにポンプ容量
の小さい血液ポンプを使用するとカルシウムや燐
の沈着する傾向が見られることが報告されてい
る。(例えば第13回医用高分子シンンポジウム要
旨集P29(1984)東大医、渥美和彦他“臨床用人
工心臓ポンプの抗血栓性の評価”) 〔問題点を解決するための手段〕 本発明者らは以上の見地から抗血栓性材料とし
て有望と云われているミクロ相分離構造を持つブ
ロツク共重合体、グラフト共重合体等の一連の検
討を行い、親水性のブロツクを持ち、ミクロ相分
離構造を形成するセグメント化ポリウレタン、特
にポリ(オキシ―2―メチル―1,3―プロパ
ン)ジオールおよびポリオルガノシロキサンから
生成したソフトセグメントを含有するポリウレタ
ンまたはポリウレタン・ウレアがすぐれた抗血栓
性を示すことを見出し、本発明に到達したのであ
る。 すなわち本発明は有機ジイソシアネートを数平
均分子量が200〜3000のポリ(オキシ―2―メチ
ル―1,3―プロパン)ジオールと数平均分子量
が200〜3000のポリオルガノシロキサンとを反応
させて、ソフトセグメントの含有量が40〜70重量
%のポリウレタンまたはポリウレタンウレアを得
ることを特徴とする熱可塑性抗血栓性エラストマ
ーの製造方法を提供するものである。本発明の熱
可塑性抗血栓性エラストマーに於てはソフトセグ
メントの含有量が40〜70重量%であることが好ま
しく、更にポリ(オキシ―2―メチル―1,3―
プロパン)ジオールから生成するソフトセグメン
トの含有量が20〜50重量%、ポリオルガノシロキ
サンから生成するソフトセグメントの含有量が5
〜30重量%であることが好ましい。 ポリ(オキシ―2―メチル―1,3―プロパ
ン)ジオールは特開昭58−126828号公報にも記載
されるように2―メチル―1,3―プロパンジオ
ールより3―メチル・オキセタンを経てそのカチ
オン開環重合によつて得られ、特に本発明に用い
られるポリ(オキシ―2―メチル―1,3―プロ
パン)ジオールとしては数平均分子量が好ましく
は200ないし3000、更に好ましくは400〜2000であ
る。数平均分子量が200以下になると本発明の抗
血栓性エラストマーの特徴の一つであるミクロ相
分離傾向が不完全になるし、3000以上になると抗
血栓性の発現がそこなわれるからである。またポ
リ(オキシ―2―メチル―1,3―プロパン)ジ
オールのオキシ―2―メチル―1,3―プロパン
単位の一部を他のオキシ―アルキレン単位例えば
オキシ・テトラメチレン単位で置き換えることも
出来るが、抗血栓性の見地からオキシ―2―メチ
ル―1,3―プロパン単位は少くとも80モル%以
上含まれることが望ましい。これらのポリ(オキ
シ―2―メチル―1,3―プロパン)ジオールは
側鎖に疎水性のメチル基をもち、ポリ(オキシテ
トラメチレン)ジオールやポリエチレングリコー
ル等と異なり本質的に非晶性でセグメント運動を
おこし易く、同様にポリウレタンまたはポリウレ
タン・ウレアに組込まれた後述する疎水性のポ
リ・オルガノ・シロキサンの寄与と相まつて、表
面自由エネルギーの低い空気接触面側に移動し
て、抗血栓性付与に適した親水性―疎水性のバラ
ンスとミクロ相分離状の高次構造を持つポリマー
表面を与える。更に1級と2級の水酸基をもつポ
リ(オキシ―1,2―プロパン)ジオールの場合
と異なつてポリ(オキシ―2―メチル―1,3―
プロパン)ジオールでは両末端共反応性の高い1
級の水酸基を持つため、ウレタン化またはウレタ
ン・ウレア化した場合、分子量の高い機械的性質
のすぐれたポリウレタンまたはポリウレタン・ウ
レアを与えるし、ブロツク構造ないしはグラフト
構造の設計が容易であるという大きな特徴をも
つ。 また本発明で用いられるポリオルガノシロキサ
ンとしてはポリジメチルシロキサン、ポリメチル
フエニルシロキサン、ポリジフエニルシロキサ
ン、ポリフルオロアルキルシロキサン等が挙げら
れるが、特にバルキーな基を持たないため、ポリ
シロキサンの特徴と出し易いポリジメチルシロキ
サンが好ましい。更にこれらのポリオルガノシロ
キサンをウレタン結合、またはウレタン・ウレア
結合によりポリマー鎖に組み込むためには、両末
端にカルビノール基またはアミノ基を持つことが
望ましい。また用いるポリオルガノシロキサンの
分子量は前述したポリ(オキシ―2―メチル―
1,3―プロパン)ジオールの場合と同様な理由
によつて数平均分子量として200ないし3000のも
のが望ましい。 次にポリ(オキシ―2―メチル―1,3―プロ
パン)ジオールおよびポリオルガノシロキサンか
ら生成したソフトセグメントを含有するポリウレ
タンまたはポリウレタンウレアの合成法について
述べる。 一般にポリウレタンまたはポリウレタンウレア
の合成には各成分を一度に反応容器に仕込んで反
応させるワン・シヨツト法と、予じめ両末端イソ
シアネート基のポリ(オキシ―2―メチル―1,
3―プロパン)ジオールおよびポリオルガノシロ
キサンのプレポリマーを合成し短鎖のジオール又
はジアミンを用いて鎖延長を行なつてポリウレタ
ンまたはポリウレタンウレアを合成するプレポリ
マー法があるが、規則的な構造を与え易いプレポ
リマー法が適当である。すなわちワンシヨツト法
ではウレタン結合、ウレタンウレア結合等を含む
いわゆるハードセグメント鎖長の分布が大きくな
りミクロ相分離構造のドメインサイズの制御が困
難になるからである。 用いられる有機ジイソシアネートとしては特に
限定されるものではなく、通常ポリウレタン重合
体を得るのに用いられる有機ジイソシアネートで
あればよい。すなわち、芳香族系のジイソシアネ
ートとしては2,6―トリレンジイソシアネー
ト、2,4―トリレンジイソシアネート、4,
4′―ジフエニルメタンジイソシアネート、1,5
―ナフタレンジイソシアネート、m―キシリレン
ジイソシアネート、p―キシリレンジイソシアネ
ート、m―フエニレンジイソシアネート、p―フ
エニレンジイソシアネート、トリジンイソシアネ
ート等が用いられ、脂肪族ジイソシアネートとし
ては1,6―ヘキサメチレンジイソシアネート、
1,10―デカメチレンジイソシアネート、イソフ
オロンジイソシアネート、ビス(イソシアナート
メチル)シクロヘキサン、ジシクロヘキシルメタ
ンジイソシアネート、トリメチルヘキサメチレン
ジイソシアネート、トリジンジイソシアネート等
を用いることが出来る。しかし得られるポリウレ
タンまたはポリウレタンウレアの機械的性質の面
から芳香族のジイソシアネート、特に4,4′―ジ
フエニルメタンジイソシアネートが好ましい。鎖
延長剤としては2官能性の活性水素基を有する化
合物、たとえばエチレンジアミン、プロピレンジ
アミン、ブチレンジアミン、ヘキサメチレンジア
ミン、シクロヘキサンジアミン、ピペラジン、フ
エニレンジアミン、ジフエニルメタンジアミン、
キシリレンジアミン等の脂肪族あるいは芳香族系
のジアミン、エチレングリコール、プロピレング
リコール、ブチレングリコール等の脂肪族ジオー
ル、その他エタノールアミン、ヒドラジン等を用
いることが出来る。抗血栓性機能を付与するため
には著しい架橋を伴うことは好ましくなく本質的
に熱可塑性のエラストマーであることが望まし
い。従つてトリメチロールプロパン、グリセリン
のような3官能性化合物、またはN,N,N′,
N′―テトラキス(2―ヒドロキシプロピル)エ
チレンジアミンのような4官能性化合物は、用い
るとしても熱可塑性をそこなわない範囲で用いな
ければならない。 また副次的に架橋を行わせないこと、反応を均
一系で十分に進めることのために溶液系で反応す
ることが望ましく、溶剤としてはジメチルホルム
アミド、N,N―ジメチル―アセトアミド、ジメ
チルスルホキシド、ジオキサン、テトラヒドロフ
ラン等が用いられる。 脂肪族ジアミンのような反応性の高い成分は室
温でも十分に反応してポリウレタンウレアを与え
るが、一般には反応をスムースに進めるためいく
らか加温すると良い。触媒は普通用いなくても容
易に反応するが、用いる場合にはトリエチルアミ
ン、ジメチルエタノールアミン、1,8―ジアザ
―ビシクロ〔5,4,0〕7―ウンデセン等の容
易にポリマーから除去し得る触媒を用いることが
必要である。 得られた溶液状のポリウレタンまたはポリウレ
タンウレアは大量の水に注いでフレーク状に析出
させ水、メタノール、エタノールで洗滌し後乾燥
すればよい。血小板粘着試験を行うにあたつては
更にエタノールを用いソツクスレー抽出により精
製を行なう。評価法については後述する。 〔作用〕 次に熱可塑性エラストマー組成と抗血栓性の関
係について説明する。 ポリオルガノシロキサンブロツクの含有量はエ
ラストマー全量に対し5〜30重量%、ポリ(オキ
シ―2―メチル―1,3―プロパン)ブロツクの
含有量はエラストマー全量に対し20〜50重量%
で、ポリオルガノシロキサンブロツクとポリ(オ
キシ―2―メチル―1,3―プロパン)ブロツク
の総和として表わされるソフトセグメント成分
は、エラストマー全量に対し40〜70重量%である
ことが望ましい。ソフトセグメント成分の量は熱
可塑性エラストマーの機械的性質から限定される
ものあり、ポリオルガノシロキサンブロツクとポ
リ(オキシ―2―メチル―1,3―プロパン)ブ
ロツクの量は熱可塑性エラストマーの抗血栓性の
面から限定されこの範囲外であれば含有量が少く
てもまた多くても、抗血栓性を発現するに最適な
ミクロ相分離構造を形成し得ず、また親水性と疎
水性のバランスもくずれて抗血栓性は低下する。 次に本発明で得られる熱可塑性抗血栓性エラス
トマーの評価のために行なつた血小板粘着試験法
について述べる。 本発明の抗血栓性エラストマーを用いて約5〜
10重量%濃度のN,N―ジメチルアセトアミド溶
液を調製し、予じめ十分に洗滌したサンプル管
(高さ45mm、内径20mm)の内面に塗布し、過剰の
溶液を除去した。続いて30℃で約2時間減圧乾燥
してから、エタノールで超音波洗滌を施こし、更
にエタノールに24時間浸漬、後減圧下に加熱乾燥
した。このサンプル管の試料表面に対する血小板
の粘着試験を行なうにあたつて、先ず予じめ生理
的食塩水に一定時間浸漬し、赤沈用チトラール
(クエン酸ナトリウム)を用いて採血した人の全
血(血液とチトラールの容積比は11:1)を
1000μlマイクロピペツトで各サンプル管に分取
し、振盪器(8の字振盪87rpm)を用いて所定時
間振盪を行なつた。振盪後の血液を20μlマイクロ
ピペツトで、予じめ980μlのセルキツトCD液(東
亜医用電子(株)製、CK―35)を入れておいたミク
ロチユーブに秤取し、軽く振つて混合後、遠心分
離器(870rpm)で4分間遠心分離を行なつた。
次にこの上澄液をとり、自動希釈装置(東亜医用
電子(株)製、AD―240)を用いて稀釈し、自動血
小板計数装置(東亜医用電子(株)製、PL―100)を
用いて、浮遊血小板数を計数した。一定時間振盪
した後法の浮遊血小板数をNtとし、振盪前の血
小板数をNoとすると、試料ポリマー表面に粘着
した血小板数NAは NA=N−Nt で求めることが出来る。同じ操作を抗血栓性エラ
ストマーを塗布していないガラスサンプル管を用
いて行ないガラス表面に粘着した血小板数NAG
求める。NAおよびNAGの値から血小板相対粘着
率Rを R=NA/NAG×100(%)でもつて表わした。この値 は小さい方が抗血栓性はすぐれていることを示
す。 また一般に広く用いられている血液凝固時間に
よつて抗血栓性を評価する方法として、Lee and
White法〔血液検査;P485、臨床検査技術全書
3巻(医学書院)1979〕により評価を行なつた。
血液凝固時間は大きい値の方が抗血栓性としてす
ぐれていることを示す。 〔実施例〕 以下実施例によつて本発明を具体的に説明す
る。 実施例 1 4.2gのポリ(オキシ―2―メチル―1,3―
プロパン)ジオール(OH価から求めた数平均分
子量466)および1.8gの末端カルビノールポリジ
メチルシロキサン(チツソ(株)社製PS―197、分子
量2400)を還流冷却器をつけた4つ口セパラブル
フラスコに仕込み、100℃の油浴中に浸漬して減
圧下で1時間加熱脱水した。 室温まで冷却してから脱水精製したN,N―ジ
メチルアセトアミド40mlを加え溶液とした。50℃
に調節した水浴中につけ20mlのN,N―ジメチル
アセトアミドに溶解したジフエニルメタンジイソ
シアネート(再結晶品)4.95gを滴下した。50℃
で乾燥窒素雰囲気下で1時間撹拌した後0.61gの
脱水精製したエチレングリコールを滴下した。更
に同温室で3時間撹拌してから反応生成物溶液を
純水3中に撹拌しながら滴下してフレーク状に
固化析出させた。一晩放置後別し、再び3の
純水を加えた。この抽出処理を3回繰返し別
後、500mlのメタノールル中に浸漬して1晩放置
した。後別風乾し、30℃で減圧乾燥を行なつ
た。この試料は更に前述のようにエタノールでソ
ツクスレー抽出を行なつて精製してから血小板粘
着性の評価を血小板相対粘着率を求めることによ
り行なつた。結果は表1に示した。また、Lee
and White法による血液凝固時間をガラス板、軟
質塩化ビニル、シリコンゴムに対する値と比較し
て表2に示した。 実施例 2 4.68gのポリ(オキシ―2―メチル―1,3―
プロパン)ジオール(水酸基価から求めた数平均
分子量1530)および1.17gの末端カルビノールポ
リジメチルシロキサン(チツソ(株)社製PS―197、
分子量2400)を還流冷却器をつけた4つ口セパラ
ブルフラスコに仕込み、100℃で1時間真空脱水
を行なつた。室温まで冷却後脱水精製したN,N
―ジメチルアセトアミド30mlを加えて溶液にし
た。50℃に加温し、1.78gのジフエニルメタンジ
イソシアネート(再結晶品)を10mlのN,N―ジ
メチルアセトアミドに溶かした溶液を撹拌下に滴
下し、更に1時間乾燥窒素を流しながら反応を続
けた。引続き0.97gの脱水精製エチレングリコー
ルと3.09gのジフエニルメタンジイソシアネート
(再結晶品)を10mlのN,N―ジメチルアセトア
ミドに溶かした溶液を滴下し、50℃撹拌下に3時
間反応を続けた。以下は実施例1と同様に反応生
成物を精製処理し、血小板相対粘着率およびLee
and White法による血液凝固時間を測定して抗血
栓性の評価を行なつた。結果は表1および表2に
示した。 比較例 1 ポリ(オキシ―2―メチル―1,3―プロパ
ン)ジオールの代りにポリ(オキシテトラメチレ
ン)ジオールを用いて実施例2と同様にポリジメ
チルシロキサンおよびポリ(オキシテトラメチレ
ン)ジオールを含有する熱可塑性ポリウレタンエ
ラストマーを合成した。すなわち1.2gの末端カ
ルビノールポリジメチルシロキサン(チツソ(株)社
製PS―197、分子量2400)、4.8gのポリ(オキシ
テトラメチレン)ジオール(OH価から求めた数
平均分子量1990)、および1.46gのジフエニルメ
タンジイソシアネート(再結晶品)から、実施例
と同様にN,N―ジメチルアセトアミドを溶媒に
して先ずプレポリマーを合成し、引続き1.05gの
脱水精製したエチレングリコール及び3.50gのジ
フエニルメタンジイソシアネート(再結晶品)の
N,N―ジメチルアセトアミド溶液を加えて反応
させて得たポリウレタンの精製試料について実施
例1と同様に、血小板相対粘着率およびLee and
White法による血液凝固時間を測定して抗血栓性
の評価を行なつた。結果は表1および表2に示し
た。実施例1および実施例2の試料に比し、抗血
栓性が劣る結果を示した。 比較例 2 バイオマータイプのセグメント化ポリウレタン
ウレアの例として、OH価から求めた数平均分子
量1476のポリ(オキシテトラメチレン)ジオール
をソフトセグメントとしジフエニルメタンジイソ
シアネートでプレポリマー化を行い、エチレンジ
アミンで鎖延長したソフトセグメント成分量72.5
重量%のセグメント化ポリウレタンウレアを合成
し、精製試料につき実施例1と同様に、血小板相
対粘着率により抗血栓性を評価した。表1に示す
ように抗血栓性は実施例1および実施例2の試料
に比し低い結果を示した。 比較例 3 比較例2と同様OH価から求めた数平均分子量
1980のポリ(オキシテトラメチレン)ジオールを
用いてバイオマータイプのセグメント化ポリウレ
タンウレアを合成した。すなわちポリ(オキシテ
トラメチレン)ジオールとジフエニルメタンジイ
ソシアネートからなるプレポリマーをエチレンジ
アミンで鎖延長し、ソフトセグメント成分量77.9
重量%のセグメント化ポリウレタンウレアを得
た。 精製試料につき実施例1と同様血小板相対粘着
率により抗血栓性を評価したが、表1に示すよう
に抗血栓性は実施例1および実施例2の試料に比
し著しく低い結果を得た。
[Industrial Field of Application] The present invention relates to a thermoplastic elastomer having excellent antithrombotic properties. Polymer materials are originally foreign substances to living organisms, and when blood comes into contact with foreign substances, plasma proteins are adsorbed, and platelets subsequently adhere and aggregate to form a thrombus. Therefore, the first condition for medical polymer materials that come into contact with blood is that they must have antithrombotic properties. Specific examples include materials for artificial hearts, auxiliary artificial hearts, vascular catheters, blood bags, blood pumps, and the like. [Prior Art] Many such materials have been proposed, but segmented polyurethane is particularly superior in terms of mechanical strength and antithrombotic properties.
A copolymer of polysiloxane and polyurethane described in Ethicon's Biomer, US Pat. No. 3,562,352 is commercially available under the trade name Cardiothane. Also, in the published patent publication 1985-211358,
Polyurethane or polyurethane urea containing an organosilicon polymer in the main chain has been proposed as a new antithrombotic elastomer that has both antithrombotic properties and mechanical properties. [Problems to be Solved by the Invention] On the other hand, as many clinical examples of antithrombotic materials are accumulated, there is an increasing desire for better antithrombotic materials. For example, according to clinical examples of auxiliary hearts using segmented polyurethane and cardiothane, when the role of the auxiliary heart is reduced to reduce blood flow as the heart recovers, or when the stroke volume of the blood pump changes. It has been reported that there is a risk of thrombus formation, and that there is a tendency for calcium and phosphorous to be deposited when a blood pump with a small pump capacity is used to ensure blood flow rate. (For example, 13th Medical Polymer Symposium Abstracts P29 (1984) University of Tokyo, Kazuhiko Atsumi et al. "Evaluation of antithrombotic properties of clinical artificial heart pumps") [Means for solving the problem] The present inventors From the above viewpoint, we conducted a series of studies on block copolymers and graft copolymers with a microphase-separated structure, which are said to be promising as antithrombotic materials. It has been shown that segmented polyurethanes forming polyurethanes, especially polyurethanes or polyurethane ureas containing soft segments derived from poly(oxy-2-methyl-1,3-propane) diol and polyorganosiloxane, exhibit excellent antithrombotic properties. Thus, we have arrived at the present invention. That is, the present invention produces soft segments by reacting organic diisocyanate with poly(oxy-2-methyl-1,3-propane) diol having a number average molecular weight of 200 to 3000 and polyorganosiloxane having a number average molecular weight of 200 to 3000. The present invention provides a method for producing a thermoplastic antithrombotic elastomer, characterized in that the content of polyurethane or polyurethane urea is 40 to 70% by weight. In the thermoplastic antithrombotic elastomer of the present invention, the soft segment content is preferably 40 to 70% by weight, and furthermore, poly(oxy-2-methyl-1,3-
The content of soft segments produced from propane) diol is 20 to 50% by weight, and the content of soft segments produced from polyorganosiloxane is 5% by weight.
Preferably it is ~30% by weight. Poly(oxy-2-methyl-1,3-propane)diol is produced by converting 2-methyl-1,3-propanediol to 3-methyl oxetane as described in JP-A-58-126828. The poly(oxy-2-methyl-1,3-propane) diol obtained by cationic ring-opening polymerization and particularly used in the present invention preferably has a number average molecular weight of 200 to 3000, more preferably 400 to 2000. be. This is because if the number average molecular weight is less than 200, the microphase separation tendency, which is one of the characteristics of the antithrombotic elastomer of the present invention, will be incomplete, and if it is more than 3,000, the expression of antithrombotic properties will be impaired. It is also possible to replace some of the oxy-2-methyl-1,3-propane units of poly(oxy-2-methyl-1,3-propane) diol with other oxy-alkylene units, such as oxytetramethylene units. However, from the viewpoint of antithrombotic properties, it is desirable that the content of oxy-2-methyl-1,3-propane units is at least 80 mol% or more. These poly(oxy-2-methyl-1,3-propane) diols have hydrophobic methyl groups in their side chains, and unlike poly(oxytetramethylene) diols and polyethylene glycols, they are essentially amorphous and segmented. Together with the contribution of the hydrophobic poly-organo-siloxane, which is easily movable and is incorporated into polyurethane or polyurethane-urea (described later), it migrates to the air-contacting surface with low surface free energy, imparting antithrombotic properties. It provides a polymer surface with a suitable hydrophilic-hydrophobic balance and a microphase-separated higher-order structure. Furthermore, unlike the case of poly(oxy-1,2-propane) diol, which has primary and secondary hydroxyl groups, poly(oxy-2-methyl-1,3-
Propane) diol has high co-reactivity at both ends 1
Because of its hydroxyl group, when converted into urethane or urethane/urea, it provides polyurethane or polyurethane/urea with high molecular weight and excellent mechanical properties, and its major feature is that it is easy to design block or graft structures. Motsu. The polyorganosiloxane used in the present invention includes polydimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, polyfluoroalkylsiloxane, etc., but since it does not have bulky groups, it has the characteristics of polysiloxane. Polydimethylsiloxane, which is easily released, is preferred. Furthermore, in order to incorporate these polyorganosiloxanes into a polymer chain through a urethane bond or a urethane-urea bond, it is desirable to have carbinol groups or amino groups at both ends. The molecular weight of the polyorganosiloxane used is the poly(oxy-2-methyl-
For the same reason as in the case of 1,3-propane diol, a number average molecular weight of 200 to 3000 is desirable. Next, a method for synthesizing polyurethane or polyurethane urea containing a soft segment produced from poly(oxy-2-methyl-1,3-propane) diol and polyorganosiloxane will be described. Generally, polyurethane or polyurethane urea is synthesized by the one-shot method, in which each component is charged into a reaction vessel at once and reacted, or by the one-shot method in which poly(oxy-2-methyl-1,
There is a prepolymer method in which a prepolymer of 3-propane diol and polyorganosiloxane is synthesized and chain extended using a short-chain diol or diamine to synthesize polyurethane or polyurethane urea. A simple prepolymer method is suitable. That is, in the one-shot method, the distribution of so-called hard segment chain lengths including urethane bonds, urethane urea bonds, etc. becomes large, making it difficult to control the domain size of the microphase-separated structure. The organic diisocyanate used is not particularly limited, and any organic diisocyanate that is normally used to obtain polyurethane polymers may be used. That is, the aromatic diisocyanates include 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, 4,
4'-diphenylmethane diisocyanate, 1,5
- Naphthalene diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, tolidine isocyanate, etc. are used, and as the aliphatic diisocyanate, 1,6-hexamethylene diisocyanate,
1,10-decamethylene diisocyanate, isophorone diisocyanate, bis(isocyanatomethyl)cyclohexane, dicyclohexylmethane diisocyanate, trimethylhexamethylene diisocyanate, toridine diisocyanate, etc. can be used. However, from the viewpoint of mechanical properties of the resulting polyurethane or polyurethane urea, aromatic diisocyanates, particularly 4,4'-diphenylmethane diisocyanate, are preferred. As a chain extender, a compound having a bifunctional active hydrogen group, such as ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, cyclohexanediamine, piperazine, phenylenediamine, diphenylmethanediamine,
Aliphatic or aromatic diamines such as xylylene diamine, aliphatic diols such as ethylene glycol, propylene glycol, butylene glycol, and others such as ethanolamine and hydrazine can be used. In order to impart an antithrombotic function, it is preferable that the elastomer be accompanied by significant cross-linking, and is preferably an elastomer that is essentially thermoplastic. Therefore, trifunctional compounds such as trimethylolpropane, glycerin, or N, N, N',
If a tetrafunctional compound such as N'-tetrakis(2-hydroxypropyl)ethylenediamine is used, it must be used within a range that does not impair thermoplasticity. In addition, in order to prevent secondary crosslinking and to allow the reaction to proceed sufficiently in a homogeneous system, it is preferable to perform the reaction in a solution system, and as a solvent, dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, Dioxane, tetrahydrofuran, etc. are used. Highly reactive components such as aliphatic diamines react well even at room temperature to give polyurethane urea, but it is generally better to warm them up somewhat in order to make the reaction proceed smoothly. The reaction usually occurs easily without the use of a catalyst, but when used, a catalyst that can be easily removed from the polymer, such as triethylamine, dimethylethanolamine, or 1,8-diaza-bicyclo[5,4,0]7-undecene, is used. It is necessary to use The resulting solution of polyurethane or polyurethaneurea may be poured into a large amount of water to precipitate into flakes, washed with water, methanol, and ethanol, and then dried. In conducting the platelet adhesion test, further purification is performed by Soxhlet extraction using ethanol. The evaluation method will be described later. [Effect] Next, the relationship between thermoplastic elastomer composition and antithrombotic properties will be explained. The content of polyorganosiloxane block is 5 to 30% by weight based on the total amount of elastomer, and the content of poly(oxy-2-methyl-1,3-propane) block is 20 to 50% by weight based on the total amount of elastomer.
The soft segment component expressed as the sum of the polyorganosiloxane block and poly(oxy-2-methyl-1,3-propane) block is preferably 40 to 70% by weight based on the total amount of the elastomer. The amount of the soft segment component is limited by the mechanical properties of the thermoplastic elastomer, and the amount of the polyorganosiloxane block and poly(oxy-2-methyl-1,3-propane) block is determined by the antithrombotic properties of the thermoplastic elastomer. If the content is outside this range, whether it is small or large, it will not be possible to form a microphase-separated structure that is optimal for expressing antithrombotic properties, and the balance between hydrophilicity and hydrophobicity will not be achieved. It collapses and its antithrombotic properties decrease. Next, a platelet adhesion test method performed to evaluate the thermoplastic antithrombotic elastomer obtained according to the present invention will be described. Using the antithrombotic elastomer of the present invention,
A 10% by weight N,N-dimethylacetamide solution was prepared and applied to the inner surface of a sample tube (height: 45 mm, inner diameter: 20 mm) that had been thoroughly washed in advance, and excess solution was removed. Subsequently, it was dried under reduced pressure at 30° C. for about 2 hours, then subjected to ultrasonic cleaning with ethanol, further immersed in ethanol for 24 hours, and then heated and dried under reduced pressure. In conducting the adhesion test of platelets to the sample surface of this sample tube, human whole blood was first immersed in physiological saline for a certain period of time and then collected using citral (sodium citrate) for red blood sedimentation. The volume ratio of blood and chitral is 11:1).
The mixture was dispensed into each sample tube using a 1000 μl micropipette, and shaken for a predetermined time using a shaker (figure 8 shaking, 87 rpm). After shaking, the blood was weighed out using a 20 μl micropipette into a microtube containing 980 μl of Cellkit CD solution (CK-35, manufactured by Toa Medical Electronics Co., Ltd.), and mixed by shaking gently. Centrifugation was performed for 4 minutes using a centrifuge (870 rpm).
Next, take this supernatant liquid, dilute it using an automatic diluter (manufactured by Toa Medical Electronics Co., Ltd., AD-240), and use an automatic platelet counter (manufactured by Toa Medical Electronics Co., Ltd., PL-100). The number of floating platelets was counted. If the number of floating platelets after shaking for a certain period of time is Nt , and the number of platelets before shaking is No, then the number of platelets N A adhering to the surface of the sample polymer can be determined by N A =N - N t . The same operation is performed using a glass sample tube that is not coated with antithrombotic elastomer to determine the number of platelets N AG that adhere to the glass surface. From the values of N A and N AG , the platelet relative adhesion rate R was expressed as R=N A /N AG ×100 (%). The smaller this value is, the better the antithrombotic property is. In addition, Lee et al.
White method [Blood test; P485, Complete book of clinical laboratory techniques
3 (Igaku Shoin) 1979].
A larger value of blood coagulation time indicates better antithrombotic properties. [Example] The present invention will be specifically explained below with reference to Examples. Example 1 4.2 g of poly(oxy-2-methyl-1,3-
propane) diol (number average molecular weight 466 determined from OH value) and 1.8 g of terminal carbinol polydimethylsiloxane (PS-197 manufactured by Chitsuso Co., Ltd., molecular weight 2400) in a four-neck separable tube equipped with a reflux condenser. The mixture was placed in a flask, immersed in a 100°C oil bath, and dehydrated by heating under reduced pressure for 1 hour. After cooling to room temperature, 40 ml of dehydrated and purified N,N-dimethylacetamide was added to form a solution. 50℃
4.95 g of diphenylmethane diisocyanate (recrystallized product) dissolved in 20 ml of N,N-dimethylacetamide was added dropwise. 50℃
After stirring for 1 hour under a dry nitrogen atmosphere, 0.61 g of dehydrated and purified ethylene glycol was added dropwise. After further stirring in the same greenhouse for 3 hours, the reaction product solution was added dropwise into pure water 3 with stirring to solidify and precipitate into flakes. After leaving it overnight, it was separated, and the pure water from step 3 was added again. After repeating this extraction process three times, the sample was immersed in 500 ml of methanol and left overnight. It was then air-dried separately and dried under reduced pressure at 30°C. This sample was further purified by Soxhlet extraction with ethanol as described above, and platelet adhesiveness was evaluated by determining platelet relative adhesiveness. The results are shown in Table 1. Also, Lee
Table 2 shows a comparison of blood coagulation times using the and White method with values for glass plates, soft vinyl chloride, and silicone rubber. Example 2 4.68 g of poly(oxy-2-methyl-1,3-
propane) diol (number average molecular weight 1530 determined from hydroxyl value) and 1.17 g of terminal carbinol polydimethylsiloxane (PS-197 manufactured by Chitsuso Corporation,
(molecular weight 2400) was placed in a four-necked separable flask equipped with a reflux condenser, and vacuum dehydration was performed at 100°C for 1 hour. N, N purified by dehydration after cooling to room temperature
-Add 30ml of dimethylacetamide to make a solution. The mixture was heated to 50°C, and a solution of 1.78 g of diphenylmethane diisocyanate (recrystallized product) dissolved in 10 ml of N,N-dimethylacetamide was added dropwise with stirring, and the reaction was continued for another 1 hour while flowing dry nitrogen. Ta. Subsequently, a solution of 0.97 g of dehydrated purified ethylene glycol and 3.09 g of diphenylmethane diisocyanate (recrystallized product) dissolved in 10 ml of N,N-dimethylacetamide was added dropwise, and the reaction was continued for 3 hours with stirring at 50°C. In the following, the reaction product was purified in the same manner as in Example 1, and platelet relative adhesion rate and Lee
Antithrombotic properties were evaluated by measuring blood coagulation time using the and White method. The results are shown in Tables 1 and 2. Comparative Example 1 Contains polydimethylsiloxane and poly(oxytetramethylene) diol in the same manner as in Example 2, using poly(oxytetramethylene) diol instead of poly(oxy-2-methyl-1,3-propane) diol A thermoplastic polyurethane elastomer was synthesized. That is, 1.2 g of terminal carbinol polydimethylsiloxane (PS-197 manufactured by Chitsuso Corporation, molecular weight 2400), 4.8 g poly(oxytetramethylene) diol (number average molecular weight determined from OH value 1990), and 1.46 g. First, a prepolymer was synthesized from diphenylmethane diisocyanate (recrystallized product) using N,N-dimethylacetamide as a solvent in the same manner as in the example, and then 1.05 g of dehydrated ethylene glycol and 3.50 g of diphenylmethane were synthesized. Similar to Example 1, platelet relative adhesion rate and Lee and
Antithrombotic properties were evaluated by measuring blood coagulation time using the White method. The results are shown in Tables 1 and 2. Compared to the samples of Examples 1 and 2, the results showed inferior antithrombotic properties. Comparative Example 2 As an example of a biomer type segmented polyurethane urea, poly(oxytetramethylene) diol with a number average molecular weight of 1476 determined from the OH value was used as a soft segment, prepolymerized with diphenylmethane diisocyanate, and chain extended with ethylenediamine. Soft segment component amount 72.5
% by weight of segmented polyurethane urea was synthesized, and the purified sample was evaluated for antithrombotic properties by relative platelet adhesion rate in the same manner as in Example 1. As shown in Table 1, the antithrombotic properties were lower than those of the samples of Examples 1 and 2. Comparative Example 3 Number average molecular weight determined from OH value as in Comparative Example 2
A biomer-type segmented polyurethane urea was synthesized using poly(oxytetramethylene) diol of 1980. That is, a prepolymer consisting of poly(oxytetramethylene) diol and diphenylmethane diisocyanate was chain-extended with ethylenediamine, and the soft segment component amount was 77.9.
% by weight of segmented polyurethane urea was obtained. The antithrombotic properties of the purified samples were evaluated based on the platelet relative adhesion rate as in Example 1, and as shown in Table 1, the antithrombotic properties were significantly lower than those of the samples of Examples 1 and 2.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 有機ジイソシアネートと数平均分子量が200
〜3000のポリ(オキシ―2―メチル―1,3―プ
ロパン)ジオールと数平均分子量が200〜3000の
ポリオルガノシロキサンとを反応させて、ソフト
セグメントの含有量が40〜70重量%のポリウレタ
ンまたはポリウレタンウレアを得ることを特徴と
する熱可塑性抗血栓性エラストマーの製造方法。 2 ポリ(オキシ―2―メチル―1,3―プロパ
ン)ジオールから生成するソフトセグメントの含
有量が20〜50重量%である特許請求の範囲第1項
記載の熱可塑性抗血栓性エラストマーの製造方
法。 3 ポリオルガノシロキサンから生成するソフト
セグメントの含有量が5〜30重量%である特許請
求の範囲第1項記載の熱可塑性抗血栓性エラスト
マーの製造方法。
[Claims] 1. An organic diisocyanate and a number average molecular weight of 200.
~3000 poly(oxy-2-methyl-1,3-propane) diol and polyorganosiloxane having a number average molecular weight of 200 to 3000 are reacted to produce polyurethane or polyurethane with a soft segment content of 40 to 70% by weight. A method for producing a thermoplastic antithrombotic elastomer, characterized in that a polyurethane urea is obtained. 2. The method for producing a thermoplastic antithrombotic elastomer according to claim 1, wherein the content of soft segments produced from poly(oxy-2-methyl-1,3-propane) diol is 20 to 50% by weight. . 3. The method for producing a thermoplastic antithrombotic elastomer according to claim 1, wherein the content of soft segments produced from polyorganosiloxane is 5 to 30% by weight.
JP59108089A 1984-05-28 1984-05-28 Thermoplastic and antithrombotic elastomer Granted JPS60252617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59108089A JPS60252617A (en) 1984-05-28 1984-05-28 Thermoplastic and antithrombotic elastomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59108089A JPS60252617A (en) 1984-05-28 1984-05-28 Thermoplastic and antithrombotic elastomer

Publications (2)

Publication Number Publication Date
JPS60252617A JPS60252617A (en) 1985-12-13
JPH0425966B2 true JPH0425966B2 (en) 1992-05-06

Family

ID=14475590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59108089A Granted JPS60252617A (en) 1984-05-28 1984-05-28 Thermoplastic and antithrombotic elastomer

Country Status (1)

Country Link
JP (1) JPS60252617A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU591989B2 (en) * 1986-06-20 1989-12-21 Minnesota Mining And Manufacturing Company Block copolymer, method of making the same, diamine precursors of the same method, method of making such diamines and end products comprising the block
US5393858A (en) * 1990-06-26 1995-02-28 Commonwealth Scientific And Industrial Research Organisation Polyurethane or polyurethane-urea elastomeric compositions
DE4243799A1 (en) * 1992-12-23 1994-06-30 Bayer Ag Siloxane block copolymer modified thermoplastic polyurethanes
AUPO251096A0 (en) 1996-09-23 1996-10-17 Cardiac Crc Nominees Pty Limited Polysiloxane-containing polyurethane elastomeric compositions
US10995298B2 (en) * 2014-07-23 2021-05-04 Becton, Dickinson And Company Self-lubricating polymer composition

Also Published As

Publication number Publication date
JPS60252617A (en) 1985-12-13

Similar Documents

Publication Publication Date Title
Park et al. PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study
EP0068385B1 (en) Thermoplastic elastomers for medical use as moulded articles brought into direct contact with blood
US4371686A (en) Antithrombogenic, highly elastic polyurethane compound
Takahara et al. Effect of surface hydrophilicity on ex vivo blood compatibility of segmented polyurethanes
US5061777A (en) Thromboresistant polyetherurethane compounds and process for its production
WO1998046659A1 (en) Biocompatible polymers
JP2537580B2 (en) Method for producing fluorinated polyurethane with improved blood compatibility
WO2006095766A1 (en) Wet lubricant surface coating having excellent durability, method for surface coating, and a medical device having the surface coating
JPH0425966B2 (en)
JPS60238315A (en) Antithrombotic polyurethane or polyurethane urea, its preparation, and medical supply contacting with blood
JPH0155023B2 (en)
TWI418373B (en) Platelet adhesion-resistant material
KR100285238B1 (en) Medical Polyurethane with Polydimethylsiloxane (PDMS) and Polyethylene Glycol (PEG)
JPS58188458A (en) Anti-thrombotic elastomer, production thereof and molded body comprising same
JPH06184266A (en) Antithrombogenic polyurethane elastomer and medical tool
JP4097762B2 (en) Antithrombotic medical material
JPS6222818A (en) Production of antithrombotic urethane resin
JPS60236658A (en) Production of anti-thrombotic polyurethane or polyurethane urea
JPH0585190B2 (en)
JPH06192377A (en) Antithrombotic polyurethane elastomer and medical supply using the same
JPH0149408B2 (en)
JPH06192382A (en) Antithrombotic polyurethane elastomer and medical equipment using the same
JPH06184265A (en) Antithrombogenic polyurethane elatomer and medical tool
JPS6157790B2 (en)
JPH032549B2 (en)