KR100285238B1 - Medical Polyurethane with Polydimethylsiloxane (PDMS) and Polyethylene Glycol (PEG) - Google Patents

Medical Polyurethane with Polydimethylsiloxane (PDMS) and Polyethylene Glycol (PEG) Download PDF

Info

Publication number
KR100285238B1
KR100285238B1 KR1019980029150A KR19980029150A KR100285238B1 KR 100285238 B1 KR100285238 B1 KR 100285238B1 KR 1019980029150 A KR1019980029150 A KR 1019980029150A KR 19980029150 A KR19980029150 A KR 19980029150A KR 100285238 B1 KR100285238 B1 KR 100285238B1
Authority
KR
South Korea
Prior art keywords
polyethylene glycol
polyurethane
polydimethylsiloxane
peg
medical
Prior art date
Application number
KR1019980029150A
Other languages
Korean (ko)
Other versions
KR20000009010A (en
Inventor
배유한
박재형
Original Assignee
김효근
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김효근, 광주과학기술원 filed Critical 김효근
Priority to KR1019980029150A priority Critical patent/KR100285238B1/en
Publication of KR20000009010A publication Critical patent/KR20000009010A/en
Application granted granted Critical
Publication of KR100285238B1 publication Critical patent/KR100285238B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • C08G18/718Monoisocyanates or monoisothiocyanates containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use

Abstract

본 발명은 생체적합성이 우수한 폴리디메틸실록산(PDMS)과 폴리에틸렌글리콜(PEG)을 이용하여 생체적합성이 극대화된 의료용 고분자인 폴리우레탄 및 그의 제조방법에 관한 것이다.The present invention relates to a polyurethane which is a medical polymer maximized biocompatibility using polydimethylsiloxane (PDMS) and polyethylene glycol (PEG) excellent in biocompatibility and a method for producing the same.

본 발명은 연질부인 폴리디메틸실록산과 4,4′-메틸렌디페닐디이소시아네이트(MDI)에 에틸렌글리콜(EG) 또는 디에틸비스히드록시메틸말로네이트(DBM)를 결합시킨 경질부를 가교형성 시켜 제조한 폴리우레탄의 주쇄에 친수성 고분자인 폴리에틸렌글리콜을 공유결합 시켜 상온에서도 우수한 물성을 지닌 생체적합성 고분자를 제조한다.The present invention is prepared by crosslinking a hard part of polydimethylsiloxane, which is a soft part, and 4,4'-methylenediphenyl diisocyanate (MDI), in which ethylene glycol (EG) or diethylbishydroxymethylmalonate (DBM) is bonded. Copolymerization of hydrophilic polymer polyethylene glycol on the main chain of polyurethane produces biocompatible polymers with excellent physical properties even at room temperature.

본 발명의 목적은 의료용 고분자로 사용할 수 있는 폴리우레탄을 상기와 같은 방법으로 제조하여 기존의 생체재료가 인체에 도입될 경우에 주요한 문제로 대두되는 혈전현상, 세균에 의한 감염 및 고분자가 생체내에서 방출하는 유독성 화학물질등을 해결하는데 있다.An object of the present invention is to prepare a polyurethane that can be used as a medical polymer in the same manner as described above when the existing biomaterials are introduced into the human body as a major problem, thrombosis, infection by bacteria and polymers in vivo It is to solve toxic chemicals that are released.

Description

폴리디메틸실록산(PDMS)과 폴리에틸렌글리콜(PEG)이 결합된 의료용 폴리우레탄 및 그의 제조방법Medical Polyurethane with Polydimethylsiloxane (PDMS) and Polyethylene Glycol (PEG)

본 발명은 생체적합성이 우수한 폴리디메틸실록산(PDMS)과 폴리에틸렌글리콜(PEG)을 이용하여 생체적합성이 극대화된 의료용 고분자인 폴리우레탄 및 그의 제조방법에 관한 것이다.The present invention relates to a polyurethane which is a medical polymer maximized biocompatibility using polydimethylsiloxane (PDMS) and polyethylene glycol (PEG) excellent in biocompatibility and a method for producing the same.

과학기술의 급속한 진보에 따라 최근 관심의 대상이 되고 있는 연구 분야중의 하나가 생체 의료용 고분자이며 대표적인 생체 의료용 고분자들로는 폴리메틸메타크릴레이트, 폴리비닐클로라이드, 폴리프로필렌, 폴리디메틸실록산, 폴리우레탄 등이 있으며 이들은 인공 심장, 신장, 혈관 대체용 재료, 각종 카테타, 콘텍트 렌즈 등의 광범위한 영역에 응용되고 있다. 생체재료가 인체에 사용될 경우 주요한 문제로 고려되는 것들로는 혈전 현상, 세균에 의한 감염 및 고분자가 생체내에서 방출하는 유독성 화학물질등이 있다.One of the areas of research that has recently been of interest due to the rapid progress of science and technology is biomedical polymers. Typical biomedical polymers include polymethylmethacrylate, polyvinylchloride, polypropylene, polydimethylsiloxane, and polyurethane. They are applied to a wide range of areas such as artificial heart, kidney, blood vessel replacement material, various catheters and contact lenses. When biomaterials are used in the human body, the main problems to be considered are thrombosis, bacterial infections, and toxic chemicals released by polymers in vivo.

생체적합성이 뛰어난 폴리우레탄 재료를 개발하기 위한 종래 관련 기술로는 이미 상용화되어 나오는 펠레탄(Pellethane) 이나 바이오머(Biomer)와 같은 폴리우레탄 상품 표면에 화학적 공유 결합을 통해 폴리에틸렌글리콜을 도입하는 방법[Journal of Biomedical Material Research, 30, 30(1996)), 상용 폴리우레탄에 화학적 처리를 하여 과산화물을 만든 후 이를 개시제로 이용하여 폴리아크릴릭에시드, 폴리아크릴아마이드, 폴리-2-히드록시에틸메타크릴레이트 등을 우레탄 표면에 도입시키는 방법[Journal of Biomedical Material Research, 27, 1559(1993)], 현재 상용성 폴리우레탄의 연질부로 사용되는 폴리테트라메틸렌옥사이드(PTMO)에 비해 생체적합성이 우수한 것으로 알려진 폴리디메틸실록산이나 폴리에틸렌글리콜이 연질부로 구성된 폴리우레탄을 합성하는 방법[Biomaterials, 15, 408 (1994)], 친소수성 다중 블록형태의 고분자(삼중블록 공중합체로 폴리에틸렌글리콜-폴리프로필렌글리콜-폴리에틸렌글리콜이 있으며 시판되는 상품으로는 Pluronic을 들 수 있다.) 혹은 이중블록 공중합체를 첨가제로 폴리우레탄에 도입하여 표면을 개질시키는 방법[Biomaterials, 15, 278(1994)]등이 있다 그러나 이러한 기존의 생체물질들은 많은 연구가 진행되어져 왔음에도 불구하고 아직까지 만족할만한 생체적합성을 가진 재료를 개발하지 못하고 있다.Conventional techniques for developing highly biocompatible polyurethane materials include the introduction of polyethylene glycol through chemical covalent bonds to the surface of polyurethane products such as pellets and biomers, which are already commercially available. Journal of Biomedical Material Research, 30, 30 (1996)), chemically treated commercial polyurethanes to form peroxides, and then using them as initiators, polyacrylic acid, polyacrylamide, poly-2-hydroxyethyl methacrylate, etc. Of dimethyl siloxane, known to have excellent biocompatibility, compared to polytetramethylene oxide (PTMO), which is currently used as a soft part of commercial polyurethanes (Journal of Biomedical Material Research, 27, 1559 (1993)). Or synthesis of polyurethane consisting of polyethylene glycol in soft parts [Biomaterials, 15, 408 (1994)], a hydrophilic multiblock type polymer (the triblock copolymer is polyethyleneglycol-polypropyleneglycol-polyethyleneglycol, and commercially available products include Pluronic) or a polyblock copolymer as an additive. Biomaterials, 15, 278 (1994), have been introduced into urethanes. However, these existing biomaterials have not been developed with satisfactory biocompatibility. I can't.

본 발명의 목적은 우수한 생체 적합성 이외에도 열 및 산화에 의해 분해가 되지 않는 안정성, 적당한 기계적 성질 등이 있는 폴리디메틸실록산을 폴리우레탄의 연질부로 구성하여 4,4′-메틸렌디페닐디이소시아네이트(MDI)와 에틸렌글리콜(EG) 또는 디에틸비스히드록시메틸말로네이트(DBM)인 폴리우레탄의 경질부와 가교 형성한 폴리우레탄의 주쇄에 화학적 반응을 통하여 친수성 고분자인 폴리에틸렌글리콜을 가지화 시켜 상온에서도 응용에 적합한 기계적 성질과 우수한 물성을 가진 생체적합성을 가진 고분자를 발명하고자 한다.It is an object of the present invention to comprise 4,4′-methylenediphenyldiisocyanate (MDI) comprising a polydimethylsiloxane having a soft part of polyurethane having stability, proper mechanical properties, etc. which are not decomposed by heat and oxidation, in addition to excellent biocompatibility. And polyethylene glycol, a hydrophilic polymer, is branched through chemical reaction in the backbone of the polyurethane crosslinked with the hard part of the polyurethane, which is ethylene glycol (EG) or diethylbishydroxymethylmalonate (DBM). It is intended to invent a polymer having biocompatibility with suitable mechanical properties and excellent physical properties.

제1(a)도는 PUE 시리즈의 온도에 따른 점탄성을 확인하기 위해 DMA(Dynamic Mechanical Analysis)를 나타낸 그래프이다.1 (a) is a graph showing DMA (Dynamic Mechanical Analysis) to confirm the viscoelasticity according to the temperature of the PUE series.

제1(b)도는 PUD 시리즈의 온도에 따른 점탄성을 확인하기 위해 DMA(Dynamic Mechanical Analysis)를 나타낸 그래프이다.1 (b) is a graph showing DMA (Dynamic Mechanical Analysis) to confirm the viscoelasticity according to the temperature of the PUD series.

제2도는 고분자의 온도에 따른 열적성질을 나타낸 DSC(Differential Scanning Calorimetry) 그래프이다.2 is a differential scanning calorimetry (DSC) graph showing thermal properties according to temperature of a polymer.

제3(a)도는 건조된 고분자 시편과 하루동안 수화시킨 고분자 시편의 신장율을 나타낸 그래프이다.Figure 3 (a) is a graph showing the elongation of the dried polymer specimens and the polymer specimens hydrated for one day.

제3(b)도는 건조된 고분자 시편과 하루동안 수화시킨 고분자 시편의 인장강도를 나타낸 그래프이다.Figure 3 (b) is a graph showing the tensile strength of the dried polymer specimens and the polymer specimen hydrated for one day.

제3(c)도는 건조된 고분자 시편과 하루동안 수화시킨 고분자 시편의 인장탄성율을 나타낸 그래프이다.Figure 3 (c) is a graph showing the tensile modulus of the dried polymer specimens and the polymer specimens hydrated for one day.

제4(a)도는 대조군과 PUE 시리즈와의 혈액적합성 비교를 나타낸 그래프이다.Figure 4 (a) is a graph showing the blood compatibility between the control and PUE series.

제4(b)도는 대조군과 PUD 시리즈와의 혈액적합성 비교를 나타낸 그래프이다.Figure 4 (b) is a graph showing the blood compatibility between the control and PUD series.

제5도는 대조군, PUE211, PUE211PEG의 세균흡착 결과를 나타낸 그래프이다.5 is a graph showing the bacterial adsorption results of the control, PUE211, PUE211PEG.

제6(a)도는 대조군, PUE211PEG, PUE311PEG의 약물방출 거동을 나타낸 그래프이다.Figure 6 (a) is a graph showing the drug release behavior of the control, PUE211PEG, PUE311PEG.

제6(b)도는 대조군, PUD211PEG, PuD311PEG의 약물방출 거동을 나타낸 그래프이다.Figure 6 (b) is a graph showing the drug release behavior of the control, PUD211PEG, PuD311PEG.

이하 본 발명을 다음의 실시예와 시험예에 의하여 더욱 상세히 설명하고자 한다. 그러나 이들 실시예와 시험예는 본 발명의 이해를 더욱 용이하게 하기 위하여 제공되는 것일 뿐 본 발명의 범위가 이들 실시예와 시험예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples and test examples. However, these examples and test examples are provided only to facilitate understanding of the present invention, but the scope of the present invention is not limited by these examples and test examples.

[실시예 1]Example 1

[폴리디메틸실록산이 연질부로 구성된 폴리우레탄의 합성][Synthesis of Polyurethane Polydimethylsiloxane Consisting of Soft Part]

단량체 양의 0.2w/v%인 스테노우스 옥토에이트와 4,4′-메틸렌디페닐디이소시아네이트가 녹아있는 테트라하이드로퓨란 : 디메틸아세트아마이드 (3 : 1v/v%) 용액에 폴리디메틸실록산을 60℃, 상압의 무수 조건하에서 부과하여 2시간동안 반응시켜 양쪽 단이 이소시아네이트그룹(-NCO)으로 종결된 폴리디메틸실록산을 합성하고 높은 분자량의 고분자를 얻기 위해 사슬 연장제로서 에틸렌 글리콜 또는 디에틸비스히드록시메틸말로네이트를 부과하여 8시간 동안 60℃, 상압에서 반응시킨다. 반응이 완결된 용액을 2번에 걸쳐 증류수에 침전하여 이틀동안 50℃에서 진공 건조하고 폴리디메틸실록산, 4,4′-메틸렌디페닐디이소시아네이트 및 사슬 연장제와 몰비를 변형하여 다양한 조성의 폴리우레탄을 얻었으며 자세한 내용은 아래의 표 1에 나타내었다. 각 고분자의 명명은 에틸렌 글리콜을 사슬 연장제로 사용한 폴리우레탄은 PUE 시리즈로, 디에틸비스히드록시메틸말로네이트를 사슬 연장제로 사용한 경우는 PUD 시리즈로 명하였다.60% polydimethylsiloxane in a solution of tetrahydrofuran: dimethylacetamide (3: 1v / v%) in which monomeric amount of 0.2w / v% of stenos octoate and 4,4′-methylenediphenyldiisocyanate are dissolved. Charged under anhydrous conditions at atmospheric pressure and reacted for 2 hours to synthesize polydimethylsiloxanes in which both ends were terminated with isocyanate groups (-NCO) and to obtain high molecular weight polymers such as ethylene glycol or diethyl bishydride. Charge oxymethylmalonate and react at 8O < 0 > C for 8 hours at atmospheric pressure. The reaction solution was precipitated in distilled water two times, dried in vacuo at 50 ° C. for two days, and modified with polydimethylsiloxane, 4,4′-methylenediphenyl diisocyanate and chain extender to modify the molar ratio of polyurethane. Was obtained and the details are shown in Table 1 below. Each polymer was named as PUE series using ethylene glycol as chain extender and PUD series when diethylbishydroxymethylmalonate was used as chain extender.

[실시예 2]Example 2

[PUE 시리즈에 폴리에틸렌글리콜 합성][Polyethylene Glycol Synthesis in PUE Series]

폴리에틸렌글리콜의 사슬말단 그룹을 -NCO기로 치환하기 위해 폴리에틸렌글리콜 -OH기의 5배를 사용한 헥사메틸렌디아이소시아네이트(HMDI)가 10w/v% 테트라하이드로퓨란(THF)에 녹아 있는 용액에 단량체량의 92w/v% 디부틸틴 디아우에이트(dibutyltin diauate)와 함께 폴리에틸렌글리콜을 부과하여 12시간 동안 상온의 무수 조건에서 반응시켰다. 반응이 종결된 용액을 무수 에테르에 침전한 후 상온에서 이틀동안 진공 건조하여 사슬말단이 이소시아네이트 그룹으로 종결된 폴리에틸렌글리콜(PEG-NCO)을 얻었다.92w of monomer amount in a solution in which hexamethylenediaisocyanate (HMDI) using 5 times of polyethyleneglycol-OH group was dissolved in 10w / v% tetrahydrofuran (THF) to replace the chain terminal group of polyethyleneglycol. Polyethylene glycol was charged with / v% dibutyltin diauate and reacted under anhydrous conditions at room temperature for 12 hours. After the reaction was terminated, the solution was precipitated in anhydrous ether and dried in vacuo at room temperature for 2 days to obtain polyethylene glycol (PEG-NCO) in which the chain ends were terminated with isocyanate groups.

사슬말단이 이소시아네이트 그룹으로 종결된 폴리에틸렌글리콜과 폴리우레탄(PUE 시리즈)을 폴리에틸렌글리콜 : 폴리우레탄 = 1 : 1 사용하고 단량체량의 0.2w/v% 스테노우스 옥토에이트를 10w/v% 테트라하이드로퓨란에 녹여 무수 조건의 50℃에서 이틀동안 반응시킨 후 반응용액을 헥산에 침전시키고 증류수로 두 번에걸쳐 세척하여 50℃에서 이틀동안 진공 건조함으로써 수율 90%인 최종 고분자(PUE-PEG)를 얻었으며 구조식은 다음과 같고 R은 사슬연장제, R′는 에틸렌글리콜을 나타낸다.Polyethylene glycol and polyurethane (PUE series) terminated by an isocyanate group at the end of the chain. Polyethylene glycol: Polyurethane = 1: 1, and monomer content of 0.2w / v% stenos octoate is 10w / v% tetrahydrofuran. After dissolving in, reacted for two days at 50 ° C. under anhydrous conditions, the reaction solution was precipitated in hexane, washed twice with distilled water, and dried in vacuo at 50 ° C. for two days to obtain a final polymer having a yield of 90% (PUE-PEG). The structural formula is as follows, where R is a chain extender and R 'is ethylene glycol.

만일 상기에서 R이 에틸렌글리콜이고, R′이 폴리에틸렌글리콜인 경우 상기 화합물은 다음과 같이 특정된다.If R is ethylene glycol and R 'is polyethylene glycol, the compound is specified as follows.

[실시예 3]Example 3

[PUD 시리즈에 폴리에틸렌글리콜 합성][Polyethylene Glycol Synthesis on PUD Series]

폴리우레탄(PUD 시리즈)을 10w/v% 테트라하이드로퓨란에 녹인 용액에 1N 수산화나트륨(NaOH) 수용액을 pH가 11이 될 때까지 부과하여 pH를 11로 고정한 후 1시간 동안 상온, 상압에서 가수분해를 유도한 후 1N 염산(HCI) 수용액을 pH가 4가 될 때가지 부과하여 pH를 4로 고정한 후 주쇄에 카르복실산을 포함하고 있는 폴리우레탄을 얻었다. 이것을 50℃에서 이틀동안 진공 건조한 후 폴리우레탄에 있는 카르복실산의 2배를 사용한 폴리에틸렌글리콜, 폴리우레탄에 있는 카르복실산의 1.2배를 사용한 1,3-디시클로헥실카보디이미드 및 폴리우레탄에 있는 카르복실산의 0.2배를 사용한 4-디메틸아미노피리딘과 함께 10 w/v% 테트라하이드로퓨란에 녹여 50℃의 무수 조건하에서 12시간 동안 반응 시켰다. 그 후 반응용액을 헥산에 침전시켜 증류수에 세척한 후 50℃에서 이틀동안 진공 건조하여 수율 90%인 최종 산물(PUD-PEG)을 얻었으며 구조식은 다음과 같고 R은 사슬연장제, R′는 에틸렌글리콜을 나타낸다.A solution of 1N sodium hydroxide (NaOH) was added to a solution of polyurethane (PUD series) in 10w / v% tetrahydrofuran until the pH was 11, and the pH was fixed at 11. After hydrolysis at room temperature and atmospheric pressure for 1 hour. After induction of 1N hydrochloric acid (HCI) aqueous solution was added until the pH is 4 to fix the pH to 4 to obtain a polyurethane containing carboxylic acid in the main chain. This was vacuum dried at 50 ° C. for 2 days and then to polyethylene glycol using 2 times of carboxylic acid in polyurethane, 1,3-dicyclohexylcarbodiimide and 1.2 using 1.2 times of carboxylic acid in polyurethane. It was dissolved in 10 w / v% tetrahydrofuran together with 4-dimethylaminopyridine using 0.2-fold of the carboxylic acid, and reacted for 12 hours under anhydrous conditions at 50 ° C. Thereafter, the reaction solution was precipitated in hexane, washed in distilled water, and dried in vacuo at 50 ° C for 2 days to obtain a final product (PUD-PEG) having a yield of 90%. The structural formula is as follows: R is a chain extender and R ′ is Ethylene glycol is shown.

만일 상기에서 R이 디에틸비스히드록시메틸말로네이트이고, R′이 폴리에틸렌글리콜인 경우 다음과 같다.If R is diethylbishydroxymethylmalonate and R 'is polyethylene glycol as follows.

위의 실시예 1, 실시예 2, 실시예 3에서 얻은 고분자 물질을 다음의 시험예에 의해 물성 특성을 측정하였다.Physical properties of the polymer materials obtained in Examples 1, 2 and 3 were measured by the following test examples.

[시험예 1][Test Example 1]

[합성된 고분자의 분자량 및 용해도][Molecular Weight and Solubility of Synthetic Polymer]

실시예 1에서 합성된 고분자의 분자량을 겔 투과 크로마토그래피(Gel Permeation Chromatography, GPC)로 측정한 결과 중량평균 분자량이 35,000 이상의 값을 가지고 있었으며(상기 표 1 참조) 실시예 2,3에서 합성된 PUE-PEG와 PUD-PEG 고분자의 분자량을 NMR로 측정한 결과를 아래의 표 2에 나타냈다. 한편 유기용매에 대한 용해도는 아세톤, 메틸렌클로라이드, 디메틸포름아마이드, 디메틸설폭사이드, 디메틸아세트아마이드, 테트라하이드로퓨란 등 대부분의 유기용매에 공통적으로 용해되었다. PUD 시리즈의 경우 에탄올, 클로로포름, 벤젠, 톨루엔 등에 용해되는 반면 PUE 시리즈는 이들에 용해되지 않음을 확인하였다. 아래의 표 3에 이것을 자세히 나타냈다.The molecular weight of the polymer synthesized in Example 1 was measured by Gel Permeation Chromatography (GPC), and the weight average molecular weight had a value of 35,000 or more (see Table 1 above), and the PUE synthesized in Examples 2 and 3 The molecular weights of the -PEG and PUD-PEG polymers measured by NMR are shown in Table 2 below. The solubility in organic solvents was commonly dissolved in most organic solvents such as acetone, methylene chloride, dimethylformamide, dimethyl sulfoxide, dimethylacetamide and tetrahydrofuran. The PUD series was dissolved in ethanol, chloroform, benzene, toluene and the like, whereas the PUE series was not dissolved in them. This is shown in detail in Table 3 below.

[시험예 2][Test Example 2]

[합성된 고분자의 친수성]Hydrophilicity of Synthetic Polymers

동적 접촉각 측정기를 이용하여 각 고분자의 친수성을 관찰하였다. 시험을 위한 시편은 크로믹 산으로 처리되어진 1mm x1mm x1mm 크기의 슬라이드 글래스를 2.5w/v% 고분자가 녹아있는 디메틸아세트아마이드 용액 20㎛에 담갔다 빼내는 과정을 반복하여 만들었다. 대조군으로 상용 폴리우레탄 상품인 펠레탄(Pellethane)을 사용한 결과 폴리디메틸실록산을 연질부로 사용한 폴리우레탄이 훨씬 소수성이 강하게 나타나고 있었으며 특히 폴리디메틸실록산의 조성이 높아질수록 더욱 소수성이 강화되고 있었다. 폴리에틸렌글리콜이 가지화된 폴리우레탄은 대조군인 폴리우레탄 상품인 펠레탄 보다 친수성이 높게 나타났다.The hydrophilicity of each polymer was observed using a dynamic contact angle meter. The test specimen was made by repeatedly immersing 1 mm x 1 mm x 1 mm slide glass treated with chromic acid in 20 µm of dimethylacetamide solution in which 2.5w / v% polymer was dissolved. As a control, Pelethane, a commercial polyurethane product, showed that the polyurethane using the polydimethylsiloxane as a soft part was much more hydrophobic, and in particular, as the composition of the polydimethylsiloxane was increased, the hydrophobicity was strengthened. Polyethylene glycol-branched polyurethane showed higher hydrophilicity than the control polyurethane product, pelletane.

[시험예 3][Test Example 3]

[합성된 고분자의 점탄성][Viscoelasticity of Synthetic Polymers]

고분자의 온도에 따른 점탄성을 확인하기 위해 DMA(Dynamic Mechanical Analysis)를 사용하였다. 고분자가 녹아있는 테트라하이드로퓨란 용액 10w/v%를 유리판 위에 도포시켜 상온, 상압에서 24시간 동안 건조하거나 상온, 진공에서 12시간이상 건조시키는 방법으로 필름을 만든 후 두께가 0.8mm인 시편을 제조하여 시험에 사용하였다.Dynamic mechanical analysis (DMA) was used to confirm the viscoelasticity according to the temperature of the polymer. 10W / v% of the polymer dissolved in the tetrahydrofuran solution was applied on a glass plate and dried at room temperature and atmospheric pressure for 24 hours or at room temperature and vacuum for 12 hours or longer to prepare a specimen having a thickness of 0.8 mm. Used for the test.

경질부의 조성이 증가할수록 저장 탄성율이 증가하고 폴리우레탄의 연질부로 사용된 폴리디메틸실록산은 다른 성분들 즉 경질부나 폴리에틸렌글리콜과 상용성이 거의 없었으며 PUE 시리즈의 경질부는 폴리에틸렌글리콜과 상용성이 없는 반면 PUD시리즈의 경질부는 폴리에틸렌글리콜과 상용성이 있음을 확인하였으며 이것을 제1(a),(b)도에 나타냈다.As the composition of the hard part increased, the storage modulus increased and the polydimethylsiloxane used as the soft part of the polyurethane had little compatibility with other components such as the hard part or polyethylene glycol, and the hard part of the PUE series was not compatible with the polyethylene glycol. The hard part of the PUD series was confirmed to be compatible with polyethylene glycol and is shown in FIGS. 1 (a) and (b).

[시험예 4][Test Example 4]

[합성된 고분자의 열적 성질][Thermal Properties of Synthetic Polymers]

고분자의 열적 성질은 시차주사열계량법(Differential Scanning Calorimetry, DSC)을 이용하여 관찰하였다. 시험예 3에서 언급한 바와 같이 폴리에틸렌글리콜이 PUE 시리즈의 경질부와 상용성이 없기 때문에 독립적인 결정상을 형성하여 약 50℃에서 녹는점이 나타났지만 폴리에틸렌글리콜이 가지화된 PUD 시리즈의 경우 경질부와의 상용성으로 인하여 폴리에틸렌글리콜이 독립적인 결정상을 형성하지 못해 녹는점이 나타나지 않았다. 자세한 내용은 제2도에 나타냈다.The thermal properties of the polymers were observed using differential scanning calorimetry (DSC). As mentioned in Test Example 3, since polyethylene glycol is incompatible with the hard part of the PUE series, an independent crystal phase was formed and melted at about 50 ° C. However, in the case of the PUD series having the polyethylene glycol branched with the hard part, Due to the compatibility, polyethylene glycol did not form an independent crystal phase and did not exhibit melting points. Details are shown in FIG.

[시험예 5][Test Example 5]

[합성된 고분자의 기계적 성질][Mechanical Properties of Synthetic Polymers]

시험예 3과 같은 방법으로 필름을 만든후 ASTM D638M에 준한 도그본 시편을 제조하여 시험에 사용하였다. 폴리우레탄의 경질부 조성이 증가할수록 인장탄성율 및 인장강도는 증가하는 반면 신장율은 감소하는 경향을 나타내고 있었으며 폴리에틸렌글리콜이 가지화된 폴리우레탄의 경우 폴리에틸렌글리콜이 없는 폴리우레탄에 비해 인장탄성율 및 인장강도는 감소하였으나 신장률은 증가하고 있었다. 시편을 하루동안 수화시킨 후 인장실험을 한 결과 인장탄성율, 인장강도, 신장율 등의 기계적 성질이 감소되었으며 특히 폴리에틸렌글리콜이 가지화된 폴리우레탄의 감소정도가 더욱 심하였다. 각 고분자의 조성에 따라 다양한 기계적 성질을 가지고 있었음을 확인하였으며 신장률의 경우 최소 150%에서 최대 1,500%까지, 인장 강도의 경우 최소 1.5 MPa에서 최대 13 MPa까지, 인장 탄성율의 경우 최소 2 MPa에서 최대 30MPa까지 원하는 물성을 얻을 수 있었으며 자세한 내용은 제3(a),(b),(c)도에 나타냈다.After the film was made in the same manner as in Test Example 3, a dogbone specimen according to ASTM D638M was prepared and used for the test. Tensile modulus and tensile strength tended to increase with increasing hard part composition of polyurethane, while elongation tended to decrease. Polyurethane with branched polyethylene glycol showed tensile elastic modulus and tensile strength compared to polyurethane without polyethylene glycol. Although elongation was decreased, elongation was increasing. Tensile test after one day hydration of the specimen reduced mechanical properties such as tensile modulus, tensile strength, elongation, and especially the degree of reduction of polyethylene glycol-branched polyurethane. It was confirmed that it had various mechanical properties according to the composition of each polymer. At least 150% to 1,500% for elongation, 1.5 MPa to 13 MPa for tensile strength, and 2 MPa to 30MPa for tensile modulus Desired physical properties could be obtained until the details are shown in Figures 3 (a), (b), (c).

[시험예 6][Test Example 6]

[합성된 고분자의 혈액적합성][Compatibility of Blood of Synthetic Polymer]

크로믹 산으로 처리된 200㎛의 지름을 가진 글래스 비드에 2.5wt%의 폴리디메틸실록산을 연질부로 구성한 폴리우레탄과 여기에 폴리에틸렌글리콜이 가지화된 폴리우레탄이 녹아있는 각각의 디메틸아세트아마이드 용약 20㎖를 도포하여 혈전의 주성분인 혈소판이 얼마나 고분자 표면에 흡착하는가를 판단 기준으로 혈액적합성 시험을 하였다.20 ml of each solution of dimethylacetamide in which a polyurethane composed of 2.5 parts by weight of polydimethylsiloxane is composed of soft parts in a glass beads having a diameter of 200 µm treated with chromic acid and a polyurethane in which polyethylene glycol is branched therein. Was applied to the blood compatibility test based on the determination of how the platelet, the main component of the thrombus adsorbed on the polymer surface.

대조군으로 사용한 펠레탄에 비해 본 발명에서 합성한 폴리디메틸실록산을 연질부로 구성된 폴리우레탄이 혈소판을 덜 흡착하였으며 폴리에틸렌글리콜이 가지화된 폴리우레탄이 가장 좋은 혈액적합성을 나타냈으며 자세한 내용은 제4(a),(b)도에 나타냈다.Compared to the pellets used as a control group, the polyurethane composed of the polydimethylsiloxane synthesized in the present invention had less adsorption of platelets, and the polyethylene glycol-branched polyurethane showed the best blood compatibility. ) and (b).

[시험예 7][Test Example 7]

[합성된 고분자의 세균 흡착][Bacterial Adsorption of Synthetic Polymers]

시험예 3의 방법으로 필름은 만든 후 지름 12mm의 원반형 시편을 만들어 생체내에서 많이 흡착하고 감염을 유발하는 세균들 가운에 E. coli. 와 S.epidermidis를 택하여 시편에 흡착되는 정도를 관찰하였다. E. coli의 경우 대조군인 펠레탄에 비해 폴리디메틸실록산이 연질부로 구성된 폴리우레탄이 세균과의 강한 소수성 상호작용으로 인해 많이 흡착하였으나 폴리에틸렌글리콜이 가지화된 시편에서는 대조군보다 매우 적게 흡착되었다. S. epidermidis의 경우도 역시 폴리디메틸실록산이 연질부로 구성된 고분자가 대조군에 비해 훨씬 많은 흡착을 보였으며 폴리에틸렌글리콜이 가지화된 폴리우레탄은 대조군과 거의 비슷한 수준의 흡착을 나타냈으며 자세한 내용은 제5도에 나타냈다.After the film was made by the method of Test Example 3, a disk-shaped specimen having a diameter of 12 mm was made, and E. coli. And S.epidermidis were selected to observe the degree of adsorption on the specimen. In the case of E. coli, polyurethane, which consists of soft parts of polydimethylsiloxane, adsorbed more than the control group due to strong hydrophobic interaction with bacteria. In the case of S. epidermidis, polymers composed of polydimethylsiloxane soft parts showed more adsorption than the control group, and polyethylene glycol-branched polyurethane showed almost the same level of adsorption as the control group. Indicated.

[시험예 8][Test Example 8]

[합성된 고분자의 약물방출 거동][Drug Release Behavior of Synthetic Polymers]

본 발명에 의해 만들어진 고분자에 10 wt%의 리팜피신을 테트라하이드로퓨란에 녹인 후 시험예 7에서 서술한 바와 같은 방법으로 시편을 제작하여 약물이 방출되는 거동을 관찰하였다. 대조군인 펠레탄의 경우 약 10일 이내에 약물방출이 80%이상 이루어지는 반면 본 발명에서 합성된 고분자는 40일에 걸쳐서 약물을 방출시켰음에도 불구하고 최소 30%에서 최대 60%까지 방출하였다. 특히 폴리에틸렌글리콜이 가지화된 PUD 시리즈의 경우 폴리우레탄의 경질부와 약물과의 수소결합으로 인하여 다른 시편에 비해 버스트 효과(burst effect)가 적게 나타났고 이는 경질부의 조성이 증가할수록 뚜렷하게 감소함을 확인할 수 있었으며 자세한 내용은 제6(a), (b)도에 나타내었다.After dissolving 10 wt% of rifampicin in tetrahydrofuran in the polymer produced by the present invention, a specimen was prepared by the method described in Test Example 7 to observe the drug release behavior. In the case of the control group, the release of the drug is about 80% or more within about 10 days, while the polymer synthesized in the present invention was released from the minimum 30% to the maximum 60% despite the release of the drug over 40 days. Especially, the PUD series branched with polyethylene glycol showed less burst effect than other specimens due to hydrogen bonding between the hard part of the polyurethane and the drug, and it was confirmed that the decrease of the hard part increased as the composition of the hard part increased. The details are shown in Figures 6 (a) and (b).

본 발명은 폴리디메틸실록산을 폴리우레탄의 연질부로 구성하고 폴리에틸렌글리콜을 공유결합으로 가지화시켜 여러 가지 유기용매에 녹여 쉽게 가공할 수 있는 생체적합성이 극대화된 열가소성 폴리우레탄을 제조함으로써 종래 생체재료가 인체내에서 발생할 수 있는 주요한 문제인 혈전현상, 세균에 의한 감염, 생체재료가 생체내에서 방출하는 유독한 화학물질 등을 해결할 수 있다. 또한 응용의 필요에 따라 폴리우레탄의 조성을 변화시켜 생체적합성, 기계적 성능, 약물 방출 거동 등을 원하는 대로 조절이 가능하게 하여 여러 가지 의료용품에 이용할 수 있다.The present invention consists of a polydimethylsiloxane composed of a soft part of polyurethane, and by copolymerizing polyethylene glycol by covalent bond, dissolving it in various organic solvents to prepare a thermoplastic biopolymer that is maximized in biocompatibility, the conventional biomaterial is a human body The main problems that can occur in the body, such as thrombosis, bacterial infections, toxic chemicals released from the biological material can be solved. In addition, by changing the composition of the polyurethane according to the needs of the application, it is possible to adjust the biocompatibility, mechanical performance, drug release behavior, etc. as desired can be used in various medical supplies.

Claims (5)

폴리디메틸실록산(PDMS)을 연질부로, 4,4′-메틸렌디페닐디이소시아네이트(MDI)와 사슬연장제를 경질부로 구성된 폴리우레탄에 폴리에틸렌글리콜(PEG)을 공유결합으로 가지화 시킴을 특징으로 하며 아래의 일반식으로 나타낼 수 있는 폴리디메틸실록산과 폴리에틸렌글리콜이 결합된 의료용 폴리우레탄.Polydimethylsiloxane (PDMS) as a soft part, 4,4'- methylenediphenyl diisocyanate (MDI) and a chain extender characterized in that the covalently branched polyethylene glycol (PEG) in a polyurethane composed of a hard part Medical polyurethane combined with polydimethylsiloxane and polyethylene glycol which can be represented by the following general formula. R은 사슬연장제, R′은 폴리에틸렌글리콜, x, y는 분자량에 따라 결정 PUD-PEGR is a chain extender, R 'is polyethylene glycol, x and y are determined according to molecular weight PUD-PEG R은 사슬연장제, R′는 폴리에틸렌글리콜, x, y는 분자량에 따라 결정.R is a chain extender, R 'is polyethylene glycol, and x and y are molecular weights. 제1항에 있어서, 폴리에틸렌글리콜과 폴리디메틸실록산은 분자량이 300이상 10,000이하인 것을 사용함을 특징으로 하는 폴리디메틸실록산과 폴리에틸렌글리콜이 결합된 의료용 폴리우레탄.The medical polyurethane according to claim 1, wherein the polyethylene glycol and polydimethylsiloxane have a molecular weight of 300 or more and 10,000 or less. 제1항에 있어서, 사슬연장제는 에틸렌글리콜, 디에틸비스히드록시메틸말로네이트, 1,4-부탄디올, 에틸렌디아민, 헥산디올을 사용함을 특징으로 하는 폴리디메틸실록산과 폴리에틸렌글리콜이 결합된 의료용 폴리우레탄.The method of claim 1, wherein the chain extender is ethylene glycol, diethylbishydroxymethylmalonate, 1,4-butanediol, ethylenediamine, hexanediol, polydimethylsiloxane and polyethylene glycol combined medical poly urethane. 폴리에틸렌글리콜이 가지화된 폴리우레탄 합성에 있어서, 양단이 이소시아네이트(-NCO)그룹으로 종결된 폴리디메틸실록산을 사슬연장제와 반응시켜 폴리우레탄을 만든 후 이소시아네이트그룹으로 종결된 폴리에틸렌글리콜을 1:1로 반응하는 것을 특징으로 하는 폴리디메틸실록산과 폴리에틸렌글리콜이 결합된 의료용 폴리우레탄의 제조방법.In the synthesis of polyethylene branched polyethylene glycol, polydimethylsiloxane terminated at both ends with an isocyanate (-NCO) group is reacted with a chain extender to make a polyurethane, and then the polyethylene glycol terminated with an isocyanate group is 1: 1. Method for producing a medical polyurethane combined with polydimethylsiloxane and polyethylene glycol, characterized in that the reaction. 제4항에 있어서, 주쇄에 카르복실산을 포함하는 폴리우레탄을 만든 후 폴리우레탄에 있는 카르복실산의 2배를 사용한 폴리에틸렌글리콜과 반응시키는 것을 특징으로 하는 폴리디메틸실록산과 폴리에틸렌글리콜이 결합된 의료용 폴리우레탄의 제조방법.The method according to claim 4, wherein the polydimethylsiloxane and polyethylene glycol combined medical use, characterized in that the polyurethane containing carboxylic acid in the main chain is made and then reacted with polyethylene glycol using twice the carboxylic acid in the polyurethane. Method for producing polyurethane
KR1019980029150A 1998-07-20 1998-07-20 Medical Polyurethane with Polydimethylsiloxane (PDMS) and Polyethylene Glycol (PEG) KR100285238B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980029150A KR100285238B1 (en) 1998-07-20 1998-07-20 Medical Polyurethane with Polydimethylsiloxane (PDMS) and Polyethylene Glycol (PEG)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980029150A KR100285238B1 (en) 1998-07-20 1998-07-20 Medical Polyurethane with Polydimethylsiloxane (PDMS) and Polyethylene Glycol (PEG)

Publications (2)

Publication Number Publication Date
KR20000009010A KR20000009010A (en) 2000-02-15
KR100285238B1 true KR100285238B1 (en) 2001-04-02

Family

ID=19544643

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980029150A KR100285238B1 (en) 1998-07-20 1998-07-20 Medical Polyurethane with Polydimethylsiloxane (PDMS) and Polyethylene Glycol (PEG)

Country Status (1)

Country Link
KR (1) KR100285238B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469082B1 (en) * 2002-07-10 2005-02-02 코오롱건설주식회사 A hydrophilic polyurethane foam for wastewater treating
CN117264171B (en) * 2023-10-17 2024-03-19 山东辰星医疗科技有限公司 Polymer silica gel with siloxane-based polyurethane as matrix and preparation method thereof

Also Published As

Publication number Publication date
KR20000009010A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
Park et al. PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study
US20230124554A1 (en) Free-standing non-fouling polymers, their compositions, and related monomers
US4623347A (en) Antithrombogenic elastomer products
AU711425B2 (en) Fluoroligomer surface modifiers for polymers and articles made therefrom
CA1209158A (en) Biocompatible poly-(ether-urethane-urea) and process for its preparation
EP0335664B1 (en) Fluorinated polyetherurethanes and medical devices therefrom
JP4713743B2 (en) Infection resistant polymers and their preparation and use
WO1992000338A1 (en) Polyurethane or polyurethane-urea elastomeric compositions
US4935480A (en) Fluorinated polyetherurethanes and medical devices therefrom
AU2006226818B2 (en) Modification of thermoplastic polymers
JP2537580B2 (en) Method for producing fluorinated polyurethane with improved blood compatibility
WO1998046659A1 (en) Biocompatible polymers
US20210163657A1 (en) Zwitterionic polymers for biomedical applications
KR100285238B1 (en) Medical Polyurethane with Polydimethylsiloxane (PDMS) and Polyethylene Glycol (PEG)
EP0205815B1 (en) Use of an antithrombogenic synthetic elastomer and process of preparation thereof
JPS60238315A (en) Antithrombotic polyurethane or polyurethane urea, its preparation, and medical supply contacting with blood
JPS60241448A (en) Production of medical instrument
JP4097762B2 (en) Antithrombotic medical material
JPS60252617A (en) Thermoplastic and antithrombotic elastomer
KR100205695B1 (en) Process for preparing thermoplastic water-swelling elastic polymer soluble at non-toxic vaporizing solvent
JPS58188458A (en) Anti-thrombotic elastomer, production thereof and molded body comprising same
JPH0748431A (en) Polyurethaneurea polymer for medical use
JPH0119811B2 (en)
JPH04337311A (en) Bio-compatible polyurethane-urea and production thereof
Ito et al. Surface biolization by grafting polymerizable bioactive chemicals

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111219

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20121211

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee