KR100469082B1 - A hydrophilic polyurethane foam for wastewater treating - Google Patents

A hydrophilic polyurethane foam for wastewater treating Download PDF

Info

Publication number
KR100469082B1
KR100469082B1 KR10-2002-0040018A KR20020040018A KR100469082B1 KR 100469082 B1 KR100469082 B1 KR 100469082B1 KR 20020040018 A KR20020040018 A KR 20020040018A KR 100469082 B1 KR100469082 B1 KR 100469082B1
Authority
KR
South Korea
Prior art keywords
polyurethane foam
wastewater treatment
weight
hydrophilic
polydimethyl siloxane
Prior art date
Application number
KR10-2002-0040018A
Other languages
Korean (ko)
Other versions
KR20040005449A (en
Inventor
임성형
고동준
최윤소
김선형
임성균
최광호
Original Assignee
코오롱건설주식회사
주식회사 티앤엘
코오롱환경서비스주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱건설주식회사, 주식회사 티앤엘, 코오롱환경서비스주식회사 filed Critical 코오롱건설주식회사
Priority to KR10-2002-0040018A priority Critical patent/KR100469082B1/en
Publication of KR20040005449A publication Critical patent/KR20040005449A/en
Application granted granted Critical
Publication of KR100469082B1 publication Critical patent/KR100469082B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/108Immobilising gels, polymers or the like
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

본 발명은 폐수처리용 친수성 폴리우레탄 폼에 관한 것으로서, 더욱 상세하게는 폴리올 화합물과 디이소시아네이트 화합물을 주성분으로 하여 제조한 다공성 폴리우레탄 폼에 있어서, 보조 계면활성제로서 폴리에틸렌 옥사이드를 함유하는 폴리알킬렌 옥사이드로 개질된 폴리디메틸 실록산을 적정량 첨가하여 발포반응시킴으로서 폴리우레탄 폼의 표면에 배향된 친수성기에 의하여 폴리우레탄 폼의 친수성을 향상시켜서, 폐수처리용 유동상 담체로 적용할 경우 폐수처리장 내 초기 투입시 침강속도를 빠르게 하여 폐수처리장의 가동 가능시간을 단축시킬 수 있고, 친수성이 강한 미생물 및 유기물과의 친화력이 증대되어 효율적인 폐수처리가 가능하도록 제조한 폐수처리용 친수성 폴리우레탄 폼에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to hydrophilic polyurethane foams for wastewater treatment, and more particularly, to a porous polyurethane foam prepared mainly from a polyol compound and a diisocyanate compound, wherein the polyalkylene oxide contains polyethylene oxide as an auxiliary surfactant. By adding an appropriate amount of modified polydimethyl siloxane to foaming reaction, the hydrophilicity of the polyurethane foam is improved by hydrophilic groups oriented on the surface of the polyurethane foam, and when applied as a fluidized bed carrier for wastewater treatment, it settles upon initial introduction into the wastewater treatment plant. The present invention relates to a hydrophilic polyurethane foam for wastewater treatment, which can reduce the operating time of a wastewater treatment plant by increasing the speed, and increase the affinity with microorganisms and organic substances having strong hydrophilicity to enable efficient wastewater treatment.

Description

폐수처리용 친수성 폴리우레탄 폼{A hydrophilic polyurethane foam for wastewater treating}A hydrophilic polyurethane foam for wastewater treating

본 발명은 폐수처리용 친수성 폴리우레탄 폼에 관한 것으로서, 더욱 상세하게는 폴리올 화합물과 디이소시아네이트 화합물을 주성분으로 하여 제조한 다공성 폴리우레탄 폼에 있어서, 보조 계면활성제로서 폴리에틸렌 옥사이드를 함유하는 폴리알킬렌 옥사이드로 개질된 폴리디메틸 실록산을 적정량 첨가하여 발포반응시킴으로서 폴리우레탄 폼의 표면에 배향된 친수성기에 의하여 폴리우레탄 폼의 친수성을 향상시켜서, 폐수처리용 유동상 담체로 적용할 경우 폐수처리장 내 초기 투입시 침강속도를 빠르게 하여 폐수처리장의 가동 가능시간을 단축시킬 수 있고, 친수성이 강한 미생물 및 유기물과의 친화력이 증대되어 효율적인 폐수처리가 가능하도록 제조한 폐수처리용 친수성 폴리우레탄 폼에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to hydrophilic polyurethane foams for wastewater treatment, and more particularly, to a porous polyurethane foam prepared mainly from a polyol compound and a diisocyanate compound, wherein the polyalkylene oxide contains polyethylene oxide as an auxiliary surfactant. By adding an appropriate amount of modified polydimethyl siloxane to foaming reaction, the hydrophilicity of the polyurethane foam is improved by hydrophilic groups oriented on the surface of the polyurethane foam, and when applied as a fluidized bed carrier for wastewater treatment, it settles upon initial introduction into the wastewater treatment plant. The present invention relates to a hydrophilic polyurethane foam for wastewater treatment, which can reduce the operating time of a wastewater treatment plant by increasing the speed, and increase the affinity with microorganisms and organic substances having strong hydrophilicity to enable efficient wastewater treatment.

최근 환경오염이 사회적인 문제로 부각될만큼 그 심각함이 더해가고 있고 국내의 경우도 급격한 산업화에 따른 부작용으로 호소의 절반이상이 이미 부영양화 가 이루어졌거나 진행중인 상황이다. 현재까지 국내의 오폐수 정화방식은 90 %이상이 활성슬러지법을 적용해 왔는데, 상기 방법은 부유성 미생물만을 이용하는 방법으로서 유지관리가 쉽지 않을 뿐 아니라 다량의 잉여 슬러지 발생, 소요부지의 과다 등의 문제점이 있으며, 효율적인 운영을 위해서는 폭기조 내의 미생물양을 고농도로 유지하면서 유체 체류시간과 슬러지 체류시간을 분리 운전할 수 있어야 하는 문제점이 있다. 따라서, 유럽 등 선진각국에서는 이미 80년대부터 상기한 문제점을 해결하기 위한 대안으로 생물막의 개념을 적용한 생물막 공정에 관한 연구가 활발히 진행되어 왔으며, 이미 상당부분이 활성슬러지법을 대체하여 적용되고 있다.Recently, the seriousness of environmental pollution is increasing as a social problem, and in Korea, more than half of the appeals are already eutrophicated or in progress due to side effects from rapid industrialization. To date, more than 90% of domestic wastewater purification methods have applied activated sludge method, which is a method using only floating microorganisms, which is not easy to maintain and generates a large amount of excess sludge and excessive amount of site. In addition, there is a problem in that the fluid retention time and the sludge residence time must be separated and operated while maintaining a high concentration of microorganisms in the aeration tank for efficient operation. Therefore, in advanced countries such as Europe, researches on the biofilm process applying the concept of biofilm have been actively conducted as an alternative to solve the above problems since the 80s, and a large portion of the applied sludge method has already been applied.

생물막 처리공정은 기본적으로 미생물의 정화능력을 이용하는 방법으로 미생물이 부착되어 증식될 수 있는 매체, 즉 담체가 필요하고, 사용되는 담체의 종류와 충진방법 등에 따라서 폐수처리 효율이 크게 차이가 나게 된다. 즉, 생물막 처리공정에 사용되는 담체의 재질, 화학적 성질, 크기, 모양, 표면적 및 다공성 등의 기본성상이 폐수의 처리성능을 좌우하는 가장 큰 요인이 된다. 현재까지 담체용 물질로서 주로 사용되어 왔던 것은 초기의 쇄석 등의 자연석에서 시작하여 최근에는 세라믹, 활성탄 등의 무기입자, 섬유 및 합성플라스틱 등이 사용되고 있으나, 상기한 담체용 물질은 대부분 미생물 부착량을 늘리기 위한 부착점을 제공하기 위한 목적으로 비표면적과 다공성의 증가를 위한 연구노력만 치중하여 왔기 때문에 미생물이 가지고 있는 특성을 이해하고 이를 적용시키려는 노력은 이루어지지 않았다. 즉, 현재까지 사용된 소재들은 소수성이 강한 소재가 대부분이었으며, 특히 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리염화비닐(PVC) 등의 합성플라스틱류는중성영역에서는 대부분 음전하의 표면전하를 가지기 때문에 친수성이 강한 미생물과의 친화력이 좋지 않아서, 실제 폐수처리에 적용된 후 미생물막이 형성되어 유기물의 분해효과를 나타내는데 까지는 길게는 수개월 정도의 시간이 요구된다. 그러나 최근의 연구결과에 따르면 미생물막의 형성은 상기한 물리적 측면 뿐만 아니라 특히 표면하전, 친수성 등의 전기, 화학적인 특성이 미생물의 초기부착 속도 등에 상당한 영향을 미치는 것으로 입증되었다.Biofilm treatment process is basically a method that uses the ability of microorganisms to purify the microorganisms are attached to the medium, that is, a carrier is required, the wastewater treatment efficiency is greatly different depending on the type of carrier used and the filling method. That is, the basic properties such as the material, chemical properties, size, shape, surface area, and porosity of the carrier used in the biofilm treatment process are the biggest factors that determine the treatment performance of the wastewater. Up to now, the carrier material has been mainly used in natural stone such as crushed stone, and recently, inorganic particles such as ceramics and activated carbon, fibers and synthetic plastics are used. Since only research efforts have been made to increase specific surface area and porosity for the purpose of providing attachment points, no efforts have been made to understand and apply the characteristics of microorganisms. In other words, most of the materials used up to now have strong hydrophobic materials. Especially, synthetic plastics such as polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC) have mostly negative surface charges in the neutral region. Because of its poor affinity with microorganisms having strong hydrophilicity, it takes several months for the microbial membrane to be formed after being applied to the actual wastewater treatment to show the decomposition effect of organic matter. However, recent studies have shown that the formation of microbial membranes not only affects the physical aspects but also the electrical and chemical properties of surface charge, hydrophilicity, etc., have a significant effect on the initial deposition rate of microorganisms.

따라서 최근 국내외적으로, 제조방법 및 다공성 조절이 용이하며 내구성이 우수하다는 장점과, 기본 구조내에 극성 세그먼트(segment)구조를 가지고 있어서 미생물 부착성이 타소재에 비해 우수한 폴리우레탄을 소재로 한 폼 형태의 담체가 개발되고 있으며, 국내에서도 이미 환경엔지니어링사들을 중심으로 이러한 담체가 개발완료되어 국내 폐수처리장 및 하수처리장에 일부 적용되고 있다.Therefore, in recent years at home and abroad, the manufacturing method and the porosity control, easy to control and excellent durability, and has a polar segment (segment) structure in the basic structure, the microbial adhesion properties compared to other materials polyurethane foam form Carriers have been developed, and in Korea, such carriers have already been developed around environmental engineering companies, and have been partially applied to domestic wastewater treatment plants and sewage treatment plants.

그러나 현재까지 개발되어 적용되고 있는 상기 폴리우레탄 폼 담체도 친수화 성능이 극히 저조하여 초기 수처리장내에 투입할 경우 실제 담체가 수중에 침지되어 유동할 수 있게 되기까지 상당한 시간이 소요되고, 사용된 폴리우레탄 폼 담체의 일부는 완전히 침지되지 않고 부유하여 폐수의 처리효율을 감소시키는 요인으로 작용하고 있다. 상기한 문제점을 해결하기 위한 노력의 일환으로 친수기를 갖는 원재료 및 친수성 첨가제 등의 도입으로 친수화 성능을 개선시키려는 방안이 시도되고 있으나 대부분의 친수성 원재료들이 수분에 민감하여 저장안정성 및 발포반응에 악영향을 미치며 이외에 발포후 친수성분을 코팅 및 함침 시키는 방법 등도 시도되고 있으나 제조 공정이 까다로와 대량생산이 어렵고, 사용되는 대부분의 원재료 가 고가이므로 원가상승을 유발하며, 제조된 폴리우레탄 폼의 강도 및 내마모성 등의 물성 저하를 일으키는 등의 문제점은 해결해야할 과제로 남아 있다.However, the polyurethane foam carrier, which has been developed and applied up to now, has a very low hydrophilization performance, and when it is introduced into an initial water treatment plant, it takes a considerable time for the actual carrier to be immersed in water and flowable. Some of the urethane foam carriers are suspended without being completely immersed, which serves to reduce the treatment efficiency of the wastewater. As part of efforts to solve the above problems, there are attempts to improve the hydrophilization performance by introducing raw materials having hydrophilic groups and hydrophilic additives, but most hydrophilic raw materials are sensitive to moisture, which adversely affects storage stability and foaming reaction. In addition, the method of coating and impregnating hydrophilic components after foaming is also attempted, but the manufacturing process is difficult and mass production is difficult, and most raw materials used are expensive, causing cost increase, and the strength and wear resistance of the manufactured polyurethane foam. Problems such as deterioration of physical properties, etc. remain a problem to be solved.

이에 본 발명의 발명자들은 상기와 같은 문제점을 해결하기 위하여 연구노력한 결과, 폴리에틸렌 옥사이드를 함유하는 폴리알킬렌 옥사이드로 개질된 폴리디메틸 실록산을 보조계면활성제로서 적정량 첨가하여 발포반응시킬 경우 폴리우레탄 폼의 표면에 친수성기가 배향되어 폴리우레탄 폼의 친수성이 향상됨으로서, 폐수처리장 내 초기 투입시 침강속도를 빠르게 하여 폐수처리장의 가동 가능시간을 단축시키고, 친수성이 강한 미생물 및 유기물과의 친화력이 증대됨으로서 효율적인 폐수처리가 가능함을 알게되어 본 발명을 완성하였다.Accordingly, the inventors of the present invention have made efforts to solve the above problems, and when the polydimethyl siloxane modified with polyalkylene oxide containing polyethylene oxide is added as an auxiliary surfactant in an appropriate amount to foam the reaction, the surface of the polyurethane foam Hydrophilic group is oriented to improve the hydrophilicity of polyurethane foam, and it speeds up the sedimentation rate during initial input into the wastewater treatment plant to shorten the operating time of the wastewater treatment plant and increases the affinity with the hydrophilic microorganisms and organic matters for efficient wastewater treatment It was found that the possible to complete the present invention.

따라서 본 발명은 폐수처리용 유동상 담체로 적용할 수 있는 친수성이 향상된 폐수처리용 다공성 폴리우레탄 폼을 제공하는데 그 목적이 있다.Therefore, an object of the present invention is to provide a porous polyurethane foam for wastewater treatment with improved hydrophilicity which can be applied as a fluidized bed carrier for wastewater treatment.

본 발명은 폴리올 화합물과 디이소시아네이트 화합물을 주성분으로 하고 이를 발포 반응시켜 제조한 다공성 폴리우레탄 폼에 있어서,폴리올 화합물 100 중량부에 대하여, 폴리에틸렌 옥사이드를 함유하는 폴리알킬렌 옥사이드로 개질된 다음 화학식 1 또는 2로 표시되는 폴리디메틸 실록산 0.2 ~ 2.0 중량부를 포함하여 발포반응시켜 제조한 폐수처리용 친수성 폴리우레탄 폼을 특징으로 한다. 여기서, PE1은 -CH2CH2CH2O(EO)m(PO)nR이고, 여기서, PE2는 -(EO)m(PO)nR'이며, Me는 메틸기, EO는 에틸렌옥사이드기, PO는 프로필렌옥사이드기, R, 및 R'은 각각 탄소수 1 ~ 6 의 알킬기를 나타내며, m은 5 ∼ 100, n은 0 ∼ 100, p는 3 ∼ 50, q는 3 ∼ 5, x는 1 ∼ 50, y는 1 ∼ 5 이다.The present invention is a porous polyurethane foam prepared by using a polyol compound and a diisocyanate compound as a main component and foaming reaction thereof, and is modified with a polyalkylene oxide containing polyethylene oxide based on 100 parts by weight of the polyol compound, Characterized by hydrophilic polyurethane foam for waste water treatment prepared by the foaming reaction including 0.2 to 2.0 parts by weight of polydimethyl siloxane represented by 2. Where PE 1 is —CH 2 CH 2 CH 2 O (EO) m (PO) n R, where PE 2 is — (EO) m (PO) n R ′, Me is a methyl group, EO is ethylene oxide Group, PO is a propylene oxide group, R, and R 'respectively represents a C1-C6 alkyl group, m is 5-100, n is 0-100, p is 3-50, q is 3-5, x is 1-50 and y are 1-5.

본 발명의 폐수처리용 친수성 폴리우레탄 폼은 폴리올 화합물로서 비교적 가격이 저렴한 폴리프로필렌 글리콜(이하 "PPG"라 함) 등의 폴리올과 방향족 디이소시아네이트 화합물, 안정한 폼을 얻기 위한 실리콘 계면활성제, 주석촉매, 아민촉매 및 물 등의 첨가제를 함께 반응시키고, 여기에 친수화 성능을 부여할 수 있도록 폴리에틸렌 옥사이드를 함유하는 폴리알킬렌 옥사이드로 개질된 폴리디메틸 실록산을 보조 계면활성제로 첨가하여 담체로서의 기본적인 물성 외에 친수화 성능을 극대화시켜 수처리용 유동상 미생물 담체로서 유용하다.The hydrophilic polyurethane foam for wastewater treatment of the present invention is a polyol compound, a polyol such as polypropylene glycol (hereinafter referred to as "PPG"), which is relatively inexpensive, an aromatic diisocyanate compound, a silicone surfactant for obtaining a stable foam, a tin catalyst, Additives such as amine catalysts and water are reacted together, and polydimethyl siloxane modified with polyalkylene oxide containing polyethylene oxide is added as an auxiliary surfactant to impart hydrophilicity thereto. It is useful as a fluidized bed microbial carrier for water treatment by maximizing hydration performance.

이와 같은 본 발명을 더욱 구체적으로 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명의 폴리우레탄 폼은 보조 계면활성제로서 폴리에틸렌 옥사이드를 함유하는 폴리알킬렌 옥사이드로 개질된 폴리디메틸 실록산을 특징적으로 포함한다.The polyurethane foams of the invention feature polydimethyl siloxanes modified with polyalkylene oxides containing polyethylene oxide as auxiliary surfactant.

폴리올 화합물 100 중량부에 대하여 폴리에틸렌 옥사이드를 함유하는 폴리알킬렌 옥사이드로 개질된 폴리디메틸 실록산을 0.2 ∼ 2.0 중량부 사용하는데, 이때 사용량이 0.2 중량부 미만이면 충분한 친수성을 발휘할 수 없고, 2.0 중량부를 초과하면 강도 저하 및 디메틸실록산에 의한 계면에너지 감소로 수축현상이 발생한다.0.2 to 2.0 parts by weight of polydimethyl siloxane modified with polyalkylene oxide containing polyethylene oxide is used with respect to 100 parts by weight of the polyol compound, and when the amount is less than 0.2 parts by weight, sufficient hydrophilicity cannot be exhibited, and it is more than 2.0 parts by weight. The lower surface strength and the reduction of interfacial energy caused by dimethylsiloxane cause shrinkage.

상기 폴리디메틸실록산은 분자량이 500 ∼ 5000 범위인 것을 사용하는 것이 좋으며, 이때 분자량이 500 미만이면 물에 대한 용해도가 증가하여 재사용시 친수성이 떨이지고, 5000을 초과하면 상대적으로 디메틸실록산 의 함량 증가로 자체 친수성이 감소하며 수축 현상이 발생한다. 개질된 폴리디메틸 실록산에 함유된 폴리에틸렌 옥사이드의 함량은 전체의 25 ~ 75 중량% 인 것이 좋으며, 이때 폴리에틸렌 옥사이드의 함량이 25 중량% 미만이면 충분한 친수성을 부여할 수 없고 75 중량%를 초과하면 다른 첨가제류와의 상용성이 저하되는 경향을 보여 안정한 거품(bubble)을 형성하지 못한다.Preferably, the polydimethylsiloxane has a molecular weight in the range of 500 to 5000. In this case, when the molecular weight is less than 500, the solubility in water is increased to decrease hydrophilicity when reused, and when the molecular weight exceeds 5000, the content of dimethylsiloxane is relatively increased. Its hydrophilicity decreases and shrinkage occurs. The content of polyethylene oxide contained in the modified polydimethyl siloxane is preferably 25 to 75% by weight of the total, wherein when the content of polyethylene oxide is less than 25% by weight, sufficient hydrophilicity cannot be imparted and other additives exceeding 75% by weight. The tendency of the compatibility with the oil tends to be lowered, so that it is not possible to form a stable bubble.

상기 폴리디메틸 실록산을 개질시키기 위하여 사용될 수 있는 폴리알킬렌옥사이드로는 폴리에틸렌옥사이드, 폴리프로필렌옥사이드 등이 있으며, 폴리에틸렌옥사이드를 구조내에 하나 이상 포함하는 것이 좋다. 즉, 폴리알킬렌옥사이드로 개질된 계면활성제류는 크게 전부 에틸렌옥사이드(EO)만 부가된 형태, 에틸렌옥사이드(EO)와 프로필렌옥사이드(PO)가 동시에 부가된 형태, 및 전부 프로필렌옥사이드(PO)가 부가된 형태의 세가지로 분류할 수 있으며, 프로필렌옥사이드의 함량보다는 에틸렌옥사이드의 함량이 높을수록 친수화 성능은 더욱 우수하다.Polyalkylene oxides that may be used to modify the polydimethyl siloxane include polyethylene oxide, polypropylene oxide, and the like, and at least one polyethylene oxide may be included in the structure. That is, the surfactants modified with polyalkylene oxide are largely all added with only ethylene oxide (EO), both with ethylene oxide (EO) and propylene oxide (PO) added, and all of propylene oxide (PO). It can be classified into three types of added form, and the higher the content of ethylene oxide than the content of propylene oxide, the better the hydrophilization performance.

상기와 같이 폴리알킬렌옥사이드로 개질된 폴리디메틸실록산은 블록코폴리머 타입의 형태를 나타내며, 다음과 같은 두가지 부류로 크게 분류할 수 있다.The polydimethylsiloxane modified with polyalkylene oxide as described above represents the form of a block copolymer type, and can be broadly classified into the following two classes.

첫 번째로는 폴리알킬렌옥사이드가 측쇄로된 선형(linear) 구조의 폴리디메틸실록산이며, 다음 화학식 1로 나타낼 수 있다.The first is a polydimethylsiloxane having a linear structure in which the polyalkylene oxide is a side chain, and may be represented by the following Chemical Formula 1.

[화학식 1[ [Formula 1 [

여기서, PE1은 -CH2CH2CH2O(EO)m(PO)nR이고, Me는 메틸기, EO는 에틸렌옥사이드기, PO는 프로필렌옥사이드기, R은 탄소수 1 ∼ 6의 알킬기이며, m은 5 ∼ 100, n은 0 ∼ 100, x는 1 ∼ 50, y는 1 ∼ 5 이다.Wherein PE 1 is —CH 2 CH 2 CH 2 O (EO) m (PO) n R, Me is a methyl group, EO is an ethylene oxide group, PO is a propylene oxide group, R is an alkyl group having 1 to 6 carbon atoms, m is 5-100, n is 0-100, x is 1-50, y is 1-5.

두 번째로는 폴리알킬렌옥사이드기가 실리콘 주쇄(backbone)의 말단에 위치하여 Si-O-C 결합을 형성하고 있는 것으로, 다음 화학식 2로 나타낼 수 있다.Second, the polyalkylene oxide group is located at the end of the silicon backbone to form a Si-O-C bond, which can be represented by the following formula (2).

[화학식 2[ [Formula 2]

여기서, PE2는 -(EO)m(PO)nR'이며, Me는 메틸기, EO는 에틸렌옥사이드기, PO는 프로필렌옥사이드기, R'은 탄소수 1 ∼ 6의 알킬기를 나타내며, m은 5 ∼ 100, n은 0 ∼ 100, p는 3 ∼ 50, q는 3 ∼ 5 이다.Where PE 2 is-(EO) m (PO) n R ', Me is a methyl group, EO is an ethylene oxide group, PO is a propylene oxide group, R' represents an alkyl group having 1 to 6 carbon atoms, and m is 5 to 100, n is 0-100, p is 3-50, q is 3-5.

상기와 같은 폴리에틸렌 옥사이드를 함유하는 폴리알킬렌 옥사이드로 개질된 폴리디메틸 실록산을 보조 계면활성제로 사용할 경우 기존의 대부분 소수성을 나타내는 실리콘계 계면활성제에 비해 보다 높은 친수성 및 젖음특성(Wetting ability)를 나타내어 제조된 폴리우레탄 폼의 표면을 소수성에서 친수성으로 개질시킬 수 있다. 또한 상기의 구조를 갖는 본 발명의 폴리알킬렌 옥사이드로 개질된 폴리디메틸 실록산을 보조계면활성제로 사용하면 기존에 폼의 제조에 사용되던 개질되지 않은 디메틸실록산(unmodified dimethyl siloxane)과 상용성이 양호하여 동시에 사용하더라도 안정한 폼의 형상을 얻기에 충분하다.When polydimethyl siloxane modified with a polyalkylene oxide containing polyethylene oxide as described above is used as an auxiliary surfactant, the hydrophilicity and wetting ability of the polydimethyl siloxane are higher than those of the conventional silicone-based surfactant. The surface of the polyurethane foam can be modified from hydrophobic to hydrophilic. In addition, when the polydimethyl siloxane modified with the polyalkylene oxide of the present invention having the above structure is used as an auxiliary surfactant, it has good compatibility with the unmodified dimethyl siloxane used in the manufacture of foam. Even when used simultaneously, it is sufficient to obtain a stable foam shape.

본 발명에 따른 친수성 폴리우레탄 폼의 제조과정을 보다 구체적으로 설명하면 다음과 같다.Referring to the manufacturing process of the hydrophilic polyurethane foam according to the present invention in more detail.

제 1과정은 폴리올 화합물에 실리콘계 정포제, 주석촉매, 아민촉매 및 물을 첨가하고, 본 발명에서 특징적으로 포함하는 폴리에틸렌 옥사이드를 함유하는 폴리알킬렌 옥사이드로 개질된 폴리디메틸 실록산을 보조 계면활성제로 첨가하여 상온에서 1000 ∼ 1500 rpm 정도로 분산 교반하는 과정이다. 적당한 강도와 신율을 나타내기 위해 사용되는 폴리올은 분자량 3000 ∼ 7000 범위의 폴리프로필렌 글리콜류가 적당하며 더욱 바람직하게는 5000 ∼ 6000 범위의 것이 적당하다. 실리콘계 정포제는 안정한 셀(cell)의 형성과 셀막의 오픈(open) 및 통기성을 조절하게 되는데, 폴리올 화합물 100 중량부에 대하여 0.4 ∼ 0.8 중량부 사용하는 것이 바람직하다. 주석촉매는 디이소시아네이트와 폴리올과의 반응에 있어 수지화 반응을 촉진하기 위하여 첨가되는 성분으로서 폴리올 100 중량부에 대하여 0.2 ∼ 0.5 중량부가 적당하고, 아민촉매는 블로잉(blowing)반응을 촉진하기 위해 첨가되는 성분으로서 폴리올 100 중량부에 대하여 0.25 ∼ 0.4 중량부 사용하는 것이 바람직하다. 물은 발포제로서 발포된 폴리우레탄 폼의 밀도에 큰 영향을 미치며, 본 발명에서 제조한 폴리우레탄 폼의 밀도를 40 ± 5 kg/m3으로 조절하기 위해서는 폴리올 100 중량부에 대하여 1.5 ∼ 2.5 중량부 사용하는 것이 적당하다. 폴리에틸렌 옥사이드를 함유하는 폴리알킬렌 옥사이드로 개질된 폴리디메틸 실록산은 폼에 친수화 성능을 부여하기 위해 사용되어지는데, 상기에서 사용한 실리콘계 정포제와 상용성이 양호해야하며, 폴리올 화합물 100 중량부에 대하여 0.2 ∼ 2.0 중량부 사용하는 것이 바람직한데, 친수화 성능의 요구정도에 따라 그 함량을 조절할수 있다.The first step is to add a silicone foam stabilizer, tin catalyst, amine catalyst and water to the polyol compound, and polydimethyl siloxane modified with polyalkylene oxide containing polyethylene oxide, which is characteristically included in the present invention, as an auxiliary surfactant. It is a process of dispersion and stirring at about 1000 ~ 1500 rpm at room temperature. As the polyol used to exhibit moderate strength and elongation, polypropylene glycols having a molecular weight in the range of 3000 to 7000 are suitable, and more preferably in the range of 5000 to 6000. The silicon foam stabilizer is used to control the formation of stable cells and the openness and air permeability of the cell membrane, but it is preferable to use 0.4 to 0.8 parts by weight based on 100 parts by weight of the polyol compound. Tin catalyst is a component added to promote resination reaction in the reaction between diisocyanate and polyol, and 0.2 to 0.5 parts by weight is suitable for 100 parts by weight of polyol, and amine catalyst is added to promote blowing reaction. It is preferable to use 0.25-0.4 weight part with respect to 100 weight part of polyols as a component to become. Water has a great influence on the density of the foamed polyurethane foam as a blowing agent, and in order to adjust the density of the polyurethane foam prepared in the present invention to 40 ± 5 kg / m 3 1.5 to 2.5 parts by weight based on 100 parts by weight of polyol It is suitable to use. Polydimethyl siloxane modified with polyalkylene oxide containing polyethylene oxide is used to impart hydrophilicity performance to the foam, and should be compatible with the silicone foam stabilizer used above, with respect to 100 parts by weight of the polyol compound It is preferable to use 0.2 to 2.0 parts by weight, and its content can be adjusted according to the degree of demand for hydrophilization performance.

제 2과정은 상기 폴리올 및 첨가제 혼합물에 방향족 디이소시아네이트를 혼합한 후 발포시켜 다공성 폴리우레탄 폼을 제조하는 과정이다.The second process is a process of preparing a porous polyurethane foam by mixing and then foaming aromatic diisocyanate in the polyol and additive mixture.

방향족 디이소시아네이트는 통상 폴리우레탄 제조시 사용되는 것은 모두 사용가능하며 연속 슬라브방식의 대량생산에 용이한 톨루엔 디이소시아네이트(이하 "TDI"라 함)를 사용하는 것이 바람직하다. 방향족 디이소시아네이트 화합물은 폴리올 혼합물 100 중량부에 대해 30 ∼ 40 중량부 투입하며, 수산기(-OH)와 이소시아네이트기(-NCO)의 비는 0.95 ∼ 1.20 의 범위인 것을 사용하고, 3000 ∼ 6000 rpm으로 교반하여 제조한다.Aromatic diisocyanate is generally used in the production of polyurethane, all can be used, it is preferable to use toluene diisocyanate (hereinafter referred to as "TDI") that is easy for mass production of the continuous slab method. The aromatic diisocyanate compound is added in an amount of 30 to 40 parts by weight based on 100 parts by weight of the polyol mixture, and the ratio of the hydroxyl group (-OH) and the isocyanate group (-NCO) is in the range of 0.95 to 1.20, using 3000 to 6000 rpm. Prepared by stirring.

상기와 같은 방법으로 제조가능한 폴리우레탄 폼은 공극률(porosity)을 확보하기 위해 일반적인 다공성 폴리우레탄 폼(filter foam)의 제조시 사용되는 후처리 공정인 폭발가스를 이용한 막처리 공정 등을 거쳐 다공성의 폴리우레탄 폼으로 제조한다.Polyurethane foam that can be produced by the above method is a porous poly after going through a membrane treatment process using an explosive gas, which is a post-treatment process used in the manufacture of a general porous polyurethane foam (filter foam) to secure porosity (porosity) Made of urethane foam.

상기에서 설명한 바와 같은 폴리우레탄 폼은 유동상 담체로서 요구되어지는 기본적인 내마모성, 강도 및 공극률을 보유하며 여기에 친수화 성능이 부여되어 수처리장에 투입시 빠른 침강으로 초기가동시간(start-up) 시간을 감소시킬 뿐 아니라 수중의 미생물 및 유기물과의 친화력이 양호하여 빠른 미생물 증식을 유도할 수 있어 폐수 및 오수의 생물학적 처리를 위한 미생물 담체로 매우 유용하게 사용가능하다.Polyurethane foam as described above possesses the basic abrasion resistance, strength and porosity required as a fluidized bed carrier and is endowed with hydrophilicity so that it can be settled quickly in the water treatment plant for a start-up time. As well as reducing the affinity with the microorganisms and organic matter in the water can lead to rapid microbial growth can be very useful as a microbial carrier for biological treatment of wastewater and sewage.

이하 본 발명을 실시예에 의거하여 더욱 상세하게 설명하겠는 바, 본 발명이 다음 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples.

실시예 1 ∼ 8 및 비교예Examples 1-8 and Comparative Examples

폴리올 혼합물을 20 ∼ 25 ℃에서 혼합 교반용기 내에 투입하고 실리콘 정포제, 주석촉매, 아민촉매 및 물을 표 1의 조성과 같이 투입한 다음 폴리에틸렌 옥사이드를 함유하는 폴리알킬렌 옥사이드로 개질된 폴리디메틸 실록산을 보조 계면활성제로 추가로 투입하여 교반한 후 디이소시아네이트를 투입하여 3000 ∼ 6000 rpm으로 교반하여 발포시킨 후 막처리하여 95 %이상의 공극률(porosity)을 갖는 다공성 폴리우레탄 폼을 제조하였다.The polyol mixture was introduced into a mixed stirring vessel at 20 to 25 ° C., and a silicon foam stabilizer, tin catalyst, amine catalyst and water were added as shown in Table 1, followed by polydimethyl siloxane modified with polyalkylene oxide containing polyethylene oxide. Was added to the auxiliary surfactant and stirred, and then diisocyanate was added and stirred at 3000 to 6000 rpm to foam and then membrane treated to prepare a porous polyurethane foam having a porosity of 95% or more.

실험예 :친수화 성능 비교 Experimental Example: Comparison of Hydrophilicity Performance

<침강속도><Sedimentation Speed>

폴리우레탄 폼 시편을 약 12 ×12 ×12 ㎜크기로 절단한 후 약 25 ??의 증류수가 담긴 250 ㎖ 정도의 비이커에 일정높이(10 cm)에서 떨어뜨린 후 폼이 수중에 완전히 침지될 때까지의 평균시간을 측정하였다.After cutting the polyurethane foam specimen to a size of about 12 × 12 × 12 mm and dropping it at a certain height (10 cm) in a 250 ml beaker containing about 25 ° distilled water until the foam is completely submerged in water. The average time of was measured.

<흡수도><Absorbance>

제조한 폴리우레탄 폼을 3 × 3 × 1 ㎝의 크기로 취하여 초기무게(A)를 측정하고, 25 ℃ 증류수에 24시간 동안 함침 보관한 후 꺼내어 무진 휴지로 표면의 물기를 닦아낸 후 무게(B)를 측정하고 다음식을 이용하여 계산한다.Take the prepared polyurethane foam to the size of 3 × 3 × 1 ㎝ to measure the initial weight (A), and impregnated and stored in 25 ℃ distilled water for 24 hours, and then take out the surface with a dust-free tissue to remove the weight (B ) Is calculated using the following equation.

흡수도(%) = (B - A) / A × 100Absorbance (%) = (B-A) / A × 100

상기 표 2에 나타낸 바와 같이, 폴리에틸렌 옥사이드를 함유하는 폴리알킬렌 옥사이드로 개질된 폴리디메틸 실록산을 보조 계면활성제로 투입할시 투입함량에 비례하여 현저하게 빠른 침강속도를 보이고 있으며 소량 투입하여도 상당히 큰 효과를 얻을 수 있다. 또한 흡수도 비교 결과 역시 투입함량에 비례하여 흡수도가 증가함을 알 수 있으며, 폴리에틸렌 옥사이드를 함유하는 폴리알킬렌 옥사이드로 개질된 폴리디메틸 실록산을 첨가하지 않은 비교예의 경우는 기준 시간인 24 시간이 경과하여도 폼의 침지가 이루어지지 않아 흡수도가 상당히 낮음을 볼 수 있다.As shown in Table 2, when the polydimethyl siloxane modified with polyalkylene oxide containing polyethylene oxide is added to the auxiliary surfactant, the sedimentation rate is remarkably fast in proportion to the input content, and even a small amount is added. The effect can be obtained. In addition, the results of the comparison of the absorbency also shows that the absorbance increases in proportion to the input content, and in the case of the comparative example in which the polydimethyl siloxane modified with polyalkylene oxide containing polyethylene oxide was not added, the reference time was 24 hours. It can be seen that the absorbency is considerably low even after the evaporation of the foam.

상기한 바와 같이, 폴리에틸렌 옥사이드를 함유하는 폴리알킬렌 옥사이드로개질된 폴리디메틸 실록산을 보조 계면활성제로 투입하면, 친수성이 향상되어 제조된 폴리우레탄 폼 자체가 친수화되며, 소량의 투입으로도 친수성이 향상되어 원가절감을 유도할 수 있고, 기사용되던 첨가제와의 양호한 상용성으로 반응성에도 큰 영향을 미치지 않으며, 투입량의 조절에 따라 원하는 정도의 친수화 성능을 부여할 수 있어서 폐수처리용 유동상 담체로써 사용할 경우 바람직한 효과를 얻을 수 있다.As described above, when polydimethyl siloxane modified with polyalkylene oxide containing polyethylene oxide is added as an auxiliary surfactant, the hydrophobicity is improved and the polyurethane foam itself is hydrophilized, and even with a small amount of hydrophilicity, It is possible to induce cost reduction, and it has good compatibility with the additives used for the article, and it does not have a big influence on the reactivity. When used as a preferred effect can be obtained.

즉, 폴리우레탄 폼 담체가 가지는 비표면적, 다공도 및 셀크기(cell size)의 다양성, 비중조절의 용이함 등의 기본 특성외에 친수화 성능을 대폭 향상시켜 미생물이 서식하기에 가장 이상적인 최적의 미생물 담체로서 적용할 수 있으며, 유동상 미생물 담체로서 요구되어지는 강도 및 내마모성이 우수한 폴리우레탄 폼을 제조함에 있어 반응성, 물성, 생산성에 전혀 문제를 주지 않고 고 친수화 성능을 부여할 수 있어서, 초기 침강속도의 증가 및 아울러 친수성이 강한 미생물과의 친화력을 극대화 시켜 종래 담체의 문제점이었던 초기 가동시간(start-up time)의 단축 및 수처리 효율을 극대화시키는 효과가 있다.That is, it is the most ideal microbial carrier for microbial habitat by greatly improving hydrophilization performance in addition to basic characteristics such as specific surface area, porosity and variety of cell size and ease of specific gravity control of polyurethane foam carrier. It can be applied, and it is possible to give high hydrophilic performance without any problem on reactivity, physical properties and productivity in producing polyurethane foam having excellent strength and abrasion resistance required as a fluidized bed microbial carrier. In addition, by maximizing the affinity with the microorganisms with strong hydrophilicity, there is an effect of shortening the start-up time, which is a problem of the conventional carrier, and maximizing water treatment efficiency.

Claims (4)

폴리올 화합물과 디이소시아네이트 화합물을 주성분으로 하고 이를 발포 반응시켜 제조한 다공성 폴리우레탄 폼에 있어서,In the porous polyurethane foam prepared by using a polyol compound and a diisocyanate compound as a main component and foaming reaction, 폴리올 화합물 100 중량부에 대하여, 폴리에틸렌 옥사이드를 함유하는 폴리알킬렌 옥사이드로 개질된 다음 화학식 1 또는 2로 표시되는 폴리디메틸 실록산 0.2 ~ 2.0 중량부를 포함하여 발포반응시켜 제조한 것임을 특징으로 하는 폐수처리용 친수성 폴리우레탄 폼;For 100 parts by weight of the polyol compound, it is modified by a polyalkylene oxide containing polyethylene oxide and then produced by foaming reaction containing 0.2 to 2.0 parts by weight of polydimethyl siloxane represented by the formula (1) or 2 for wastewater treatment Hydrophilic polyurethane foams; [화학식 1][Formula 1] [화학식 2][Formula 2] 여기서, PE1은 -CH2CH2CH2O(EO)m(PO)nR이고, 여기서, PE2는 -(EO)m(PO)nR'이며, Me는 메틸기, EO는 에틸렌옥사이드기, PO는 프로필렌옥사이드기, R, 및 R'은 각각 탄소수 1 ~ 6 의 알킬기를 나타내며, m은 5 ∼ 100, n은 0 ∼ 100, p는 3 ∼ 50, q는 3 ∼ 5, x는 1 ∼ 50, y는 1 ∼ 5 이다.Where PE 1 is —CH 2 CH 2 CH 2 O (EO) m (PO) n R, where PE 2 is — (EO) m (PO) n R ′, Me is a methyl group, EO is ethylene oxide Group, PO is a propylene oxide group, R, and R 'respectively represents a C1-C6 alkyl group, m is 5-100, n is 0-100, p is 3-50, q is 3-5, x is 1-50 and y are 1-5. 제 1 항에 있어서, 상기 개질된 폴리디메틸 실록산은 분자량 500 ∼ 5000 범위인 것을 특징으로 하는 폐수처리용 친수성 폴리우레탄 폼.The hydrophilic polyurethane foam for waste water treatment according to claim 1, wherein the modified polydimethyl siloxane has a molecular weight in the range of 500 to 5000. 제 1 항에 있어서, 상기 개질된 폴리디메틸 실록산은 폴리에틸렌 옥사이드가 25 ∼ 75 중량% 포함된 것임을 특징으로 하는 폐수처리용 친수성 폴리우레탄 폼.2. The hydrophilic polyurethane foam for wastewater treatment according to claim 1, wherein the modified polydimethyl siloxane comprises 25 to 75 wt% of polyethylene oxide. 삭제delete
KR10-2002-0040018A 2002-07-10 2002-07-10 A hydrophilic polyurethane foam for wastewater treating KR100469082B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0040018A KR100469082B1 (en) 2002-07-10 2002-07-10 A hydrophilic polyurethane foam for wastewater treating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0040018A KR100469082B1 (en) 2002-07-10 2002-07-10 A hydrophilic polyurethane foam for wastewater treating

Publications (2)

Publication Number Publication Date
KR20040005449A KR20040005449A (en) 2004-01-16
KR100469082B1 true KR100469082B1 (en) 2005-02-02

Family

ID=37315767

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0040018A KR100469082B1 (en) 2002-07-10 2002-07-10 A hydrophilic polyurethane foam for wastewater treating

Country Status (1)

Country Link
KR (1) KR100469082B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040034754A (en) * 2002-10-15 2004-04-29 김부남 The manufacturing method of polyurethane sponge mixing activated carbon
CN114604978A (en) * 2021-03-26 2022-06-10 景赫新材料科技(浙江)有限公司 Application of hydrophilic porous biological carrier in field of circulating aquaculture water purification

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964620A (en) * 1982-10-06 1984-04-12 Achilles Corp Production of hydrophilic polyurethane foam
JPH0739376A (en) * 1993-08-04 1995-02-10 Kansai Paint Co Ltd Carrier for immobilizing microbe
KR19990067825A (en) * 1998-01-15 1999-08-25 마쉬 윌리엄 에프 Low emission, cell opening surfactants for polyurethane flexible and rigid foams
KR20000009010A (en) * 1998-07-20 2000-02-15 김효근 Polydimethylsiloxane and polyethyleneglycol bonded medical polyurethane and preparation method thereof
JP2001040055A (en) * 1999-07-30 2001-02-13 Bridgestone Corp Rigid polyurethane foam
JP2001151841A (en) * 1999-10-28 2001-06-05 Air Prod And Chem Inc Silicone surfactant for producing opened cell polyurethane soft foam

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964620A (en) * 1982-10-06 1984-04-12 Achilles Corp Production of hydrophilic polyurethane foam
JPH0739376A (en) * 1993-08-04 1995-02-10 Kansai Paint Co Ltd Carrier for immobilizing microbe
KR19990067825A (en) * 1998-01-15 1999-08-25 마쉬 윌리엄 에프 Low emission, cell opening surfactants for polyurethane flexible and rigid foams
KR20000009010A (en) * 1998-07-20 2000-02-15 김효근 Polydimethylsiloxane and polyethyleneglycol bonded medical polyurethane and preparation method thereof
JP2001040055A (en) * 1999-07-30 2001-02-13 Bridgestone Corp Rigid polyurethane foam
JP2001151841A (en) * 1999-10-28 2001-06-05 Air Prod And Chem Inc Silicone surfactant for producing opened cell polyurethane soft foam

Also Published As

Publication number Publication date
KR20040005449A (en) 2004-01-16

Similar Documents

Publication Publication Date Title
CN101619310B (en) Immobilized carrier of nano-attapulgite clay compounded hydrophilic urethane foam microorganisms
CN108976775B (en) Preparation method and application of polyurethane soft foam material capable of settling in water
US6117963A (en) Tetrahydrofuran-containing silicone polyethers
JP2011149953A (en) Permselective structurally robust membrane material
JPH10174990A (en) Carrier for bioreactor and method
JP2004250593A (en) Hydrophilic, flexible polyurethane foam and its manufacturing method as well as microorganism immobilization support and sewage disposal method and apparatus
JP3608913B2 (en) Bioreactor carrier and production method
KR100469082B1 (en) A hydrophilic polyurethane foam for wastewater treating
CA1040964A (en) Foam control composition
JP5490426B2 (en) Polyurethane foam for microbial immobilization support
JP2022087164A (en) Microbial immobilization carrier
CN113061225B (en) Self-submersible polyurethane foam plastic and preparation method and application thereof
CN111408278A (en) MABR (moving average biofilm reactor) supported composite oxygen-containing membrane, preparation method and application
JP4764760B2 (en) CARBON NANOTUBE CARRIER AND CAPTURE MATERIAL CONTAINING THE SAME
CN112961304B (en) Method for preparing polyurethane foam capable of rapidly settling in water
JP6625849B2 (en) Polyurethane foam for water treatment carrier
CN115926091A (en) Waterborne polyurethane filler and preparation method and application thereof
KR100228735B1 (en) Porous polyurethane foam for waste water
CN114604961A (en) Biological filler for sewage treatment contact oxidation process
KR0182402B1 (en) Porous ceramic carrier having an excellent affinity for microorganism
CA1064649A (en) Polyether based, high resilient polyurethane foam
KR100524869B1 (en) Hydrophilic polyurethane media for waste-water treatment and manufacturing method thereof
KR100472005B1 (en) Polyurethane foam for biological wastewater treatment and method of manufactoring the same
EP1316533A2 (en) Chemical-resistant bioreactor carrier, processes for producing the carrier and use of the carrier
Ghahramani Design and Fabrication of Open-Cell Foams for Biological Organic Removal from Wastewater

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130109

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140127

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141215

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20151214

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20161228

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20171226

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20191216

Year of fee payment: 16