JPH04259607A - Pressurized fluid floor boiler compound power generation plant - Google Patents

Pressurized fluid floor boiler compound power generation plant

Info

Publication number
JPH04259607A
JPH04259607A JP1972191A JP1972191A JPH04259607A JP H04259607 A JPH04259607 A JP H04259607A JP 1972191 A JP1972191 A JP 1972191A JP 1972191 A JP1972191 A JP 1972191A JP H04259607 A JPH04259607 A JP H04259607A
Authority
JP
Japan
Prior art keywords
air
fluidized bed
pressurized fluidized
bed boiler
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1972191A
Other languages
Japanese (ja)
Inventor
Etsuichi Hatano
羽田野 悦一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1972191A priority Critical patent/JPH04259607A/en
Publication of JPH04259607A publication Critical patent/JPH04259607A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To reduce energy loss and cope with an overload operation by further compressing excessive compressed air at the time of boiler combustion to obtain air of higher pressure, storing it in an air storing device, and utilizing it again for boiler combustion as required. CONSTITUTION:When a pressure fluid floor boiler 1 requires a certain amount of air according to a plant load, a part of compressed air is supplied thereto from a compressor 212 through a low pressure air system 14. Excessive air is further compressed by a compressor 112, then stored in an air storing device 21 through a high pressure air system 22. When a plant requires an overload operation, the compressed air stored in the air storing device 21 is supplied again as combusting air of the pressure fluid floor boiler 1. Accordingly, energy loss can be reduced and the overload operation can be coped with.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、加圧流動床ボイラの発
生蒸気により発電する蒸気タービン発電設備と、この加
圧流動床ボイラでの燃焼ガスにより発電するガスタービ
ン発電設備とを備えた加圧流動床ボイラ複合発電プラン
トに関する。
[Industrial Application Field] The present invention provides a steam turbine power generation facility that generates power using steam generated from a pressurized fluidized bed boiler, and a gas turbine power generation facility that generates power using combustion gas in the pressurized fluidized bed boiler. Regarding a pressure fluidized bed boiler combined power generation plant.

【0002】0002

【従来の技術】近年、電力需要は日負荷の昼夜間格差の
増大および夏期ピーク負荷の増加が顕著になり、火力発
電に対するピーク負荷機能の分担の要求がますます高ま
ってきている。
BACKGROUND OF THE INVENTION In recent years, there has been a noticeable increase in the day-night difference in daily load and an increase in summer peak load in electricity demand, and there is an increasing demand for sharing peak load functions with thermal power generation.

【0003】一方、電源のベストミックスの考えから、
石炭火力発電所の建設計画が進められる際には、地球環
境との調和の問題は避けて通れない重要なテーマになっ
ている。
On the other hand, from the idea of the best mix of power supplies,
When planning the construction of a coal-fired power plant, the issue of harmony with the global environment has become an important theme that cannot be avoided.

【0004】このような状況の中で、加圧流動床ボイラ
複合発電プラントは、クリーンコール技術として実用化
され、同時にガス−蒸気複合サイクル採用による高効率
発電方式として注目を浴びている。以下、その典型例を
図面を参照して説明する。
Under these circumstances, the pressurized fluidized bed boiler combined power generation plant has been put to practical use as a clean coal technology, and at the same time has attracted attention as a highly efficient power generation system employing a gas-steam combined cycle. Typical examples thereof will be explained below with reference to the drawings.

【0005】図2において、加圧流動床ボイラ1で発生
した高温蒸気は主蒸気系統2を通って蒸気タービン3に
導かれ、ここで膨脹して仕事を行った後、復水器4に排
出される。復水器4で凝縮した水はスタックガスクーラ
5において加熱され、高温水となって、給水系統6を介
して再び加圧流動床ボイラ1に戻される。蒸気タービン
3には発電機7が連結され、駆動される。
In FIG. 2, high-temperature steam generated in a pressurized fluidized bed boiler 1 is led to a steam turbine 3 through a main steam system 2, where it is expanded to perform work, and then discharged to a condenser 4. be done. The water condensed in the condenser 4 is heated in the stack gas cooler 5, becomes high-temperature water, and is returned to the pressurized fluidized bed boiler 1 via the water supply system 6. A generator 7 is connected to the steam turbine 3 and driven.

【0006】一方、加圧流動床ボイラ1で燃焼した高圧
高温ガスは、燃焼ガス系統8を通ってガスタービン9に
導かれ、ここで膨脹して仕事を行った後、排気系統10
からスタックガスクーラ5に送られ、ここで更に給水と
熱交換された後、スタック11から大気中に放出される
On the other hand, the high-pressure, high-temperature gas combusted in the pressurized fluidized bed boiler 1 is led to a gas turbine 9 through a combustion gas system 8, where it expands and performs work, and then passes through an exhaust system 10.
The gas is then sent to the stack gas cooler 5, where it further undergoes heat exchange with feed water, and then discharged from the stack 11 into the atmosphere.

【0007】なお、加圧流動床ボイラ1では、石炭をド
ルマイトのような脱硫剤と一緒に燃焼することが可能で
あり、また燃焼ガス温度も高々850℃程度であるため
、排ガス中の硫黄酸化物や窒素酸化物は極めて少なく、
排煙脱硫設備や排煙脱硝設備を必要としない。
[0007] In the pressurized fluidized bed boiler 1, it is possible to burn coal together with a desulfurizing agent such as dolumite, and since the combustion gas temperature is at most about 850°C, sulfur oxidation in the exhaust gas can be prevented. There are very few substances and nitrogen oxides,
No flue gas desulfurization equipment or flue gas denitrification equipment is required.

【0008】他方、ガスタービン9は同一軸に連結され
た圧縮機12および発電機13を駆動する。圧縮機12
から排出される圧縮空気は、空気供給系統14を通して
加圧流動床ボイラ1に送られ、燃料供給系統15から送
り込まれる燃料の燃焼用空気として使用される。
On the other hand, the gas turbine 9 drives a compressor 12 and a generator 13 that are connected to the same shaft. Compressor 12
The compressed air discharged from the pressurized fluidized bed boiler 1 is sent to the pressurized fluidized bed boiler 1 through the air supply system 14, and is used as combustion air for the fuel sent from the fuel supply system 15.

【0009】圧縮機12の入口には入口空気制御装置1
6が設置されている。また、圧縮機12の出口と加圧流
動床ボイラ1を連結する空気供給系統14には、途中か
ら放風系統17が分岐しており、この放風系統には、部
分負荷時の燃焼用空気量を制御するために放風制御弁1
8が設置されている。
An inlet air control device 1 is installed at the inlet of the compressor 12.
6 is installed. In addition, an air supply system 17 is branched from the middle of the air supply system 14 connecting the outlet of the compressor 12 and the pressurized fluidized bed boiler 1, and this air supply system includes air for combustion during partial load. Air discharge control valve 1 to control the amount
8 is installed.

【0010】このように、加圧流動床ボイラ複合発電プ
ラントでは、排煙脱硫設備や排煙脱硝設備が不要となる
だけでなく、ガスタービンサイクルと蒸気タービンサイ
クルとの複合サイクルの採用により、高効率の発電を行
うことが可能である。
[0010] In this way, the pressurized fluidized bed boiler combined power generation plant not only eliminates the need for flue gas desulfurization equipment and flue gas denitrification equipment, but also uses a combined cycle of a gas turbine cycle and a steam turbine cycle to achieve high efficiency. It is possible to perform efficient power generation.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記形
式の加圧流動床ボイラ複合発電プラントにおいては、プ
ラントの起動時から全負荷までは、各負荷の運転状態に
応じて燃焼用空気を増減する必要があるにも拘らず、ガ
スタービン、圧縮機および発電機は同一軸に連結され、
電力系統の周波数と同期して定速で運転される発電機と
共に同一回転数で運転され、しかも入口空気制御装置は
圧縮機のサージング防止の理由から高負荷域しか空気量
を制御できないため、部分負荷では放風制御弁を開いて
圧縮空気を逃すことによって加圧流動床ボイラへの供給
空気量を制御している。
[Problem to be Solved by the Invention] However, in the pressurized fluidized bed boiler combined cycle power plant of the above type, it is necessary to increase or decrease the amount of combustion air depending on the operating status of each load from the time the plant starts up to full load. Despite the fact that the gas turbine, compressor, and generator are connected to the same shaft,
It is operated at the same rotation speed as the generator, which is operated at a constant speed in synchronization with the frequency of the power grid, and the inlet air control device can only control the air amount in the high load range to prevent surging of the compressor. At load, the amount of air supplied to the pressurized fluidized bed boiler is controlled by opening the air discharge control valve to release compressed air.

【0012】このため、上記形式の加圧流動床ボイラ複
合発電プラントにおいては、プラント負荷に応じた適切
な空気量の増減を図ることができず、特に部分負荷時に
は圧縮機が必要以上の仕事をすることでエルルギー上の
損失を生じていた。この対策として、図3に例示するよ
うな空気量制御システムが実用化されている。なお、図
3中、図2におけると同じ部分には同一符号を付してあ
る。
For this reason, in the pressurized fluidized bed boiler combined cycle power generation plant of the above type, it is not possible to increase or decrease the amount of air appropriately according to the plant load, and the compressor does more work than necessary, especially at partial loads. This resulted in an energy loss. As a countermeasure against this problem, an air amount control system as illustrated in FIG. 3 has been put into practical use. Note that in FIG. 3, the same parts as in FIG. 2 are given the same reference numerals.

【0013】図3において、高圧ガスタービン109に
は高圧圧縮機112と発電機13が連結されており、低
圧ガスタービン209には低圧圧縮機212が連結され
ている。低圧圧縮機212から排出された空気は高圧圧
縮機112へ送られ、ここで更に圧縮された後、空気供
給系統14を通して加圧流動床ボイラ1へ送られ、燃焼
用空気として使用される。この場合、負荷に応じた燃焼
用空気量は低圧ガスタービン209が可変速運転を行な
うことによって制御される。
In FIG. 3, a high pressure compressor 112 and a generator 13 are connected to a high pressure gas turbine 109, and a low pressure compressor 212 is connected to a low pressure gas turbine 209. The air discharged from the low pressure compressor 212 is sent to the high pressure compressor 112, where it is further compressed, and then sent to the pressurized fluidized bed boiler 1 through the air supply system 14, where it is used as combustion air. In this case, the amount of combustion air depending on the load is controlled by the low pressure gas turbine 209 performing variable speed operation.

【0014】しかしながら、図3に示すようなシステム
においては、プラント負荷に応じた適切な空気量の増減
を図ることはできるが、過負荷運転に対応するには十分
な機能を備えているとは言い難い。 [発明の構成]
However, in the system shown in FIG. 3, although it is possible to increase or decrease the amount of air appropriately according to the plant load, it does not have sufficient functions to cope with overload operation. It's hard to say. [Structure of the invention]

【0015】[0015]

【課題を解決するための手段】本発明の加圧流動床ボイ
ラ複合発電プラントは、加圧流動床ボイラの発生蒸気に
より発電する蒸気タービン発電設備と、この加圧流動床
ボイラでの燃焼ガスにより発電するガスタービンおよび
このガスタービンにより駆動される加圧流動床ボイラの
空気供給用圧縮機を備えたガスタービン発電設備とを具
備する加圧流動床ボイラ複合発電プラントにおいて、低
圧圧縮機からの圧縮空気の一部を前記加圧流動床ボイラ
の燃焼用空気として直接供給する空気供給系統と、残り
の空気を高圧圧縮機で更に圧縮した後、空気貯蔵装置で
貯蔵する高圧圧縮空気系統を持ち、前記空気貯蔵装置は
貯蔵された圧縮空気を再び前記加圧流動床ボイラの燃焼
用空気として供給する高圧空気供給系統を持つことを特
徴とする。
[Means for Solving the Problems] The pressurized fluidized bed boiler combined power generation plant of the present invention includes a steam turbine power generation facility that generates electricity using the steam generated by the pressurized fluidized bed boiler, and a combustion gas generated by the pressurized fluidized bed boiler. In a pressurized fluidized bed boiler combined power generation plant equipped with a gas turbine that generates electricity and a gas turbine power generation facility equipped with a compressor for supplying air to the pressurized fluidized bed boiler driven by the gas turbine, the compressor is compressed from a low pressure compressor. An air supply system that directly supplies part of the air as combustion air to the pressurized fluidized bed boiler, and a high-pressure compressed air system that stores the remaining air in an air storage device after further compressing it with a high-pressure compressor, The air storage device is characterized in that it has a high-pressure air supply system that supplies the stored compressed air again as combustion air to the pressurized fluidized bed boiler.

【0016】[0016]

【作用】上述のように構成した本発明のプラントにおい
ては、プラント負荷に応じた加圧流動床ボイラに必要な
空気量は、圧縮機からの圧縮空気の一部が低圧空気系統
を通して供給され、余剰空気は圧縮機でさらに圧縮され
た後、高圧空気系統を通して空気貯蔵装置で貯蔵される
。また、プラントが過負荷運転を必要とする時には、空
気貯蔵装置で貯蔵された圧縮空気が再び加圧流動床ボイ
ラの燃焼用空気として供給される。
[Operation] In the plant of the present invention configured as described above, the amount of air required for the pressurized fluidized bed boiler according to the plant load is supplied by a portion of the compressed air from the compressor through the low pressure air system. The surplus air is further compressed by a compressor and then passed through a high-pressure air system and stored in an air storage device. Furthermore, when the plant requires overload operation, the compressed air stored in the air storage device is again supplied as combustion air to the pressurized fluidized bed boiler.

【0017】従って、部分負荷時に発生する圧縮機から
の余剰空気を貯蔵することでエネルギー損失を減らすこ
とができ、しかも過負荷運転にも貯蔵したエネルギーを
有効に利用することが可能となる。
[0017] Therefore, by storing surplus air from the compressor generated during partial load, it is possible to reduce energy loss, and moreover, it is possible to effectively utilize the stored energy even during overload operation.

【0018】[0018]

【実施例】次に、図1を参照しながら本発明の実施例を
説明する。なお、図1において、図2および図3におけ
ると同一部分には同一符号を付し、重複する部分の説明
は省略する。
Embodiment Next, an embodiment of the present invention will be described with reference to FIG. Note that in FIG. 1, the same parts as in FIGS. 2 and 3 are denoted by the same reference numerals, and explanations of the overlapping parts will be omitted.

【0019】図1において、高圧ガスタービン109に
は低圧圧縮機212と発電機13が連結されている。低
圧圧縮機212の入口には入口空気制御装置16が接続
され、また出口には空気供給系統14を介して加圧流動
床ボイラ1が接続されている。  さらに、空気供給系
統14からは放風系統17が分岐し、その途中には放風
制御弁18が設置され、末端には高圧圧縮機112の入
口が接続されている。
In FIG. 1, a low pressure compressor 212 and a generator 13 are connected to a high pressure gas turbine 109. The inlet air control device 16 is connected to the inlet of the low-pressure compressor 212, and the pressurized fluidized bed boiler 1 is connected to the outlet via the air supply system 14. Further, an air blowing system 17 branches off from the air supply system 14, a blowing air control valve 18 is installed in the middle thereof, and an inlet of a high pressure compressor 112 is connected to the end.

【0020】一方、加圧流動床ボイラ1の燃焼ガス系統
8は高圧ガスタービン109に接続され、高圧ガスター
ビン109の高圧排気系統110は低圧ガスタービン2
09に接続されている。低圧ガスタービン209には前
述の高圧圧縮機112が連結され、高圧圧縮機112の
排気は高圧圧縮空気系統19とその途中に設置された空
気貯蔵設備入口弁20を経て、空気貯蔵設備21に接続
されている。また、空気貯蔵設備21には、高圧空気供
給系統22と、その途中に設置された空気供給制御弁2
3を介して、加圧流動床ボイラ1が接続されている。
On the other hand, the combustion gas system 8 of the pressurized fluidized bed boiler 1 is connected to a high pressure gas turbine 109, and the high pressure exhaust system 110 of the high pressure gas turbine 109 is connected to the low pressure gas turbine 2.
Connected to 09. The above-mentioned high-pressure compressor 112 is connected to the low-pressure gas turbine 209, and the exhaust gas of the high-pressure compressor 112 is connected to the air storage equipment 21 through the high-pressure compressed air system 19 and the air storage equipment inlet valve 20 installed in the middle. has been done. The air storage equipment 21 also includes a high-pressure air supply system 22 and an air supply control valve 2 installed in the middle of the system.
A pressurized fluidized bed boiler 1 is connected via 3.

【0021】このような構成の本発明プラントにおいて
、高圧ガスタービン109、低圧圧縮機212および発
電機13は起動時以外の運転中は定速回転数で運転され
ている。
In the plant of the present invention having such a configuration, the high-pressure gas turbine 109, the low-pressure compressor 212, and the generator 13 are operated at a constant rotation speed during operation other than when starting up.

【0022】加圧流動床ボイラ複合発電プラントが比較
的高負荷で運転されている時には、低圧圧縮機212の
空気量は入口空気制御装置16により制御され、吸込ま
れた空気は低圧圧縮機212で圧縮された後、例えば1
4〜20Kg/cm2 程度の圧力で空気供給系統14
に吐出される。空気供給系統14を経由した空気は、加
圧流動床ボイラ1に送られ、燃料供給系統15から送ら
れる燃料の燃焼用空気として使用され、その排ガスは高
圧ガスタービン109で仕事をする。
When the pressurized fluidized bed boiler combined cycle power plant is operated at a relatively high load, the amount of air in the low pressure compressor 212 is controlled by the inlet air control device 16, and the air sucked into the low pressure compressor 212 is controlled by the inlet air control device 16. After being compressed, e.g. 1
Air supply system 14 at a pressure of about 4 to 20 kg/cm2
is discharged. The air that has passed through the air supply system 14 is sent to the pressurized fluidized bed boiler 1 and used as combustion air for the fuel sent from the fuel supply system 15, and its exhaust gas is used to perform work in the high-pressure gas turbine 109.

【0023】部分負荷時には、放風系統17に設置され
た放風制御弁18を開くことによって、加圧流動床ボイ
ラ1に送られる燃焼用空気量を減少させ、同時に燃料供
給系統15からの燃料も減少させて、要求負荷に応じた
燃焼を行わせる。加圧流動床ボイラ1の排ガスは高圧ガ
スタービン109に導かれ、仕事をする。高圧ガスター
ビン109で仕事をした後の排出ガスは低圧ガスタービ
ン209で再び仕事をする。
At partial load, the amount of combustion air sent to the pressurized fluidized bed boiler 1 is reduced by opening the blow-off control valve 18 installed in the blow-off system 17, and at the same time the amount of combustion air sent to the pressurized fluidized bed boiler 1 is reduced. The fuel consumption is also reduced to allow combustion to occur in accordance with the required load. Exhaust gas from the pressurized fluidized bed boiler 1 is guided to a high pressure gas turbine 109 to perform work. The exhaust gas that has worked in the high pressure gas turbine 109 works again in the low pressure gas turbine 209.

【0024】一方、放風制御弁18で制御された空気は
、低圧ガスタービン209によって駆動される高圧圧縮
機112に送られ、ここで更に例えば約30Kg/cm
2 以上の圧力に圧縮される。この高圧圧縮空気は、高
圧圧縮空気系統19から空気貯蔵設備入口弁20を経て
空気貯蔵設備21へ送られ、そこに高圧空気として貯蔵
される。
On the other hand, the air controlled by the blow-off control valve 18 is sent to a high-pressure compressor 112 driven by a low-pressure gas turbine 209, where the air is further compressed to about 30 kg/cm, for example.
Compressed to a pressure of 2 or more. This high-pressure compressed air is sent from the high-pressure compressed air system 19 via the air storage facility inlet valve 20 to the air storage facility 21 and stored there as high-pressure air.

【0025】過負荷運転時には、空気貯蔵設備21に貯
蔵された高圧空気は、高圧空気供給系統22を通り、途
中の空気供給制御弁23により、加圧流動床ボイラ1内
より数Kg/cm2 程度高圧に制御されて加圧流動床
ボイラ1へ送られ、燃焼空気として使用される。
During overload operation, the high-pressure air stored in the air storage facility 21 passes through the high-pressure air supply system 22 and is controlled by the air supply control valve 23 in the middle of the flow to a level of several kg/cm2 from inside the pressurized fluidized bed boiler 1. The air is controlled to a high pressure and sent to the pressurized fluidized bed boiler 1, where it is used as combustion air.

【0026】[0026]

【発明の効果】以上述べたように、本発明によれば、部
分負荷時に加圧流動床ボイラの燃焼用として余剰となっ
た圧縮空気を、高圧圧縮機で更に高圧の空気に圧縮した
後、空気貯蔵設備に貯蔵し、必要な時に加圧流動床ボイ
ラの燃焼用として再び利用することで、エネルギー損失
を減らすことができ、しかも過負荷運転への対応も可能
となる。
As described above, according to the present invention, surplus compressed air for combustion in a pressurized fluidized bed boiler during partial load is compressed into higher pressure air by a high pressure compressor, and then By storing it in an air storage facility and reusing it for combustion in a pressurized fluidized bed boiler when necessary, energy loss can be reduced and it is also possible to cope with overload operation.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による加圧流動床ボイラ複合発電プラン
トの概略図である。
FIG. 1 is a schematic diagram of a pressurized fluidized bed boiler combined cycle power plant according to the present invention.

【図2】従来の加圧流動床ボイラ複合発電プラントの概
略図である。
FIG. 2 is a schematic diagram of a conventional pressurized fluidized bed boiler combined power generation plant.

【図3】従来の加圧流動床ボイラ複合発電プラントの概
略図である。
FIG. 3 is a schematic diagram of a conventional pressurized fluidized bed boiler combined cycle power plant.

【符号の説明】[Explanation of symbols]

1……加圧流動床ボイラ 3……蒸気タービン 4……復水器 5……スタックガスクーラ 8……燃焼ガス系統 9……ガスタービン 11……スタック 12……圧縮機 18……放風制御弁 20……空気貯蔵設備入口弁 21……空気貯蔵設備 22……高圧空気供給系統 23……空気供給制御弁 109……高圧ガスタービン 112……高圧圧縮機 209……低圧ガスタービン 212……低圧圧縮機 1... Pressurized fluidized bed boiler 3...Steam turbine 4...Condenser 5...Stack gas cooler 8... Combustion gas system 9...Gas turbine 11...Stack 12...Compressor 18...Air discharge control valve 20...Air storage equipment inlet valve 21...Air storage equipment 22...High pressure air supply system 23...Air supply control valve 109...High pressure gas turbine 112...High pressure compressor 209...Low pressure gas turbine 212...Low pressure compressor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  加圧流動床ボイラの発生蒸気により発
電する蒸気タービン発電設備と、この加圧流動床ボイラ
での燃焼ガスにより発電するガスタービンおよびこのガ
スタービンにより駆動される加圧流動床ボイラの空気供
給用圧縮機を備えたガスタービン発電設備とを具備する
加圧流動床ボイラ複合発電プラントにおいて、低圧圧縮
機からの圧縮空気の一部を前記加圧流動床ボイラの燃焼
用空気として直接供給する空気供給系統と、残りの空気
を高圧圧縮機で更に圧縮した後、空気貯蔵装置で貯蔵す
る高圧圧縮空気系統を持ち、前記空気貯蔵装置は貯蔵さ
れた圧縮空気を再び前記加圧流動床ボイラの燃焼用空気
として供給する高圧空気供給系統を持つことを特徴とす
る加圧流動床ボイラ複合発電プラント。
Claim 1: A steam turbine power generation facility that generates electricity using steam generated by a pressurized fluidized bed boiler, a gas turbine that generates electricity using combustion gas in the pressurized fluidized bed boiler, and a pressurized fluidized bed boiler that is driven by the gas turbine. In a pressurized fluidized bed boiler combined power generation plant equipped with a gas turbine power generation facility equipped with an air supply compressor, a part of the compressed air from the low pressure compressor is directly used as combustion air for the pressurized fluidized bed boiler. and a high-pressure compressed air system that further compresses the remaining air with a high-pressure compressor and stores it in an air storage device, and the air storage device returns the stored compressed air to the pressurized fluidized bed. A pressurized fluidized bed boiler combined power generation plant characterized by having a high pressure air supply system for supplying combustion air to the boiler.
JP1972191A 1991-02-13 1991-02-13 Pressurized fluid floor boiler compound power generation plant Pending JPH04259607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1972191A JPH04259607A (en) 1991-02-13 1991-02-13 Pressurized fluid floor boiler compound power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1972191A JPH04259607A (en) 1991-02-13 1991-02-13 Pressurized fluid floor boiler compound power generation plant

Publications (1)

Publication Number Publication Date
JPH04259607A true JPH04259607A (en) 1992-09-16

Family

ID=12007167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1972191A Pending JPH04259607A (en) 1991-02-13 1991-02-13 Pressurized fluid floor boiler compound power generation plant

Country Status (1)

Country Link
JP (1) JPH04259607A (en)

Similar Documents

Publication Publication Date Title
US6644011B2 (en) Advanced Cheng Combined Cycle
US8495858B2 (en) Method of operating a gas turbine power plant with auxiliary power to reduce emissions
Poullikkas An overview of current and future sustainable gas turbine technologies
US6906432B2 (en) Electrical power generation system and method
CA1116414A (en) Apparatus and method for multiplying the output of a generating unit
US9890707B2 (en) Gas turbine efficiency and regulation speed improvements using supplementary air system continuous and storage systems and methods of using the same
US20160271560A1 (en) Power generation system having compressor creating excess air flow for scr unit
JP2013221506A (en) Method and system for controlling powerplant during low-load operation
JP2011530034A (en) System and method for operating a gas turbine engine with an alternative working fluid
JP2011530033A (en) System and method for operating a gas turbine engine with an alternative working fluid
JP4714912B2 (en) Pressurized fluidized incineration equipment and its startup method
US8640437B1 (en) Mini sized combined cycle power plant
CA2172523C (en) A combined gas and steam cycle pressurized fluidized bed boiler power plant and a method of establishing and operating the same
CA2059894C (en) Gasification-type combined electric power generating plant
JPH04259607A (en) Pressurized fluid floor boiler compound power generation plant
CN106460664B (en) Gas turbine efficiency and turndown speed improvements using supplemental air systems
JP4694888B2 (en) Turbine system construction method
Nelson et al. A fifty percent plus efficiency mid range advanced Cheng cycle
JPH08166109A (en) Pressurized fluidized bed plant
Komatsu et al. A Large-Capacity Pressurized-Fluidized-Bed-Combustion-Boiler Combined-Cycle Power Plant
CN101551121A (en) Multi-stage, efficient and environment-friendly type staged-combustion method and system for gas fuel of gas turbine
JPH0424084Y2 (en)
JP2812534B2 (en) Combined power plant
JPS59176423A (en) Gas turbine plant system
JP4138157B2 (en) Steam-cooled gas turbine startup system