JPH04257644A - Control method of air conditioner - Google Patents

Control method of air conditioner

Info

Publication number
JPH04257644A
JPH04257644A JP3037743A JP3774391A JPH04257644A JP H04257644 A JPH04257644 A JP H04257644A JP 3037743 A JP3037743 A JP 3037743A JP 3774391 A JP3774391 A JP 3774391A JP H04257644 A JPH04257644 A JP H04257644A
Authority
JP
Japan
Prior art keywords
temperature
indoor
operating time
air conditioner
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3037743A
Other languages
Japanese (ja)
Inventor
Hiroaki Takashima
高嶋 宏明
Hideaki Yoshitomi
英明 吉富
Keido Okina
慶堂 翁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP3037743A priority Critical patent/JPH04257644A/en
Publication of JPH04257644A publication Critical patent/JPH04257644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To make it possible to allow indoor load to reach setting temperature swiftly irrespective of its magnitude by controlling the operation power based on the comparison between a forecasted operation time required for indoor air temperature to arrive at the setting temperature and setting operation hours. CONSTITUTION:An indoor temperature T is detected at a constant time interval DELTAtheta, the difference DELTAt between the current and previous detected values is divided by time interval DELTAtheta, thereby computing temperature change velocity V at that point of time. Required operation time THETA which arrives at setting temperature TS is computed by this temperature velocity V. A plurality of setting operation hours, tau1, tau2,...tauB (tau1>tau2, n stands for natural number), which arrive at the setting temperature TS is compared and switched over to select operation power, depending on the position of the required operation hour THETA. This construction makes it possible to force indoor load to arrive at the setting temperature swiftly and surely irrespective of magnitude.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、負荷の状態に対応して
室内温度の制御を行う空気調和機の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner control method for controlling indoor temperature in accordance with load conditions.

【0002】0002

【従来の技術】従来、圧縮機を備え、冷媒の膨張・圧縮
を利用した空気調和機の能力切替制御は、ワイヤレスリ
モートコントローラに内蔵されたサーミスタ、或いは室
内空気入口における室内空気温度検出サーミスタ等によ
り検出された室内空気温度信号に基づき、通常の空気調
和機においては、圧縮機をオン・オフ制御するとともに
室内用ファンによる送風量を強・中・弱に切り替えるこ
とによって行われ、またインバータ式の空気調和機にお
いては、圧縮機並びに室内用ファンの回転数を制御する
ことにより、無段階に行われている。
[Prior Art] Conventionally, the capacity switching control of an air conditioner equipped with a compressor and using expansion and compression of refrigerant has been performed using a thermistor built into a wireless remote controller or an indoor air temperature detection thermistor at the indoor air inlet. Based on the detected indoor air temperature signal, normal air conditioners control the compressor on and off and switch the air flow rate of the indoor fan between high, medium, and low. In an air conditioner, this is done steplessly by controlling the rotational speed of the compressor and indoor fan.

【0003】図2は通常の空気調和機の冷凍サイクルの
一例を示す概略構成図であり、室外ユニットAには、圧
縮機1と、圧縮機1の吐出側に接続された四方弁2と、
四方弁2に接続された室外熱交換器3と、室外熱交換器
3に接続されたキャピラリチューブ4,4と、キャピラ
リチューブ4,4に接続された逆止弁5及び逆止弁5を
バイパスするキャピラリチューブ6と、ストレーナ7と
、圧縮機1の吸入側に接続されたアキュムレータ8とが
配置されており、液側配管9とガス側配管10とで室内
ユニットB内の室内熱交換器11が接続されており、室
外熱交換器3並びに室内熱交換器11にそれぞれ対向し
て室外用ファン(図示せず)と室内用ファン(図示せず
)が設置されている。
FIG. 2 is a schematic diagram showing an example of the refrigeration cycle of a normal air conditioner. The outdoor unit A includes a compressor 1, a four-way valve 2 connected to the discharge side of the compressor 1, and
The outdoor heat exchanger 3 connected to the four-way valve 2, the capillary tubes 4, 4 connected to the outdoor heat exchanger 3, the check valve 5 connected to the capillary tubes 4, 4, and the check valve 5 bypassed. A capillary tube 6, a strainer 7, and an accumulator 8 connected to the suction side of the compressor 1 are arranged. An outdoor fan (not shown) and an indoor fan (not shown) are installed opposite the outdoor heat exchanger 3 and the indoor heat exchanger 11, respectively.

【0004】冷房運転時においては、矢印F1 で示さ
れるように、ガス冷媒が圧縮機1で圧縮されて高圧ガス
冷媒となり、四方弁2から室外熱交換器3に送られて冷
却され、キャピラリチューブ4,4で断熱膨張して液化
し、逆止弁5、ストレーナ7を介して液側配管9より室
内熱交換器11に送られて吸熱して蒸発し、ガス側配管
10より低圧のガス冷媒として四方弁2からアキュムレ
ータ8を介して圧縮機1に吸入される。
During cooling operation, as shown by the arrow F1, the gas refrigerant is compressed by the compressor 1 to become a high-pressure gas refrigerant, which is sent from the four-way valve 2 to the outdoor heat exchanger 3, where it is cooled and then passed through the capillary tube. The gas refrigerant is adiabatically expanded and liquefied in 4 and 4, and is sent to the indoor heat exchanger 11 from the liquid side piping 9 through the check valve 5 and the strainer 7, where it absorbs heat and evaporates, and is transferred from the gas side piping 10 to the low-pressure gas refrigerant. The air is sucked into the compressor 1 from the four-way valve 2 via the accumulator 8.

【0005】暖房運転時においては、矢印F2 で示さ
れるように、ガス冷媒が圧縮機1で圧縮されて高圧ガス
冷媒となり、四方弁2からガス側配管10を介して室内
熱交換器11に送られて放熱して液化し、液側配管9よ
りストレーナ7、キャピラリチューブ6、キャピラリチ
ューブ4,4を介して室外熱交換器3に送られて吸熱し
て蒸発し、低圧のガス冷媒として四方弁2からアキュム
レータ8を介して圧縮機1に吸入される。
During heating operation, as shown by arrow F2, the gas refrigerant is compressed by the compressor 1 to become a high-pressure gas refrigerant, which is sent from the four-way valve 2 to the indoor heat exchanger 11 via the gas side pipe 10. It radiates heat and liquefies, and is sent from the liquid side piping 9 to the outdoor heat exchanger 3 via the strainer 7, capillary tube 6, and capillary tubes 4, 4, where it absorbs heat and evaporates. 2 is drawn into the compressor 1 via the accumulator 8.

【0006】上記空気調和機の能力切替制御は、図3に
示すように、室内空気温度に対応して能力が切り替えら
れるものであり、冷房運転時に能力強で運転されており
、室内空気温度が低下して設定温度Ts (例えば摂氏
25度)よりも2度高い温度(摂氏27度)に達すると
能力が強から中に切り替えられ、室内空気温度がさらに
低下して設定温度Ts よりも1度高い温度(摂氏26
度)に達すると能力が中から弱に切り替えられ、設定温
度Ts (摂氏25度)にまで低下すると送風のみの運
転に切り替えられ、設定温度Ts よりも1度低い温度
(摂氏24度)にまで低下すると運転停止となり、設定
温度Ts よりも低い時の運転停止状態から室内温度が
上昇して設定温度Ts (摂氏25度)に達すると送風
が開始され、設定温度Ts よりも1度高い温度(摂氏
26度)に達すると能力弱の運転が開始され、設定温度
Ts よりも2度高い温度(摂氏27度)に達すると能
力が弱から中に切り替えられ、さらに設定温度Ts よ
りも2度高い温度(摂氏27度)に達すると能力が中か
ら強に切り替えられる。ここで、送風運転時には圧縮機
がオフとされ、室内用ファンのみが能力弱で運転されて
おり、運転停止時には圧縮機及び室内用ファンが共にオ
フとされる。
As shown in FIG. 3, the capacity switching control of the air conditioner is such that the capacity is switched in accordance with the indoor air temperature, and is operated at high capacity during cooling operation, and when the indoor air temperature is low. When the temperature decreases and reaches a temperature (27 degrees Celsius) that is 2 degrees higher than the set temperature Ts (for example, 25 degrees Celsius), the capacity is switched from strong to medium, and the indoor air temperature further decreases to 1 degree higher than the set temperature Ts. High temperature (26 degrees Celsius)
When the temperature reaches the set temperature Ts (25 degrees Celsius), the capacity is switched from medium to weak, and when the temperature drops to the set temperature Ts (25 degrees Celsius), it switches to air-only operation, until the temperature reaches the set temperature Ts (24 degrees Celsius), which is one degree lower than the set temperature Ts. When the temperature drops, the operation is stopped, and when the indoor temperature rises from the stopped state when the temperature is lower than the set temperature Ts and reaches the set temperature Ts (25 degrees Celsius), ventilation starts, and the temperature (1 degree higher than the set temperature Ts) is started. When the temperature reaches 26 degrees Celsius), low capacity operation starts, and when the temperature reaches 2 degrees higher than the set temperature Ts (27 degrees Celsius), the capacity is switched from low to medium, and then 2 degrees higher than the set temperature Ts. When the temperature reaches 27 degrees Celsius, the ability switches from medium to strong. Here, during the ventilation operation, the compressor is turned off, and only the indoor fan is operated at low capacity, and when the operation is stopped, both the compressor and the indoor fan are turned off.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の空気調和機の能力切替制御においては、扉の開放、
日射量が大、或いは室内での加熱器(ヒータ、ガス燃焼
器等)を使用する等の室内における負荷が大きい時にも
、室内空気温度Tに応じて能力が強から中、或いは中か
ら弱に切り替えられることになり、大きな負荷であるに
もかかわらず、能力が低減されるから、さらに室内空気
温度Tを低下させて設定温度Ts に到達させることが
困難になる恐れがあるとともに、能力が強から中、或い
は中から弱に切り替えられると、能力が低減されるから
、室内の負荷により室内空気温度Tが上昇して能力が中
から強、或いは弱から中に切り替えられ、強と中、或い
は中と弱の間で能力切替が交互に行われるのみで、室内
空気温度Tが設定温度Ts に到達しにくくなるという
問題があった。
[Problem to be Solved by the Invention] However, in the capacity switching control of the conventional air conditioner described above, the opening of the door,
Even when the indoor load is large, such as when the amount of solar radiation is large or when an indoor heater (heater, gas combustor, etc.) is used, the capacity changes from strong to medium or from medium to weak depending on the indoor air temperature T. As a result, the capacity will be reduced despite the large load, which may make it difficult to further reduce the indoor air temperature T to reach the set temperature Ts, and the capacity will be increased. When switching from medium to medium, or from medium to low, the capacity is reduced, so the indoor air temperature T rises due to the indoor load, and the capacity is switched from medium to high, or from low to medium, and from high to medium, or from low to medium. There was a problem in that the indoor air temperature T was difficult to reach the set temperature Ts because the capacity was only switched alternately between medium and low.

【0008】本発明の目的は、室内における負荷の大小
にかかわらず、設定温度に速やかに到達することのでき
る空気調和機の制御方法を提供することである。
[0008] An object of the present invention is to provide a method for controlling an air conditioner that can quickly reach a set temperature regardless of the magnitude of the load in the room.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明の空気調和機の制御方法は、室内空気温度Tを
一定の時間間隔Δθで検出し、前回検出された室内空気
温度TA との差Δtを時間間隔Δθで除することによ
りその時点における温度変化速度Vを算出し、算出され
た温度変化速度Vで設定温度Ts に達するまでに要す
る必要運転時間Θを演算し、予め設定された設定温度T
s に達するまでの複数の設定運転時間τ1 ,τ2 
,・・・,τn (τ1 >τ2 >・・・>τn )
(nは自然数)と比較し、この複数の設定運転時間τ1
 ,τ2 ,・・,τn のどの範囲に必要運転時間Θ
が位置するかによって運転能力を選択切り替えることに
より、室内における負荷の大小にかかわらず、設定温度
に速やかに且つ確実に到達することができる。
[Means for Solving the Problems] In order to achieve the above object, the air conditioner control method of the present invention detects the indoor air temperature T at fixed time intervals Δθ, and compares the previously detected indoor air temperature TA with the air conditioner control method of the present invention. The temperature change rate V at that point is calculated by dividing the difference Δt by the time interval Δθ, and the required operating time Θ required to reach the set temperature Ts at the calculated temperature change rate V is calculated. set temperature T
Multiple set operating times τ1, τ2 until reaching s
,...,τn (τ1 >τ2 >...>τn)
(n is a natural number), these multiple set operating times τ1
, τ2 ,..., τn, the required operating time Θ
By selecting and switching the operating capacity depending on the location of the room, the set temperature can be quickly and reliably reached regardless of the size of the load in the room.

【0010】0010

【実施例】本発明の実施例を図1のフローチャートに基
づいて説明すると、室内空気温度Tを一定の時間間隔Δ
θ(例えば1分間隔)で検出し、前回検出された室内空
気温度TA との差Δt(Δt=T−TA )を時間間
隔Δθで除することによりその時点における温度変化速
度V(V=Δt/Δθ)を算出し、算出された温度変化
速度Vで設定温度Ts に達するまでに要する必要運転
時間Θ〔Θ=(Ts −T)/V〕を演算する。
[Embodiment] An embodiment of the present invention will be explained based on the flowchart of FIG.
θ (for example, at 1-minute intervals), and by dividing the difference Δt (Δt=T−TA) from the previously detected indoor air temperature TA by the time interval Δθ, the temperature change rate V (V=Δt /Δθ) is calculated, and the required operating time Θ [Θ=(Ts −T)/V] required to reach the set temperature Ts at the calculated temperature change rate V is calculated.

【0011】予め、設定温度Ts に達するまでの運転
時間として複数の設定運転時間τ1 ,τ2 ,・・・
,τn (τ1 >τ2 >・・・>τn )(nは自
然数)を設定しておき、設定運転時間τm (1≦m≦
n)により定められる時間範囲に対応させて運転能力を
複数の段階(例えば強・中・弱・送風・停止)に設定す
る。
[0011] In advance, a plurality of set operating times τ1, τ2, . . . are set as the operating time until the set temperature Ts is reached.
, τn (τ1 > τ2 >...>τn) (n is a natural number), and set operating time τm (1≦m≦
The operating ability is set to a plurality of stages (for example, strong, medium, weak, blowing air, and stop) in correspondence with the time range determined by n).

【0012】上記算出された必要運転時間Θを上記設定
運転時間τm と比較し、必要運転時間Θがどの設定運
転時間τm により定められる時間範囲にあるかを判定
し、設定運転時間τm により定められる時間範囲に対
応する運転能力に切り替えるものである。
Compare the required operating time Θ calculated above with the set operating time τm, determine which set operating time τm the required operating time Θ is in, and determine which set operating time τm falls within the time range defined by the set operating time τm. This will switch to the driving ability that corresponds to the time range.

【0013】この実施例においては、n=4として、設
定運転時間τ1 ,τ2 ,τ3 ,τ4 (τ1 >
τ2 >τ3 =0>τ4 )を設定したものであり、
設定運転時間τ3 =0は設定温度Ts に達する時間
が零、即ち設定温度Ts に達した状態であり、設定運
転時間τ4 <0は設定温度Ts を超えた状態(冷房
運転時には設定温度Ts 以下の室内空気温度Tになっ
ている状態、一方暖房運転時には室内空気温度Tが設定
温度Ts 以上となった状態)である。
In this embodiment, n=4, and the set operating times τ1, τ2, τ3, τ4 (τ1 >
τ2 > τ3 = 0 > τ4),
The set operating time τ3 = 0 means that the time to reach the set temperature Ts is zero, that is, the set temperature Ts has been reached, and the set operating time τ4 < 0 means that the set temperature Ts has been exceeded (during cooling operation, the time to reach the set temperature Ts has not reached the set temperature Ts). In this state, the indoor air temperature T is at or above the set temperature Ts during the heating operation.

【0014】ここで、上記必要運転時間Θを設定運転時
間τ1 ,τ2 ,τ3 ,τ4 とを比較し、必要運
転時間ΘがΘ≧τ1 の場合には設定温度Ts に達す
るまでの必要運転時間Θが長く、その時点での室内空気
温度Tと設定温度Ts との差Δtが大であるか、また
はその時点における温度変化速度Vが小さい即ち室内の
空調負荷が大である場合であるから、空気調和機は能力
強で運転を行う。
[0014] Here, the above-mentioned required operating time Θ is compared with the set operating times τ1, τ2, τ3, τ4, and if the required operating time Θ is Θ≧τ1, the required operating time Θ to reach the set temperature Ts is determined. is long and the difference Δt between the indoor air temperature T and the set temperature Ts at that point is large, or the temperature change rate V at that point is small, that is, the indoor air conditioning load is large. The harmonizer operates with high capacity.

【0015】必要運転時間Θがτ1 >Θ≧τ2 の場
合には、必要運転時間Θがある程度短くなり、その時点
での室内空気温度Tと設定温度Ts との差Δtが小と
なったか、またはその時点における温度変化速度Vが大
きい即ち室内の空調負荷が小となった場合であるから、
空気調和機の能力は中に切り替えられる。
[0015] If the required operating time Θ is τ1 > Θ≧τ2, the required operating time Θ has become shortened to some extent, and the difference Δt between the indoor air temperature T and the set temperature Ts at that point has become small, or This is a case where the temperature change rate V at that point is large, that is, the indoor air conditioning load is small.
The capacity of the air conditioner can be switched inside.

【0016】必要運転時間Θがτ2 >Θ≧τ3 (τ
3=0)の場合には、室内空気温度Tと設定温度Ts 
との差Δtが非常に小になったか、またはその時点にお
ける温度変化速度Vが非常に大きいことにより、室内空
気温度Tが設定温度Ts に間もなく達する場合である
から、空気調和機の能力は弱に切り替えられる。
[0016] The required operating time Θ is τ2 >Θ≧τ3 (τ
3=0), the indoor air temperature T and the set temperature Ts
In this case, the indoor air temperature T will soon reach the set temperature Ts because the difference Δt between the two and can be switched to

【0017】必要運転時間Θがτ3 >Θ≧τ4 (τ
3=0,τ4 <0)の場合には、室内空気温度Tが設
定温度Ts に一致しているか、或いはオーバーシュー
ト気味の場合であり、空気調和機の能力は送風運転に切
り替えられる。
[0017] The required operating time Θ is τ3 >Θ≧τ4 (τ
3=0, τ4 <0), this means that the indoor air temperature T matches the set temperature Ts or is slightly overshooting, and the capacity of the air conditioner is switched to blowing operation.

【0018】さらに、必要運転時間ΘがΘ<τ4 (τ
4 <0)の場合には、室内空気温度Tが設定温度Ts
 を超えてオーバーシュートした状態であるから、空気
調和機は運転停止とされる。
Furthermore, the required operating time Θ is Θ<τ4 (τ
4 <0), the indoor air temperature T is equal to the set temperature Ts
Since the air conditioner is in an overshoot state, the air conditioner is stopped.

【0019】上記のとおり、本発明の空気調和機の制御
方法は、室内空気温度Tが設定温度Ts に達するまで
に必要な運転時間Θを予見し、この予見された必要運転
時間Θに基づいて空気調和機の運転能力制御を行うから
、確実に室内空気温度Tを設定温度Ts に到達させる
ことができるものであり、設定運転時間の内の最大値(
ここではτ1 )を小さくすることによって、能力強に
よる空気調和機の運転が長くなり、室内空気温度Tが設
定温度Ts に達するまでの時間を短くすることができ
るものである。
As described above, the air conditioner control method of the present invention predicts the operating time Θ required for the indoor air temperature T to reach the set temperature Ts, and calculates the operating time Θ based on this predicted required operating time Θ. Since the operating capacity of the air conditioner is controlled, it is possible to ensure that the indoor air temperature T reaches the set temperature Ts, and the maximum value (
Here, by reducing τ1), the air conditioner can be operated at high capacity for a longer period of time, and the time required for the indoor air temperature T to reach the set temperature Ts can be shortened.

【0020】また、設定運転時間の内の最大値(τ1 
)を変化させることにより、空気調和機の運転特性を容
易に変更させることができる、即ち最大設定運転時間(
τ1 )を小さくすると急速自動制御を行うことになる
一方、最大設定運転時間(τ1 )を大きくするとゆる
やかな自動制御を行うものである。
[0020] Also, the maximum value (τ1
), the operating characteristics of the air conditioner can be easily changed by changing the maximum set operating time (
If τ1) is made small, rapid automatic control will be performed, while if the maximum set operating time (τ1) is made large, gradual automatic control will be performed.

【発明の効果】上述のとおり本発明の空気調和機の制御
方法によると、室内空気温度が設定温度に達するまでに
必要な運転時間を予見し、この予見された必要運転時間
を予め設定された設定運転時間と比較して空気調和機の
運転能力制御を行うから、確実に室内空気温度を設定温
度に到達させることができるものであり、設定運転時間
の内の最大値を小さくすることによって、能力強による
空気調和機の運転が長くなり、室内空気温度が設定温度
に達するまでの時間を短くすることができるものである
。また、設定運転時間の内の最大値を変化させることに
より、空気調和機の運転特性を容易に変更させることが
できる、即ち最大設定運転時間を小さくすると急速自動
制御を行うことになる一方、最大設定運転時間を大きく
するとゆるやかな自動制御を行うものである。
[Effects of the Invention] As described above, according to the air conditioner control method of the present invention, the operating time required for the indoor air temperature to reach the set temperature is predicted, and the predicted required operating time is set in advance. Since the operating capacity of the air conditioner is controlled by comparing it with the set operating time, it is possible to ensure that the indoor air temperature reaches the set temperature, and by reducing the maximum value of the set operating time, The increased capacity allows the air conditioner to run longer and shorten the time it takes for the indoor air temperature to reach the set temperature. In addition, by changing the maximum value of the set operating time, the operating characteristics of the air conditioner can be easily changed. When the set operating time is increased, gradual automatic control is performed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の空気調和機の制御方法の動作を示すフ
ローチャートである。
FIG. 1 is a flowchart showing the operation of the air conditioner control method of the present invention.

【図2】通常の空気調和機の冷凍サイクルの概略構成図
である。
FIG. 2 is a schematic configuration diagram of a refrigeration cycle of a normal air conditioner.

【図3】従来の制御方法による制御特性図である。FIG. 3 is a control characteristic diagram according to a conventional control method.

【符号の説明】[Explanation of symbols]

1  圧縮機 2  四方弁 3  室外熱交換器 4  キャピラリチューブ 5  逆止弁 6  キャピラリチューブ 8  アキュムレータ 9  液側配管 10  ガス側配管 11  室内熱交換器 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Capillary tube 5 Check valve 6 Capillary tube 8 Accumulator 9 Liquid side piping 10 Gas side piping 11 Indoor heat exchanger

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  室内空気温度を一定の時間間隔で検出
し、その時点における温度変化速度を算出し、算出され
た温度変化速度で設定温度に達するまでに要する必要運
転時間を演算し、予め設定された複数の設定温度に達す
るまでの設定運転時間と比較し、複数の設定運転時間の
どの範囲に必要運転時間が位置するかによって運転能力
を選択切り替えることを特徴とする空気調和機の制御方
法。
[Claim 1] Detect the indoor air temperature at regular time intervals, calculate the temperature change rate at that point, calculate the required operating time required to reach the set temperature at the calculated temperature change rate, and set it in advance. A control method for an air conditioner, characterized in that the operating capacity is selected and switched depending on which range of the plurality of set operating times the required operating time falls in, compared with the set operating time until reaching the plurality of set temperatures. .
JP3037743A 1991-02-08 1991-02-08 Control method of air conditioner Pending JPH04257644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3037743A JPH04257644A (en) 1991-02-08 1991-02-08 Control method of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3037743A JPH04257644A (en) 1991-02-08 1991-02-08 Control method of air conditioner

Publications (1)

Publication Number Publication Date
JPH04257644A true JPH04257644A (en) 1992-09-11

Family

ID=12505963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3037743A Pending JPH04257644A (en) 1991-02-08 1991-02-08 Control method of air conditioner

Country Status (1)

Country Link
JP (1) JPH04257644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057915A (en) * 2010-09-13 2012-03-22 Takenaka Komuten Co Ltd Air conditioning equipment
CN107576015A (en) * 2017-09-21 2018-01-12 新智能源系统控制有限责任公司 A kind of building air conditioning model predictive control method and device for realizing Demand Side Response

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798738A (en) * 1980-10-14 1982-06-19 Gen Electric Method of and apparatus for controlling heat pump apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798738A (en) * 1980-10-14 1982-06-19 Gen Electric Method of and apparatus for controlling heat pump apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057915A (en) * 2010-09-13 2012-03-22 Takenaka Komuten Co Ltd Air conditioning equipment
CN107576015A (en) * 2017-09-21 2018-01-12 新智能源系统控制有限责任公司 A kind of building air conditioning model predictive control method and device for realizing Demand Side Response
CN107576015B (en) * 2017-09-21 2020-06-23 新智能源系统控制有限责任公司 Building air conditioner model prediction control method and device for realizing demand side response

Similar Documents

Publication Publication Date Title
JP6201872B2 (en) Air conditioner
US9726420B2 (en) Apparatus for defrosting a plurality of heat exchangers having a common outdoor fan
CN101113834B (en) Method of controlling air conditioner
JP6071648B2 (en) Air conditioner
US10371407B2 (en) Air conditioning apparatus
WO2002039025A1 (en) Air conditioner
WO2016158938A1 (en) Air conditioner
WO2008015930A1 (en) Air conditioner
US7472559B2 (en) Method for controlling air conditioner
US11262108B2 (en) Refrigeration cycle apparatus
AU2017408715A1 (en) Outdoor unit of air-conditioning apparatus
KR20060124960A (en) Cool mode control method of air conditioner
JP2695288B2 (en) Multi-room air conditioner
JP2003106615A (en) Air conditioner
JP2011257097A (en) Multi-room type air conditioning apparatus
JPH04257644A (en) Control method of air conditioner
KR20090067738A (en) Control method of air conditioner
JPH07332795A (en) Multiroom type air-conditioning system
JPS6127665B2 (en)
KR20120085403A (en) Refrigerant circulation apparatus and method of controlling the same
KR101194879B1 (en) Method for controlling flap of air conditioner
KR20200073471A (en) Control method for air conditioner
KR20090107310A (en) Air conditioner
JP2017067320A (en) Air conditioner
JP2005133970A (en) Air-conditioner