JPH0425715B2 - - Google Patents

Info

Publication number
JPH0425715B2
JPH0425715B2 JP15389682A JP15389682A JPH0425715B2 JP H0425715 B2 JPH0425715 B2 JP H0425715B2 JP 15389682 A JP15389682 A JP 15389682A JP 15389682 A JP15389682 A JP 15389682A JP H0425715 B2 JPH0425715 B2 JP H0425715B2
Authority
JP
Japan
Prior art keywords
copper
wiring
chromium
zirconium
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15389682A
Other languages
Japanese (ja)
Other versions
JPS5943570A (en
Inventor
Kenji Hinode
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15389682A priority Critical patent/JPS5943570A/en
Publication of JPS5943570A publication Critical patent/JPS5943570A/en
Publication of JPH0425715B2 publication Critical patent/JPH0425715B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体素子、特にバイポーラ集積回
路素子、およびバブル磁区素子表面弾性波素子等
の高電流密度用に適した薄膜配線に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to thin film interconnects suitable for high current densities such as semiconductor devices, particularly bipolar integrated circuit devices, and bubble domain devices and surface acoustic wave devices.

〔従来技術〕[Prior art]

現在、バイポーラ集積回路素子では、高電流密
度用の配線材料としてアルミニウム・銅合金が用
いられている。この材料に流し得る最高電流密度
は3×105A/cm2程度であり、電流密度は現在既
にこのレベルに達しており、アルミニウム・銅合
金では将来の高集積化に耐えない。また、高集積
化のための微細化は配線および電極断面積の減少
を招く。現在のアルミニウム合金を使う限り配線
抵抗が増し、信号遅延、電圧降下、ジユール発熱
等の問題が、高集積化の障害となる。したがつ
て、より低い電気抵抗率を有す材料の開発が必要
である。
Currently, aluminum-copper alloys are used as wiring materials for high current densities in bipolar integrated circuit devices. The maximum current density that can be passed through this material is about 3×10 5 A/cm 2 , and the current density has already reached this level, and aluminum-copper alloys will not be able to withstand future high integration. Furthermore, miniaturization for higher integration results in a reduction in the cross-sectional area of wiring and electrodes. As long as current aluminum alloys are used, wiring resistance increases, and problems such as signal delay, voltage drop, and heat generation become obstacles to high integration. Therefore, there is a need to develop materials with lower electrical resistivity.

〔発明の目的〕[Purpose of the invention]

本発明は、高い電流密度下(たとえば×
106A/cm2以上)での通電に耐えると同時に、現
在用いられているアルミニウム・銅合金よりも低
い電気抵抗率を有する材料を提供することを目的
とする。
The present invention can be applied under high current density (e.g. ×
The purpose of the present invention is to provide a material that can withstand current flow (10 6 A/cm 2 or higher) and at the same time has a lower electrical resistivity than currently used aluminum-copper alloys.

〔発明の概要〕[Summary of the invention]

電流密度の制限はエレクトロマイグレーシヨン
による劣化によつて決まる。耐マイグレーシヨン
性を増すために、金属の種類を変えること、合金
化等の方法がとられる。タングステンモリブデン
等の高融点合属は非常に高い耐マイグレーシヨン
性を有するが、電気抵抗率がアルミニウムの2〜
3倍以上(薄膜)であり、現在の目的には適さな
い。アルミニウムより低抵抗の材料として、金、
銀、銅がある。この中では銅価格の面で有利であ
るが、純銅では、耐マイグレーシヨン性が必ずし
も十分でない。F.M.d′Heurleらのデータ(Thin
Solid Films25(1975)PP.531−544)から判断
すると3×106A/cm2程度が限度と思われる。こ
れ以上の電流密度で使うために合金化によつて耐
マイグレーシヨン性を改善する。上記の文献では
銅・ベリリウム系が有効なことを示しているが、
この系は電気抵抗率が高く有効でない。抵抗率が
それほど悪化せずに耐マイグレーシヨン性を改善
できるものとして、銅・クロム、銅・ジルコニウ
ム系がある。これらの系でも電気抵抗率がアルミ
ニウム以下であるためにはクロム、ジルコニウム
の添加量に制限があり、それぞれ、約2重量%ク
ロム、1重量%ジルコニウムとなる。
Current density limitations are determined by electromigration degradation. In order to increase migration resistance, methods such as changing the type of metal and alloying are used. High melting point alloys such as tungsten molybdenum have extremely high migration resistance, but their electrical resistivity is 2 to 2 that of aluminum.
It is more than 3 times as large (thin film) and is not suitable for current purposes. Gold, as a material with lower resistance than aluminum,
There is silver and copper. Among these, copper is advantageous in terms of price, but pure copper does not necessarily have sufficient migration resistance. Data from FMd′Heurle et al. (Thin
Judging from Solid Films 25 (1975) PP.531-544), the limit seems to be about 3×10 6 A/cm 2 . For use at higher current densities, migration resistance is improved by alloying. The above literature shows that copper/beryllium type is effective, but
This system has high electrical resistivity and is not effective. Copper/chromium and copper/zirconium based materials can improve migration resistance without significantly deteriorating resistivity. Even in these systems, in order for the electrical resistivity to be lower than aluminum, there is a limit to the amounts of chromium and zirconium added, which are approximately 2% by weight chromium and 1% by weight zirconium, respectively.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例を参照して詳細に説明す
る。
Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例 1 銅・クロム合金の薄膜配線を以下のようにして
作製した。シリコン基板を熱酸化して表面に
0.2μm厚のシリコン酸化膜層を形成する。銅の
シリコン酸化膜への付着力は弱いので、接着層と
してクロムを約50nm蒸着する。真空を破るこ
となく、引き続いて銅・0.6重量%クロム合金を
0.5μm蒸着する。通常のフオトエツチング法に
より、配線パターンを形成する。400〜500℃で
焼鈍する。これは蒸着時の基板温度が150℃程度
であるため、蒸着膜中に形成された多数の格子欠
陥を除去し、抵抗値を下げるためである。
Example 1 A copper-chromium alloy thin film wiring was produced as follows. Thermal oxidation of silicon substrate to the surface
A silicon oxide film layer with a thickness of 0.2 μm is formed. Since the adhesion of copper to the silicon oxide film is weak, chromium is deposited to a thickness of about 50 nm as an adhesive layer. Copper and 0.6 wt% chromium alloy were subsequently added without breaking the vacuum.
Deposit 0.5 μm. A wiring pattern is formed by a normal photoetching method. Anneal at 400-500℃. This is because the substrate temperature during vapor deposition is about 150° C., so many lattice defects formed in the vapor deposited film are removed and the resistance value is lowered.

このようにして作製した配線に300℃、3×
106A/cm2の条件で通電し、同時に作製した純銅
配線と比較した。断線までの時間(平均寿命)
は、幅3μm、長さ100μmの配線で、850hであり、
配線幅が広いと、多少長くなる。この寿命は同条
件で通電試験した純銅の平均寿命70hの10倍程度
であつた。
The wiring produced in this way was heated to 300°C, 3×
Electricity was applied under the condition of 10 6 A/cm 2 and comparison was made with pure copper wiring fabricated at the same time. Time until disconnection (average life)
is a wiring with a width of 3 μm and a length of 100 μm, and is 850 h.
If the wiring width is wide, it will become a little longer. This lifespan was approximately 10 times the average lifespan of 70 hours for pure copper tested under the same conditions.

全く同様の手順で、銅クロム合金の代りに、銅
ジルコニウム合金(0.2重量%ジルコニウム)を
0.5μm厚に蒸着し、配線パターンを形成した。幅
3μm、長さ100μmの配線に、300℃、3×106A/
cm2で通電し寿命を測定した。得られた平均寿命
は、650hで、実施例1の銅・クロム合金より多
少劣るものの、純銅に比較すれば約10倍の値であ
る。また、ZrおよびCrの含有量と寿命との関係
を求めると、第1図に示すように、ZrおよびCr
の含有量がそれぞれ、ほぼ0.02および0.05重量%
以上であればAlCuTa合金以上の寿命が得られる
ことがわかつた。
Using exactly the same procedure, copper zirconium alloy (0.2 wt% zirconium) was used instead of copper chromium alloy.
It was deposited to a thickness of 0.5 μm to form a wiring pattern. width
3×10 6 A/300℃ for 3μm, 100μm long wiring
The life was measured by applying current at cm2 . The obtained average life was 650 hours, which was somewhat inferior to the copper-chromium alloy of Example 1, but was about 10 times as long as pure copper. Furthermore, when determining the relationship between Zr and Cr content and lifespan, as shown in Figure 1, Zr and Cr
The content of approximately 0.02 and 0.05% by weight, respectively
It was found that if the lifespan is above that, a life longer than that of AlCuTa alloy can be obtained.

実施例 2 実施例1に示した手順で作製した蒸着薄膜の電
気抵抗値を測定した。添加元素の濃度を変え、
銅・クロム合金では6種類、銅・ジルコニウム合
金では3種類の試料について、500℃×1hの焼鈍
後の電気抵抗率を求めた。第2図にその結果を示
す。純銅の電気抵抗率はバルク値に比べ、1割程
度大きい。合金元素を添加すると、濃度増加に伴
つて電気抵抗率も増加し、濃度と電気抵抗率との
間には、第2図に示すような直線関係がある。同
濃度で比較すると、ジルコニウムではクロムの2
倍程度の電気抵抗率の増加がある。第2図から明
らかなように、クロムでは8重量%、ジルコニウ
ムでは4重量%をそれぞれ銅に添加した合金薄膜
はいずれも、Cu合金よりもはるかにエレクトロ
マイグレーシヨン性のすぐれたW、Mo膜以下の
電気抵抗を有し、実用に供することができる。
Example 2 The electrical resistance value of the vapor-deposited thin film produced by the procedure shown in Example 1 was measured. By changing the concentration of added elements,
The electrical resistivity of six types of copper-chromium alloy samples and three types of copper-zirconium alloy samples were determined after annealing at 500°C for 1 hour. Figure 2 shows the results. The electrical resistivity of pure copper is about 10% higher than its bulk value. When an alloying element is added, the electrical resistivity increases as the concentration increases, and there is a linear relationship between the concentration and the electrical resistivity as shown in FIG. Comparing the same concentration, zirconium has 2
There is an increase in electrical resistivity of about twice as much. As is clear from Figure 2, the alloy thin films in which 8% by weight of chromium and 4% by weight of zirconium are added to copper each have a much better electromigration property than the Cu alloy, compared to the W and Mo films. It has an electrical resistance of , and can be put to practical use.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく、本発明によれば、銅にほ
ぼ0.05〜8重量%のクロム、ほぼ0.02〜4重量%
のジルコニウムを加えた合金は、W、Moより低
抵抗で、かつ現在最も耐性のあるAl合金(Al、
Cu、Ta)よりも優れた耐マイグレーシヨン性を
有する。従つて高電流密度用の電極配線材料とし
て有用である。
As explained above, according to the present invention, copper contains approximately 0.05 to 8% chromium and approximately 0.02 to 4% by weight.
The alloy containing zirconium has lower resistance than W and Mo, and is currently the most resistant Al alloy (Al,
It has better migration resistance than Cu, Ta). Therefore, it is useful as an electrode wiring material for high current density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明の効果を
示す曲線図である。
FIGS. 1 and 2 are curve diagrams showing the effects of the present invention, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 クロムほぼ0.05〜8重量%、もしくはジルコ
ニウムほぼ0.02〜4重量%を含む銅の薄膜からな
る薄膜配線。
1. Thin film wiring consisting of a copper thin film containing approximately 0.05 to 8% by weight of chromium or approximately 0.02 to 4% by weight of zirconium.
JP15389682A 1982-09-06 1982-09-06 Thin film wiring electrode material Granted JPS5943570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15389682A JPS5943570A (en) 1982-09-06 1982-09-06 Thin film wiring electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15389682A JPS5943570A (en) 1982-09-06 1982-09-06 Thin film wiring electrode material

Publications (2)

Publication Number Publication Date
JPS5943570A JPS5943570A (en) 1984-03-10
JPH0425715B2 true JPH0425715B2 (en) 1992-05-01

Family

ID=15572474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15389682A Granted JPS5943570A (en) 1982-09-06 1982-09-06 Thin film wiring electrode material

Country Status (1)

Country Link
JP (1) JPS5943570A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2511289B2 (en) * 1988-03-30 1996-06-26 株式会社日立製作所 Semiconductor device
JPH0262035A (en) * 1988-08-29 1990-03-01 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
US5243222A (en) * 1991-04-05 1993-09-07 International Business Machines Corporation Copper alloy metallurgies for VLSI interconnection structures
JP4423379B2 (en) 2008-03-25 2010-03-03 合同会社先端配線材料研究所 Copper wiring, semiconductor device, and method of forming copper wiring

Also Published As

Publication number Publication date
JPS5943570A (en) 1984-03-10

Similar Documents

Publication Publication Date Title
US3881884A (en) Method for the formation of corrosion resistant electronic interconnections
US4319264A (en) Nickel-gold-nickel conductors for solid state devices
US4372809A (en) Method for manufacturing solderable, temperable, thin film tracks which do not contain precious metal
JPH0582991B2 (en)
JPH0621140A (en) Electronic device provided with metallurgy containing compound of copper and semiconductor
US4166279A (en) Electromigration resistance in gold thin film conductors
US3617816A (en) Composite metallurgy stripe for semiconductor devices
US4268584A (en) Nickel-X/gold/nickel-X conductors for solid state devices where X is phosphorus, boron, or carbon
JPS59104184A (en) Solar battery
KR970005162B1 (en) Improvements in or relating to high-tc superconducting units having low contact surface resistivity
US5051812A (en) Semiconductor device and method for manufacturing the same
JPH0425715B2 (en)
Philofsky et al. A review of the limitations of aluminum thin films on semiconductor devices
US4615908A (en) Method for the manufacture of plasma-polymer multilayer capacitors
Morabito et al. Material characterization of Ti-Cu-Ni-Au (TCNA)-a new low cost thin film conductor system
JPH0262035A (en) Semiconductor device
JPH06236878A (en) Metal wiring
JPH08125203A (en) Manufacture of cdte element
JP2606547B2 (en) Method for manufacturing semiconductor device
JPH0140511B2 (en)
CA1153128A (en) Electrical circuit assemblies
JPS61184859A (en) Silicon heat sink chip
TWI733120B (en) Thin film resistor
JPS61144847A (en) Semiconductor device and manufacture thereof
JPS5936822B2 (en) Pressure contact type semiconductor device