JPH0425654B2 - - Google Patents

Info

Publication number
JPH0425654B2
JPH0425654B2 JP59009125A JP912584A JPH0425654B2 JP H0425654 B2 JPH0425654 B2 JP H0425654B2 JP 59009125 A JP59009125 A JP 59009125A JP 912584 A JP912584 A JP 912584A JP H0425654 B2 JPH0425654 B2 JP H0425654B2
Authority
JP
Japan
Prior art keywords
shield
electrodes
current
metal cylinder
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59009125A
Other languages
Japanese (ja)
Other versions
JPS60151921A (en
Inventor
Takamitsu Sano
Hideo Kawakami
Takashi Ashizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP912584A priority Critical patent/JPS60151921A/en
Publication of JPS60151921A publication Critical patent/JPS60151921A/en
Publication of JPH0425654B2 publication Critical patent/JPH0425654B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】 (1) 産業上の利用分野 本発明は、固定電極あるいは可動電極のいずれ
かの電極と電気的に同電位な金属円筒(又は円筒
形コイル)によつて、電極まわりが包囲された片
タンク型の真空しや断器に関する。
[Detailed Description of the Invention] (1) Field of Industrial Application The present invention provides a method for creating a structure around an electrode by means of a metal cylinder (or cylindrical coil) having the same electric potential as either a fixed electrode or a movable electrode. This article relates to a single-tank type vacuum shield and breaker with an enclosed tank.

(2) 従来の技術 真空しや断器には、アークに平行な磁界を作用
させてアークをコントロールするものがあるが、
電流の流れる方向によつてしや断能力に差があ
り、アークコントロールに電流の極性効果が影響
することが実験的に確かめられている。
(2) Conventional technology Some vacuum cutters control the arc by applying a magnetic field parallel to the arc.
It has been experimentally confirmed that the shearing ability differs depending on the direction of current flow, and that the polarity of the current affects arc control.

即ち、例えば固定電極のまわりを該固定電極と
同電位の金属円筒で包囲した真空しや断器を交流
電流のしや断に用いる場合、固定電極から可動電
極へ向かう電流(正波電流)のほうがその反対方
向へ流れる電流(負波電流)よりもしや断されに
くい。つまりしや断容量が低い。
That is, for example, when a vacuum shield circuit breaker, in which a fixed electrode is surrounded by a metal cylinder having the same potential as the fixed electrode, is used to interrupt an alternating current, the current (positive wave current) flowing from the fixed electrode to the movable electrode is This is more difficult to cut off than the current flowing in the opposite direction (negative wave current). In other words, the shear capacity is low.

これは、金属円筒が常に固定電極と同電位であ
ることが原因と解かれ、次のように説明できる。
負波電流が流れて両電極間にアークが発生する
と、可動電極はアノード電位に、そして固定電極
及び金属円筒はカソード電位になつている。アー
ク発生中はプラズマ中から放射された電子及び陽
イオン(高エネルギー電子が金属蒸気に衝突する
ことによつて金属蒸気が二次電子を放出し、陽イ
オンとなる)が移動することによつて電流が流れ
る。そのため、金属円筒に包囲された範囲には多
数の陽イオンが存在するが、金属円筒がカソード
電位のためにこの陽イオンが金属円筒に補獲され
る。したがつて電流が零になると、両電極の周囲
の空間に放出される陽イオンは少なくなり、また
この空間に存在していた陽イオンは急速に金属円
筒に補獲されるので、両電極間はもちろん可動電
極と金属円筒との真の空間は急速に絶縁を回復す
る。
This is understood to be because the metal cylinder is always at the same potential as the fixed electrode, and can be explained as follows.
When a negative wave current flows and an arc is generated between both electrodes, the movable electrode is at an anode potential, and the fixed electrode and metal cylinder are at a cathode potential. During arc generation, electrons and cations emitted from the plasma (high-energy electrons collide with metal vapor, causing the metal vapor to release secondary electrons and become cations) move. Current flows. Therefore, a large number of cations exist in the area surrounded by the metal cylinder, but because the metal cylinder has a cathode potential, these cations are captured by the metal cylinder. Therefore, when the current becomes zero, fewer cations are released into the space around the two electrodes, and the cations that existed in this space are quickly captured by the metal cylinder, so the space between the two electrodes is reduced. Of course, the true space between the movable electrode and the metal cylinder quickly restores the insulation.

これに対して正波電流の場合は固定電極及び金
属円筒はアノード電位となつて可動電極はカソー
ド電位となつている。したがつて陽イオンは金属
円筒には捕獲されず、電流が零となつても電極の
まわりの空間に多くの陽イオンが残留する。この
状態において、電流零後にアノード電位であつた
金属円筒の電位がカソード電位に変わると残留し
ていた陽イオンは金属円筒に補獲される。
On the other hand, in the case of a positive wave current, the fixed electrode and the metal cylinder are at an anode potential, and the movable electrode is at a cathode potential. Therefore, cations are not captured by the metal cylinder, and many cations remain in the space around the electrode even when the current becomes zero. In this state, when the potential of the metal cylinder, which was at the anode potential, changes to the cathode potential after the current is zero, the remaining cations are captured by the metal cylinder.

このように多くの陽イオンが金属円筒に向かつ
て移動することは、金属蒸気からの多量の二次電
子放出の原因となつて放射センサーの発生を促進
させるだけでなく、絶縁破壊すなわちしや断不能
となつて両電極間は再びアークにより橋絡され
る。
This movement of many cations toward the metal cylinder not only causes a large amount of secondary electron emission from the metal vapor and promotes the generation of radiation sensors, but also causes dielectric breakdown or The arc becomes impossible and the two electrodes are once again bridged by an arc.

従つて、一方の電極と同電位の金属筒を有する
真空しや断器においては、このような欠点を解消
する対策が必要である。
Therefore, in a vacuum insulation switch having a metal cylinder having the same potential as one electrode, measures are required to eliminate such drawbacks.

(3) 発明の目的 そこで本発明は、アークと略平行な磁界を生じ
させる磁界発生手段を有する真空しや断器におけ
る前記の欠点を解消し、電流の流れる方向とは関
係なくしや断能力が発揮される真空しや断器を提
供することを目的とする。
(3) Purpose of the Invention Therefore, the present invention solves the above-mentioned drawbacks of a vacuum breaker which has a magnetic field generation means that generates a magnetic field substantially parallel to the arc, and has the ability to break the breaker regardless of the direction of current flow. The purpose is to provide a vacuum shield and disconnector that is effective.

(4) 発明の概要 本発明は、両電極といずれかの電極に対して同
電位な同電位部材との間に、いずれの電極とも同
電位でない中間電位部材を具えたことを特徴とす
る。
(4) Summary of the Invention The present invention is characterized in that an intermediate potential member that is not at the same potential as either electrode is provided between both electrodes and the same potential member that is at the same potential with either electrode.

(5) 実施例 以下、本発明を図面に示す実施例に基づいて詳
細に説明する。
(5) Embodiments Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1図〜第3図に本発明に係る真空しや断器の
実施例1を示す。図中、4はステンレス鋼の金属
円筒、9はガラス絶縁筒、3は固定側フランジ、
14は可動側フランジ、12はベローズ、11は
ベローズシールド、13は外シールド、1は固定
リード棒、2はコイル支持金具、5は円筒形コイ
ル、7は固定電極、15は可動リード棒、8は可
動電極である。円筒形コイル5は、第1図のA−
A矢視図として第2図に示すように一端がコイル
集電片20を介して固定リード棒1と固着され、
他端はコイル集電部19を介して固定電極7と固
着され、電流が固定リード棒1→コイル集電片2
0→円筒形コイル5→コイル集電部19という順
路で流れる。
Embodiment 1 of the vacuum shield disconnector according to the present invention is shown in FIGS. 1 to 3. In the figure, 4 is a stainless steel metal cylinder, 9 is a glass insulating cylinder, 3 is a fixed side flange,
14 is a movable flange, 12 is a bellows, 11 is a bellows shield, 13 is an outer shield, 1 is a fixed lead rod, 2 is a coil support fitting, 5 is a cylindrical coil, 7 is a fixed electrode, 15 is a movable lead rod, 8 is a movable electrode. The cylindrical coil 5 is A- in FIG.
As shown in FIG. 2 as a view from arrow A, one end is fixed to the fixed lead rod 1 via a coil current collector piece 20,
The other end is fixed to the fixed electrode 7 via the coil current collector 19, and the current flows from the fixed lead rod 1 to the coil current collector 2.
0→cylindrical coil 5→coil current collector 19.

本実施例ではこの円筒形コイル5が固定電極
7・可動電極8間で発生するアークと略平行な方
向の磁界をつくる磁界発生手段であり、本実施例
では金属円筒4の内側に円筒形コイル5が配置さ
れることから両電極に近い円筒形コイル5が固定
電極7と電位が同じの同電位部材となる。
In this embodiment, this cylindrical coil 5 is a magnetic field generating means that creates a magnetic field in a direction substantially parallel to the arc generated between the fixed electrode 7 and the movable electrode 8. In this embodiment, the cylindrical coil 5 is installed inside the metal cylinder 4. 5, the cylindrical coil 5 close to both electrodes becomes a member having the same potential as the fixed electrode 7.

本発明では固定電極7及び可動電極8を包囲し
てこれら両電極と円筒形コイル5との間に、いず
れの電極とも同電位でない中間電位部材としての
ステンレス鋼の浮遊シールド6が具えられてい
る。この浮遊シールド6は、本実施例ではガラス
絶縁筒9への金属蒸気の付着を防ぐ機能も併用さ
せるために、下はガラス絶縁筒9の下部から上は
コイル集電部19まで達するように設けられてい
る。浮遊シールド6の取り付けは中間電位を達成
するためにガラス絶縁筒9の内側に埋設金具10
を介してなされている。即ち、ガラス絶縁筒9に
埋め込まれたコバール金属製の複数の埋設金具1
0が浮遊シールド6に設けられた孔に嵌め込まれ
ることによつて浮遊シールド6が支持されてい
る。浮遊シールド6と両電極及び円筒形コイル5
との距離関係は、第3図においてl1=l2=0.8G〜
1.0G、l3=O〜Gとなつている。
In the present invention, a stainless steel floating shield 6 is provided between the fixed electrode 7 and the movable electrode 8 and between these electrodes and the cylindrical coil 5 as an intermediate potential member that is not at the same potential as either electrode. . In this embodiment, this floating shield 6 is provided so that it reaches from the lower part of the glass insulating tube 9 to the coil current collecting part 19 in the upper part, in order to also have the function of preventing metal vapor from adhering to the glass insulating tube 9. It is being The floating shield 6 is attached using a metal fitting 10 buried inside the glass insulating tube 9 to achieve an intermediate potential.
has been made through. That is, a plurality of embedded fittings 1 made of Kovar metal are embedded in a glass insulating cylinder 9.
0 is fitted into a hole provided in the floating shield 6, thereby supporting the floating shield 6. Floating shield 6, both electrodes and cylindrical coil 5
In Figure 3, the distance relationship between l 1 = l 2 = 0.8G ~
1.0G, l 3 =O~G.

以上のような構造にすると、真空しや断器の内
部の空間に陽イオンが残留しないので正波電流の
場合においてもしや断性能が良い。これは、次の
ように説明できる。正波電流の場合はアーク発生
により生じる陽イオンが浮遊シールド6によつて
補獲されるで、浮遊シールド6の電位が正となつ
てアノード電位と略同じか又は少し高くなる。こ
の浮遊シールド6は可動電極8を包囲するように
設けられているため、浮遊シールド6に帯電した
電荷は空間を通じて可動電極8へ移動する。電流
零後に浮遊シールド6と固定電極7との間の空間
には多数の陽イオンが残留してイオン流動を生ず
るが固定電極7と可動電極8との間の空間や浮遊
シールド6と可動電極8との間の空間そして浮遊
シールド6と円筒形コイル5との間の空間には陽
イオンの残留が少なくて絶縁回復が早くなる。負
波電流のしや断においては従来と同様に行われる
ので、正波電流及び負波電流のしや断性能、安定
化に極めて有効であり、特に大電流用の真空しや
断器としての利用価値が高い。
With the above structure, no cations remain in the space inside the vacuum chamber or disconnector, so the disconnection performance is good in the case of a positive wave current. This can be explained as follows. In the case of a positive wave current, positive ions generated by arc generation are captured by the floating shield 6, so that the potential of the floating shield 6 becomes positive and becomes approximately the same as or slightly higher than the anode potential. Since this floating shield 6 is provided so as to surround the movable electrode 8, the charge charged on the floating shield 6 moves to the movable electrode 8 through space. After the current disappears, a large number of cations remain in the space between the floating shield 6 and the fixed electrode 7, causing ion flow. Few positive ions remain in the space between the floating shield 6 and the cylindrical coil 5, and the insulation recovery is accelerated. Since negative wave current shearing is performed in the same way as before, it is extremely effective in stabilizing the shearing performance and stability of positive wave current and negative wave current, and is particularly useful as a vacuum shearing breaker for large currents. Highly useful.

次に、実施例2を第4図、第5図に示す。なお
本実施例は金属円筒の外側に円筒形コイルを具え
たものであ、その他の構造は実施例1とほぼ同じ
なので、同一部品には同一符号を付して異なると
ころのみを説明する。図中、3aは固定フラン
ジ、4aは金属円筒、5aは円筒形コイルであ
る。円筒形コイル5aの形状は第5図のように実
施例1のものとは異なつており、電流は二つの流
路を流れる。即ち、固定リード棒1から第5図中
の上下コイル集電片20aへ分岐して流れた電流
はそれぞれ上下の円筒形コイル5aを通つてコイ
ル集電部19aへと流れる。なお、16,17は
ステンレス鋼等からなるコイル補強板である。本
実施例においては内側の金属円筒4aが同電位部
材となるので、金属円筒4aと両電極との間に浮
遊シールド6aが具えられている。また、本実施
例の場合は、浮遊シールド6aの下部に溶接され
た複数のシールド支持板18及びコバール金属か
らなる埋設金具10を介して浮遊シールド6aが
ガラス絶縁筒9に取り付けられている。即ち、ガ
ラス絶縁筒9の内側に埋設された埋設金具10が
シールド支持板18に設けた孔へ挿通されて浮遊
シールド6aが支持されている。この浮遊シール
ド6aと他の部材との距離関係は、第3図におい
て円筒形コイル5を金属円筒4aに置き換えた場
合の前述の関係と同じになつている。
Next, Example 2 is shown in FIGS. 4 and 5. Note that this embodiment has a cylindrical coil on the outside of a metal cylinder, and the other structure is almost the same as that of the first embodiment, so the same parts are given the same reference numerals and only the differences will be explained. In the figure, 3a is a fixed flange, 4a is a metal cylinder, and 5a is a cylindrical coil. The shape of the cylindrical coil 5a is different from that of the first embodiment as shown in FIG. 5, and the current flows through two flow paths. That is, the current branched from the fixed lead rod 1 to the upper and lower coil current collector pieces 20a in FIG. 5 flows through the upper and lower cylindrical coils 5a, respectively, to the coil current collector 19a. Note that 16 and 17 are coil reinforcing plates made of stainless steel or the like. In this embodiment, since the inner metal cylinder 4a serves as the same potential member, a floating shield 6a is provided between the metal cylinder 4a and both electrodes. Further, in the case of this embodiment, the floating shield 6a is attached to the glass insulating cylinder 9 via a plurality of shield support plates 18 welded to the lower part of the floating shield 6a and an embedded metal fitting 10 made of Kovar metal. That is, a buried metal fitting 10 buried inside the glass insulating cylinder 9 is inserted into a hole provided in the shield support plate 18, and the floating shield 6a is supported. The distance relationship between this floating shield 6a and other members is the same as the above-mentioned relationship when the cylindrical coil 5 is replaced with the metal cylinder 4a in FIG. 3.

実施例2の場合の作用は実施例1において円筒
形コイルを金属円筒に置き換えたものして考えれ
ばよいので、説明を省略する。
The operation in the case of the second embodiment can be considered as if the cylindrical coil in the first embodiment was replaced with a metal cylinder, so a description thereof will be omitted.

以上説明した実施例においては高価なガラス絶
縁筒に埋設金具を介して浮遊シールドを取り付け
ているので、ガラス絶縁筒を2個使用する真空し
や断器に比べてコストが低い。また、浮遊シール
ドを前記のように取り付けることにより耐圧的に
も片シールドでなく中間シールド方式と同一の効
果をもち、耐電圧の向上にも役立つ。
In the embodiments described above, the floating shield is attached to an expensive glass insulating tube via an embedded metal fitting, so the cost is lower than that of a vacuum shield or disconnector that uses two glass insulating tubes. Furthermore, by attaching the floating shield as described above, it has the same effect in terms of withstand voltage as an intermediate shield system instead of a single shield system, and is also useful for improving the withstand voltage.

(6) 発明の効果 以下、実施例を図面とともに説明したように本
発明によれば、両電極を包囲して両電極と同電位
部材との間に中間電位部材を具えているので、交
流電流の極性効果がなく、しや断性能が向上、安
定し、特に大電流しや断用の真空しや断器として
も好適である。
(6) Effects of the Invention As described below with reference to the embodiments and drawings, according to the present invention, since an intermediate potential member is provided surrounding both electrodes and between both electrodes and the same potential member, alternating current There is no polarity effect, the shearing performance is improved and stable, and it is particularly suitable as a vacuum shear breaker for large current shedding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明による真空しや断器の
実施例1に係り、第1図は断面図、第2図は第1
図のA−A矢視断面図、第3図は浮遊シールドと
その他の部材との位置関係を示す配置図、第4
図、第5図は本発明による真空しや断器の実施例
2に係り、第4図は断面図、第5図は第4図のB
−B矢視断面図である。 4,4a……金属円筒、5,5a……円筒形コ
イル、6,6a……浮遊シールド、7……固定電
極、8……可動電極、9……ガラス絶縁筒、10
……埋設金具、18……シールド支持板。
1 to 3 relate to Embodiment 1 of the vacuum shield breaker according to the present invention, FIG. 1 is a sectional view, and FIG.
Figure 3 is a cross-sectional view taken along the line A-A in the figure; Figure 3 is a layout diagram showing the positional relationship between the floating shield and other components;
5 and 5 relate to Embodiment 2 of the vacuum shield disconnector according to the present invention, FIG. 4 is a sectional view, and FIG. 5 is a B of FIG.
-B is a sectional view taken along the arrow. 4, 4a... Metal cylinder, 5, 5a... Cylindrical coil, 6, 6a... Floating shield, 7... Fixed electrode, 8... Movable electrode, 9... Glass insulating tube, 10
...Buried metal fittings, 18...Shield support plate.

Claims (1)

【特許請求の範囲】[Claims] 1 相互に対向して具えられた固定電極と可動電
極との外周に前記いずれかの電極と同電位の同電
位部材が具えられるとともに前記両電極間に発生
するアークと略平行な方向の界磁をつくる磁界発
生手段を具えた真空しや断器において、前記両電
極を包囲して前記両電極と前記同電位部材との間
に前記両電極のいずれとも同電位でない中間電位
部材を具えたことを特徴とする真空しや断器。
1. A fixed electrode and a movable electrode provided facing each other are provided with a member having the same potential at the same potential as either of the electrodes on the outer periphery thereof, and a field in a direction substantially parallel to the arc generated between the two electrodes. The vacuum shield is equipped with a magnetic field generating means that generates a magnetic field, and further includes an intermediate potential member that surrounds the two electrodes and is not at the same potential as either of the electrodes and between the two electrodes and the same potential member. A vacuum cutter featuring:
JP912584A 1984-01-20 1984-01-20 Vacuum breaker Granted JPS60151921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP912584A JPS60151921A (en) 1984-01-20 1984-01-20 Vacuum breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP912584A JPS60151921A (en) 1984-01-20 1984-01-20 Vacuum breaker

Publications (2)

Publication Number Publication Date
JPS60151921A JPS60151921A (en) 1985-08-10
JPH0425654B2 true JPH0425654B2 (en) 1992-05-01

Family

ID=11711912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP912584A Granted JPS60151921A (en) 1984-01-20 1984-01-20 Vacuum breaker

Country Status (1)

Country Link
JP (1) JPS60151921A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269429A (en) * 1987-04-28 1988-11-07 Meidensha Electric Mfg Co Ltd Vacuum interrupter
JP6935422B2 (en) 2016-06-18 2021-09-15 モレックス エルエルシー Selectively shielded connector channel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736638B2 (en) * 1975-03-31 1982-08-05

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638041Y2 (en) * 1980-08-11 1988-03-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736638B2 (en) * 1975-03-31 1982-08-05

Also Published As

Publication number Publication date
JPS60151921A (en) 1985-08-10

Similar Documents

Publication Publication Date Title
EP2157594B1 (en) Vacuum envelope including self-aligning end shield, vacuum interrupter, vacuum circuit interrupter and method including the same
EP0036665B1 (en) Ion generating apparatus
US3071667A (en) Vacuum-type circuit interrupter
US3980850A (en) Vacuum interrupter with cup-shaped contact having an inner arc controlling electrode
US3792214A (en) Vacuum interrupter for high voltage application
US6891122B2 (en) Vacuum switch tubes
KR19990037264A (en) Steam Shields for Vacuum Breakers
US3889079A (en) Vacuum-type circuit interrupters having an axial magnetic field produced by condensing shield coils
JPH0425654B2 (en)
US12046432B2 (en) Vacuum interrupter
US3979634A (en) Travelling-wave tube with an improved electron gun
JP2913186B2 (en) Ion source device
EP0264814B1 (en) Vacuum circuit interrupter
US4797522A (en) Vacuum-type circuit interrupter
US4276455A (en) Vacuum envelope for current limiter
US11482394B2 (en) Bidirectional gas discharge tube
KR20030084630A (en) Ion source
JP2002529901A (en) Hollow electron beam switching tube with high voltage isolation and current adjustable
US4572982A (en) Apparatus for reducing the effects of thermal stresses on breakdown voltage in high voltage vacuum devices
EP1383148B1 (en) Vacuum switchgear
JPS6226895Y2 (en)
JPH0652645B2 (en) Vacuum valve
US3963960A (en) Bipolar crossed-field switch tube and circuit
US3190992A (en) Vacuum switch having channel in contacts to prevent migration of roots of an arc
JPS598273Y2 (en) Vacuum cutter