JPH04254580A - マグネトロン陰極を用いた基板のコーティング法および装置 - Google Patents

マグネトロン陰極を用いた基板のコーティング法および装置

Info

Publication number
JPH04254580A
JPH04254580A JP3141571A JP14157191A JPH04254580A JP H04254580 A JPH04254580 A JP H04254580A JP 3141571 A JP3141571 A JP 3141571A JP 14157191 A JP14157191 A JP 14157191A JP H04254580 A JPH04254580 A JP H04254580A
Authority
JP
Japan
Prior art keywords
target
magnetic
magnetic pole
ring
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3141571A
Other languages
English (en)
Other versions
JP3370099B2 (ja
Inventor
Wolf-Eckhart Fritsche
ヴォルフ エックハルト フリッチェ
Michael Luebbehusen
ミヒャエル リュベフーゼン
Reiner Kukla
ライナー クークラ
Siegfried Beibwenger
ジークフリート バイスヴェンゲ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG filed Critical Leybold AG
Publication of JPH04254580A publication Critical patent/JPH04254580A/ja
Application granted granted Critical
Publication of JP3370099B2 publication Critical patent/JP3370099B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/50Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/347Thickness uniformity of coated layers or desired profile of target erosion
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3458Electromagnets in particular for cathodic sputtering apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、マグネトロン陰極の使
用の下に陰極スパッタリングにより基板をコーティング
するための方法であって、この場合、該マグネトロン陰
極はスパッタリング面、内側周縁および外側周縁有する
リング状に閉じられたターゲットを有し、さらに永久磁
石を含む磁石装置を有し、該磁石装置の、ターゲットに
幾何学的に類似する一方の磁極が外側周縁の外側に設け
られており、さらに該磁石装置の幾何学に類似する、か
つ同様にリング状に閉じられた他方の磁極が内側周縁の
内側に配置されており、この配置により、磁力線の少な
くとも主成分がほとんどわん曲されない経路上をスパッ
タリング面にわたり連行されるようにし、さらにリング
状の、スパッタリング面にわたり閉じられている磁気ト
ンネルが形成されるようにし、この場合、この磁気装置
はアース電位に対しても陰極電位に対しても自動的に設
定調整される電位へ置かれるようにした形式の基板の、
コーティング法に関する。
【0002】
【従来技術】例えば論文、「John  S.Chap
in著“The  Planar  Magnetro
n”,Research/Development,1
974.1」に示されている代表的なマグネトロン陰極
の場合、磁石装置の磁極面はターゲットの後側に設けら
れ、さらに磁極面は少なくともターゲットの新品状態に
おいてスパッタリング面に対して平行に走行する。さら
に磁極間隔は著しくわずかである。マグネトロンのこの
構造は、スパッタリング面から現われて、アーク状の経
路を走行した後に再びターゲットへもどる著しくわん曲
された磁力線を生ぜさせてしまう。その結果、ターゲッ
ト材料をわずかしか利用させないような著しく狭いかつ
深い侵食彫刻が生じてしまう。何故ならばターゲットは
“スパッタリングしつくされる”前に適切な時点に交換
しなければならないからである。
【0003】ドイツ連邦共和国特許出願公報第2243
708号にも既に、ターゲット消もうを次のようにして
一様化する構成が示されている。即ち円筒−または円錐
コイルを設け、このコイルの軸を相応に形成された回転
対称のターゲットの軸に対して同軸に配置したことによ
り、一様化される。しかしこの種の装置の利点は、ここ
に記載さた中空陰極および柱状陰極の場合しか得られな
い。平面状の陰極装置が記載されている限り、磁力線の
著しいわん曲により、不所望の局所的に制限された深い
侵食彫刻が生じてしまう。
【0004】既に次の試行も実施されている。即ち侵食
彫刻の幅を拡大しさらにターゲットの利用度を、いわゆ
る材料使用効率を次のようにして高めている。即ち永久
磁石の静止磁界に電磁石の振動磁界を重畳し、その結果
、競走路状に走行する閉じられた磁気トンネルを周期的
にターゲット表面において変位させる。この周期的変位
に、磁気トンネル中に閉じこめられたプラズマが追従し
、これにより侵食彫刻の幅の拡大が得られる(ドイツ連
邦共和国特許第2556607号)。しかし永久磁石の
磁力線の著しく大きいわん曲化(このわん曲化は例えば
、Chapinの論文に示されているものに相応する)
の結果、重畳される磁界の顕著な変位を形成可能にする
ためには、磁石コイルの著しく高い磁界強度が必要とさ
れる。電磁石の現行の極性反転によりさらに、重畳され
た磁界は中央位置から始まってしか変位されず、この場
合この中央位置は、永久磁石の静止磁力線の経過により
前もって与えられる。その結果、磁石コイルの大きい電
流消費が生じ、これは冷却の問題を生じさせる。
【0005】ドイツ連邦共和国特許出願公開公報第27
29286号に、永久磁界を機械的に変位させる構成も
既に示されている。しかしこのことは多額の技術費用を
必要とする。
【0006】そのため冒頭に述べた方法が得られるよう
な別の方法も試みられている。
【0007】請求項1の上位概念も形成する相応のマグ
ネトロン陰極が、ドイツ連邦共和国特許第341153
6号に示されている。このマグネトロン陰極の場合、磁
力線の著しくわずかわん曲された成分だけが、プラズマ
を陰極の表面へ集中させる目的で用いられる。このこと
は次のようにして達せられる、即ち磁石装置の磁極がタ
ーゲット横断面を両側でカバーする即ちターゲットがリ
ング状に構成されておりさらにその中央において開口を
有し、この開口に磁石装置の中央磁極が配置されている
。このようにして、振動する磁界の付加的な使用なしに
もターゲット彫刻を一様化できる。しかしこの一様化は
、例えばターゲットプレートが例えば15mmよりも大
きい比較的大きい厚さを有する時は、十分でない。
【0008】前述の全部のマグネトロン陰極に共通する
ことは、スパッタリングを作動させるプラズマがいずれ
にしてもターゲット表面の、いわゆるスパッタリング面
の直接近傍へ集中されることである。基板の方向へのプ
ラズマの拡張は、いくつかのコーティング過程のために
、例えば反応陰極スパッタリングの過程のために所望さ
れている。この拡張は公知の解決手段によっては可能で
なく、しかも振動する磁界を用いても用いなくても、可
能ではない。
【0009】しかし他方、プラズマを次のようにして基
板の方向へさらに拡大することも既に公知である。即ち
公知のマグネトロン陰極を所期のように“離調”させて
、例えば外部磁極から始まる磁力線に、基板まで達する
比較的長い走行路を強制することによる。この種の構成
は、「WinodowおよびSavvidesによる論
文“Charged  particle  flux
es  fromplanar  maqnetron
  sputtering  sources”,J.
Vac.Sci.Technol.A4(2),Mae
rz/April1986、刊行”に示されている。し
かしこの場合もターゲット彫刻の一様化の問題点が生ず
る。
【0010】この種の離調された即ちアンバランス化さ
れたマグネトロンは“アンバランスマグネトロン”とも
称される。これに関連してBiederman他の論文
“Hard  carbon  and  compo
site  metal/hardcarbon  f
ilms  prepared  by  a  dc
  unbalanced  planar  maq
netron”(veroeffentlicht  
in  “Vacuum”,Band40,Nr.3,
1990,Seiten251bis255)を指摘し
ておく。
【0011】前述の公知のマグネトロン陰極を反応陰極
スパッタリングのために即ち化合−この化合においてタ
ーゲット材料(通常は金属)がわずか1つのエレメント
しか形成しない−のために用いると、別の問題が生ずる
:本来のスパッタリングとして通常は希ガスが例えばア
ルゴンが用いられる。酸化物の製造の場合、ちっ素化合
物の製造の場合、カーバイト,炭化水素ガス等の製造の
場合、この希ガスに相応の反応ガスが付加される。相応
の反応生成物は通常は電気不導体であり、これは部分的
にターゲット表面に形成される。この形成は完全には回
避されない。侵食彫刻の領域においてだけ、材料が、反
応生成物が形成できるよりもより迅速に消もうする。 しかし通常の表面領域において充電が形成され、これが
最終的に電圧を生ぜさせさらに不安定なスパッタリング
過程を引きおこす。もちろんその理由は、スパッタリン
グ陰極の調整された電流供給が当然この電圧スパークに
応動するからである。
【0012】
【発明の解決すべき問題点】本発明の課題は、良好な材
料効率ないしターゲットの長い寿命時間を得ること、基
板におけるないしターゲットと基板との間の空間全体に
おける高いプラズマ密度を形成させること、しかもこの
場合、従来のマグネトロンの通常の値の領域における高
いスパッタリング速度を達成すること、である。
【0013】反応陰極スパッタリング法の場合、スパッ
タリング面上の非導電性の有害な堆積物をしたがって電
気スパークを回避する別の課題を解決すべきである。
【0014】
【課題を解決するための手段】この課題の解決は、冒頭
に述べた方法において本発明により次のようにして解決
されている。即ち a)磁力線が少なくとも近似的に、ターゲットの新品状
態において存在するようなスパッタリング面に平行に走
行する磁気トンネルの領域が、永久磁石装置の相応の設
計により外側ターゲット周縁の近傍において変位される
ようにし、この構成により別の磁界が存在しない時に最
大のターゲット侵食のリング状の領域が外側のターゲッ
ト周縁の近傍へ変位されるようにし、b)外側磁極の外
側で、リング状に閉じられた、磁極に幾何学に類似する
かつこの磁極を囲む磁石コイルを用いて時間的に変化す
る別の磁界を発生するようにし、この場合、励磁電流の
ゼロとは異なる少くとも一つの時間平均値により磁界を
形成するようにし、該磁界により磁極方向および、永久
磁石装置の磁界との重畳にもとづいて、最大のターゲッ
ト侵食のリング状領域が両方のターゲット周縁の間の中
央へ変位されるようにし、さらにc)励磁電流の周期的
変化により最大のターゲット侵食の領域を周期的に中央
位置から両側へ変位させるようにしたのである。
【0015】最初に次のことを明らかにしておく。即ち
“リング状”ということは、ターゲット,磁極ならびに
磁気トンネルないし(作動中の)プラズマに関して“円
形リング状”だけを意味するのではなく、だ円,走行路
および長方形の幾何学的形状も含むことである。広い面
積の基板の例えば3×4m2の寸法の寸法を有する窓ガ
ラスのコーティングのために、いわゆる長方形陰極が必
要とされる。この場合、2つの互いに直線状にかつ平行
に走行するターゲット区間が、約3.50mの長さを有
し、さらにその両端がターゲット区間により互いに結合
されている。これは、約30cmの外径を有する円形リ
ング状ターゲットを1/2にすることにより形成するこ
とが考えられる。これらの異なる陰極構成はドイツ連邦
共和国特許出願公報第3527628号に詳述されてい
る。
【0016】磁極をそれぞれ隣り合うターゲット周縁に
“幾何学的に類似”させるべきであるとう記載も、磁極
が、記載されたターゲット構成の周縁に等間隔で従がう
ことを示す。この場合、比較的大きいターゲット長さの
場合および/または円形リングターゲットの外周におい
て、通常はこの外周の上に、永久磁石の閉ざされた列が
それぞれ等しい極性で配置されている。逆極性の磁極が
公知のようにターゲット横断面をカバーすることにより
、比較的わずかしかわん曲されないかまたはほとんど直
線状の経過を有するプラズマ形成用の磁界の部分しか用
いられない。スパッタリング速度は、電気力線および磁
力線が互いに直角に交差している個所で最大であるため
、磁力線の平らな経過から以下のことが生ずる:電気力
線は通常は新品のターゲット面に対して垂直方向に走行
する。磁力線がわずかしか曲げられないことにより、前
述のほとんど直角に交差する領域が、著しく曲げられた
磁力線を有する従来のマグネトロンの場合よりも、顕著
に広くなる。その結果、いわゆる侵食彫刻も磁力線の直
線性の増加と共にその幅において顕著に増加する。この
ことは−公知ではあるが−本発明の方法に対して重要な
前提である。
【0017】
【発明の効果】実効磁力線の著しくフラットな即ちほと
んど直線的な経過は、次の利点も伴なう。即ちこの磁力
線の頂点(ターゲット表面を基準として)の変位が、磁
石コイルの方の著しくわずかな磁界の強さしか必要とせ
ず、このことはドイツ連邦共和国特許第2556607
号に示された解決手段よりも顕著な利点を有する。
【0018】本発明の対称のその他の重要な特徴は次の
ように示される:構成要件a)による永久磁石装置の離
同調はまず第一に、これによりマグネトロン陰極に“ア
ンバランスマグネトロン”の特性を与える。もちろんマ
グネトロン陰極を磁石コイルの特別の電流供給源に投入
接続せずに作動させれば、侵食彫刻−磁力線のフラット
な経過により既に著しく幅が拡大されるにもかかわらず
−が外側ターゲット周縁の近傍に生じてしまう。
【0019】構成要件b)により達せられることは、電
磁石から発生される著しく弱い磁界を用いて、最大のタ
ーゲット侵食の領域の移行が、両方のターゲット周縁の
間の中央(ターゲットの横断面を基準として)へ変位さ
れる。このことは、励磁電流が常にゼロとは異なるが、
“アンバランスマグネトロン”の特性を再び問題にして
しまうような特別の値には達する必要がないことを、意
味する。
【0020】構成要件c)は実質的に、励磁電流のゼロ
とは異なる、しかも場合により値ゼロとなる時間平均値
を周期的に変化する構成を示し、これにより最大のター
ゲット侵食の領域を再び、この領域が永久磁石装置を設
けたことだけにもとづいて存在することによる領域の中
へ再び達する。他方、励磁電流を前述の時間平均値を越
えて高めることにより、最大のターゲット侵食の領域が
ターゲットの内側周縁の近傍へ変位される。ゼロとは異
なる平均値を中心に励磁電流を連続的に変化させること
により、侵食領域の連続的な変位が作動される。
【0021】このことは次の利点と結び付けられる:良
好な材料効率ないしターゲットの長い寿命が得られ、同
様にこのことは、従来のマグネトロン陰極の場合に達せ
られた値に相応する。“アンバランスマグネトロン”の
特性の維持により、高いプラズマ密度が基板においても
ないしターゲットと基板との間の空間全体においても達
せられ、それと共に最適のコーティング過程のための有
利な前提が達せられる。
【0022】この場合に注目すべきことは、個々の部分
課題は基本的に対立する解決手段に見えることである。 発明者は、1つの解決手段を提示したこの功績を、全部
の要求により最適に互いにまとめられている。
【0023】反応スパッタリング過程の場合は付加的に
次の利点が得られる。即ちスパッタ速度に関連づけて反
応ガスの一層わずかな流れで十分であり、同時に基板表
面全体が実質的に完全に絶縁性の被膜が除去できる。そ
の結果、電圧スパークのおそれも回避される。
【0024】磁界を陰極表面前方の各々の個々個所にお
いて、陰極表面に平行の成分と陰極表面に垂直の成分と
に分解して考察することができる。1つの点におけるこ
れらの両方の成分の値または強さは、永久磁石のおよび
磁石コイルの各々の成分の加算重畳から、得られる。プ
ラズマは、加算磁界の垂直成分が消滅するかまたは著し
く小さい値を有している個所では、密度が最大である。 この場合、陰極表面にいわゆる侵食が形成される。磁石
コイルにより、陰極表面の前方に、主として陰極表面に
垂直な成分から生ずる磁界が形成される。そのため陰極
表面の前方の加算磁界に対する磁石コイルの寄与は垂直
成分だけから形成される;加算磁界の、陰極表面に水平
の成分は、実質的に永久磁石の相応の成分に相応する。 磁石コイルの励磁電流の周期的変化により、陰極表面の
前方の加算磁界の垂直成分が消滅するかまたは著しく小
さい値を有する個所が、陰極表面の上において内側から
外側へまたは逆の方向へ、変位される。このようにして
ターゲット表面における侵食彫刻が変位される。この場
合に重要なことは、この移動は0線に対称な交流電流に
より生ぜさせられるのではなく、交流電流成分が一定の
直流電流値へ重畳されることによる。この場合、アンバ
ランスのマグネトロンの効果は、磁石コイルの直流電流
により主として達せられる。重畳された交流電流成分は
、電流の極性が反転しない限り“アンバランス効果”を
低下させない。
【0025】従来の陰極と、“アンバランスマグネトロ
ン”の効果に対するスタティックに励磁される磁石コイ
ルとの比較により次のことが示された。即ちプラズマ密
度が基板近傍で増加できたこと、しかし“アンバランス
マグネトロン”の効果にもとづいてプラズマがターゲッ
ト表面の近傍において陰極中央の方向へ著しく押圧され
る即ち絞られることが示された。そのため陰極のインピ
ーダンスが著しく増加する即ち陰極電位が同じ場合はプ
ラズマが低下される。
【0026】永久磁石装置を次のように設計しないしそ
の対称性から“離調”し、かつ磁石コイルを投入接続す
ることなく侵食彫刻がターゲットの外側周縁の近傍にお
いて位置させるようにした本発明による永久磁石装置に
よりはじめて、本発明の対象の成果が得られる。磁石コ
イルが投入接続されて相応に変化する励磁電流が供給さ
れる時に、ターゲット表面における磁界の近接作用にも
とづいて、侵食彫刻がその都度のターゲット横断面の中
央へ移行され、他方、電磁界の比較的遠方において作用
する成分が基板近傍におけるプラズマ密度を増加させる
【0027】さらに本発明は、冒頭に述べた陰極スパッ
タリング法を実施するためのマグネトロン陰極に関する
【0028】実質的に同じ課題を解決する目的でこのマ
グネトロン陰極は次の特徴を有する。即ちa)磁力線が
少なくとも近似的に、ターゲットの新品状態において存
在するようなスパッタリング面に平行に走行する、磁気
トンネルの領域が、永久磁石装置の相応の設計により外
側ターゲット周縁の近傍において変位されるようにし、
この構成により別の磁界が存在しない時に最大のターゲ
ット侵食のリング状の領域が外側のターゲット周縁の近
傍へ変位されるようにし、b)外側磁極の外側で、リン
グ状に閉じられた、磁極に幾何学に類似するかつこの磁
極を囲む磁石コイルを用いて時間的に変化する別の磁界
を発生するようにし、この場合、励磁電流のゼロとは異
なる少くとも一つの時間平均値により磁界を形成するよ
うにし、該磁界により磁極方向および、永久磁石装置の
磁界との重畳にもとづいて、最大のターゲット侵食のリ
ング状領域が両方のターゲット周縁の間の中央へ変位さ
れるように構成したのである。
【0029】この場合、永久磁石装置の離調は異なる形
式で行なわれる: 1.  ターゲットの内側周縁からの内側磁極の磁極間
隔“a”をターゲットの外側周縁からの外側磁極の磁極
間隔“b”よりも大きくなるようにし、この場合、磁極
間隔が上下に平行の、ターゲットの新品状態において磁
極およびターゲット周縁を通って走行する平面に関連づ
けられている。
【0030】2.  選択的に、内側磁極の残留磁気を
、磁石材料の相応の選択により外側磁極の残留磁気より
も大くした。
【0031】3.  内側磁極の磁極面を外側磁極の磁
極面よりも小さくしたのである。
【0032】これらの構成は個々にまたは任意に組み合
わせて部分的に組み合わせて使用できる。
【0033】この場合、磁石コイルの構造も特に重要で
ある。必要とされるアンペアターンを細い銅線を複数回
巻回することにより形成することも考えられが、しかし
この場合は十分な冷却を実施することが困難である、何
故ならば冷却作用が真空中の対流により排除されさらに
放射による熱損失が、実際上の理由からわずかしか許容
されない温度差のため無視されるからである。この種の
コイルの中へ冷却体を組み込むとすると、構造の寸法が
著しく大きくなってしまう。
【0034】そのための本発明の構成によれば、磁石コ
イルを管の、4〜20回の巻回から例えば5〜10回の
巻回から構成し、この管を、良好な電流−および熱伝導
性の材料から構成しさらに冷却剤源へ結合したのである
。この種のコイルは大きい電流が加えられるがそれにも
かかわらず冷却が良好に行なわれる。
【0035】この冷却装置を大きいないし長い長方形陰
極において実現可能にする目的で好適に、個々の巻線が
流体的に(電気的にではなく)中断され、さらに個々の
コイル区間は電流技術的に並列接続の形式で作動される
。他方、励磁電流に対しては直列接続が維持される。 このようにして大きすぎる流れ抵抗が回避される。
【0036】
【実施例】次に本発明の実施例を図面の第1図〜第4図
を用いて説明する。
【0037】図1に電流案内プレート1が示されている
。このプレートは支持絶縁体2を介して真空室3と結合
されている。真空室はアース4へ接続されている。電流
案内プレートは後述の半径方向の切欠1aを有し、さら
に線路1bを介して電流源1cと接続されている。この
電流源は、必要とされるスパッタリング電圧を即ち陰極
電流を供給する。
【0038】電流案内プレート1により磁石ヨーク5は
絶縁されているが固定的に結合されている。磁石ヨーク
も実質的にプレート状に形成されている。磁石ヨークは
その上側に平面6を有し、この中にリング状に閉じられ
た載置面6aおよび6bが永久磁石装置7に対して設け
られている。この永久磁石装置7は、内部リング磁石7
aおよび、閉じられた、ロッド磁石7bの外側の列から
構成されている。これらのロッド磁石は全部、装置の軸
A−Aに関して軸方向へ次のように磁化されている。即
ち内側のリング磁石7aの磁極方向が外側のロッド磁石
の磁極方向とは逆に走行するように、磁化されている。 磁極位置は図1に記入されている。永久磁石装置7は、
磁石ヨーク5とは反対側の上で磁極面により形成されて
いる磁極7cおよび7dを有する。これらの磁極は異な
る平面に存在し、かつこの平面は磁石陰極の前面から、
磁極7dによる平面よりもさらに後方に置かれる。この
構成の作用を図2を用いて説明する。
【0039】載置面6aと6bとの間にないし磁極7c
と7dとの間にリング状に閉じられた載置面8が設けら
れている。この載置面の上にリング状の絶縁体11およ
び、平らなスパッタリング面9aを有するリング状ター
ゲット9が配置されている。絶縁体11の厚さを相応に
選択することによりスパッタリング面9aを陰極の深さ
方向において、磁極7cおよび7dへの所定の空間位置
へ、移行することができる。ターゲット9の裏側に周回
するリブ2bが設けられている。このリブの中へ、周縁
に分布されて、複数個のけん引ねじ10のためのみぞが
刻まれている。このけん引ねじによりターゲット9が磁
石ヨーク5および電流案内プレート1に対してクランプ
されている;さらにこのけん引ねじ10は陰極電流の伝
送のために用いられる。
【0040】ターゲット9と絶縁体11との間にターゲ
ット冷却装置12が設けられている。これは、長方形の
断面を有する相応に曲げられた管から形成されている。 両方の端部12bおよび12cは十分な絶縁間隔をもっ
て、磁石ヨーク5における記号の付せられていない孔に
より、ないし電流案内プレート1における半径方向の切
欠1aにより、貫通案内されている。けん引ねじ10を
しめるとターゲット9はターゲット装置12の上に支持
されてこの装置が絶縁体11の上に支持される。
【0041】図1に示されている様に平らな面6から孔
13が、磁石ヨーク5の対向する平らな面14へ走行す
る。図1に示されている孔13は複数個のこの種の孔の
代表である。
【0042】孔13の中にスリーブ状の絶縁体15が設
けられている。この絶縁体は孔13の外側において、平
らな面14の上に載置されたカラー13を有する。この
カラーの上に電流案内プレートが、けん引ねじ10の力
の下に、支持されている。
【0043】このようにしてターゲット9を有する電流
案内プレート1が磁石装置7を有する磁石ヨーク5から
および真空室3ないしアース4から、電気的に絶縁され
ている。ターゲット9は電流案内プレート1を介して所
定の負の電位へ接続されさらにアース4も所定の電位(
ゼロ電位)を形成している。他方、磁石ヨーク5を有す
る磁石装置7は電気的に依存せずさらに作動条件により
前もって定められている中間電位へ設定され、そのため
磁石装置のスパッタリングが中止される。この種の電位
は“フローティング電位”とも称される。磁石ヨーク5
における冷却チャンネル25は放熱の目的に用いられる
【0044】磁石装置7は、非磁性体材料から成るケー
シング16の中に取り付けられる。このケーシング16
は2つの回転対称の部材から即ちポット状の中心ケーシ
ング部材16aからおよび外側ケーシング部材16b形
成されている。この部材16aはリング磁石7aを囲み
さらにねじ17を用いて磁石ヨーク5とクランプされて
いる。部材16bは−横断面から見て−ロッド磁石7b
を、エンドレスの即ち閉じられた列において囲み、さら
に複数個のねじ18を用いて−そのうちの1つが図示さ
れている−同様に磁石5と螺合されている。ケーシング
16は端面16eを有し、これは、円形面(ケーシング
部16aの)およびこれと同心の円形リング面(ケーシ
ング部16b)から形成されている。この端面16eか
ら始まってケーシング16はターゲット9の後方へ凹欠
されるように構成されている。
【0045】さらに第1図に示されている様に両方のケ
ーシング部材16aおよび16bは端面16eから始ま
って、磁石7aおよび7bないしその磁極7cおよび7
dをカバーし、さらに2つの円筒状の側板の形式で、タ
ーゲット9の円筒状の内側面および円筒状の外側面を、
両方の中空円筒状の空隙を残して、カバーする。
【0046】磁極7dがケーシングの端面16eに裏面
の近傍へ当接する。これに対して磁極7cとケーシング
の端面16eの裏面との間に室22が形成されている。 この室の中を、絶縁スリーブ21により囲まれているね
じ17が貫通案内されている。中空室の残りのスペース
はもちろん、非磁性体材料から成る充てん部材により充
てんすることができる。
【0047】さらに図1に次の構成が示されている:タ
ーゲット9は内側周縁9cと外側周縁9dを有し、これ
らはスパッタリング面9aの間に含まれている。このス
パッタリング面はターゲットの新品状態において平らに
形成されているが、しかし消もうが増加するにつれてタ
ーゲット材料の破線9eの方向へ移行する。ターゲット
9のこの種の消もうは“侵食彫刻”とも称される。
【0048】磁極7cは内側周縁9cの内部に存在し、
磁極7dは外側周縁9dの外側に設けられている。その
ため載置面8への投射において磁極7cないし7dとタ
ーゲット9は互いに交差せず、さらに空隙19および2
0および、ケーシング16の側面が介在接続されている
【0049】ケーシング16の外側の円筒面は、磁石コ
イル26−図3を用いて説明する−により囲まれている
。この磁石コイルとしてはこの実施例においては、円筒
コイルが用いられる。これは磁石陰極をその軸方向に延
在する主要部を囲む。磁石コイル26は線27を介して
電流源28と接続されており、さらにこの電流源は線2
9を介して制御装置30へ接続されている。この制御装
置30は可変の出力電圧−第図4を用いて説明する−を
発生する。個々の電圧経過は調整可能である。
【0050】この場合、制御装置は次のように設計され
ている、即ち励磁電流の、ゼロとは異なる時間平均値に
よりおよび磁石コイル26により磁界が発生され、この
磁界により、磁極方向と、永久磁石装置の磁界との重畳
にもとづいて最大のターゲット侵食のリング状の領域が
両方のターゲット周縁9cと9dとの間の中央へ移行す
るように、設計されている。さらに図4に示されている
ように励磁電流を周期的に変化することにより、最大の
ターゲット侵食の領域を周期的に、中央位置から両側へ
変位される。この場合、この変位の停滞時間および変位
速度は、試験により求めることができる。
【0051】第2図において第1図におけるものと同じ
部分には同じ記号が付されている。しかし第2図の場合
はスパッタリング面9aが両側(横断面から見て)にお
いて、スパッタリング面9aに対して斜めの傾斜面9h
および9iを有するリング隆起9fおよび9gにより囲
まれている。傾斜角度は次の利点を有する。即ちリング
隆起の内側周縁に、しばらくたつと砕けて基板をおよび
/またはターゲットを汚染する材料が沈着しない利点を
有する。
【0052】第2図に、磁極7cの磁極面と磁極7dの
磁極面との間に延在する磁力線が記入されている。図示
されている様に、磁極面の段階付けによる磁力線の頂点
“K”は左の方へ即ち外周縁9dの方向へずれている。 磁石コイル26を励磁電流が流れない限り、プラズマの
最大強度がこの頂点の下方に生じ、その結果この個所に
破線9kで示されている侵食彫刻が形成されてしまう。 第4図に示されているように励磁電流の相応の変化によ
り、侵食彫刻が第1図に線9eで示された経過を有する
ようにできる。
【0053】第3図は磁石コイル26の詳細を示す。こ
の磁石コイルは、ケーシング16を周回している銅管の
全部で6回の巻回から構成されている。相応の絶縁間隔
の保持の目的でケーシング16の上に間隔を置いて絶縁
体32が取り付けられている。これらの絶縁体のうち第
3図には一つだけが示されている。この絶縁体は直方体
の形状を有しておりその1つの長長側面に溝32aが設
けられている。これらの溝は管の直径に相応する。溝の
間に設けられている突起32bおよび32cが、必要と
される絶縁間隔を保証する。管の端部は冷却剤管路26
bおよび26cを介して冷却剤源26dと結合されてい
る。この冷却剤源は簡単な形式では熱交換器として構成
されている。
【0054】第4図に示されたグラフの場合、横軸にt
がおよびたて軸に励磁電流iが、それぞれ大きさの単位
なしで示されている。
【0055】曲線33は、ゼロとは異なる平均値Mを有
する電流経過を示す。この平均値を維持する場合、励磁
電流が変化されないとすれば、最大のターゲット侵食の
領域がかなり正確に、ターゲット周縁9cと9dとの間
に形成される。しかし上方へおよび下方へ変化すること
により最大のターゲット侵食の領域が中央からはじまっ
て両側へ移動される。その結果、侵食彫刻が第1図にお
ける線9eに示されている様に形成される。平均値Mか
らの正または負の偏差に対する時間成分は、前述の様に
、試行により定められる。場合によれば、例えばスパッ
タリング面上に形成される反応物を除去する目的で行程
の各々の終りにプラズマの著しく小さい停滞時間で既に
十分である。
【0056】破線34は励磁電流の変形のもう一つの形
式を示す:この場合、励磁電流は正弦波の経過を実施す
る、しかしゼロ線を中心に(公知の様に)ではなく前述
の平均値Mを中心に経過する。
【0057】基板は図には示されていない:スパッタリ
ング面9aは数センチの間隔で対向する。平らな被膜面
を有する1つまたは複数個の基板が対象とされる場合は
これらの被膜面はないしその搬送路はスパッタリング面
に平行に走行する。
【0058】マグネトロン陰極は第1図の場合とは異な
り頭部の上方位置に取り付けて作動することができる。
【図面の簡単な説明】
【図1】実質的に回転対称のマグネトロン陰極により軸
方向断面図である。
【図2】第1図に部分切欠図の、異なる構成のターゲッ
トを有する拡大図である。
【図3】磁石コイルを有するマグネトロン陰極の側面の
切欠図である。
【図4】磁石コイル用の励磁電流の異なる曲線経過図で
ある。
【符号の説明】
1    電流案内プレート 2    支持絶縁体 3    真空室 4    アース 5    磁石ヨーク 6    平らな面 7    永久磁石装置 7a    リング磁石 7b    ロッド磁石 7c,7d    磁極 8    載置面 9    リング状ターゲット 9a    スパッタリング面 2b    リブ 10    引っ張りボルト 11    絶縁体 12    ターゲット冷却剤 12b,12c    端部 13    孔 14    平らな面 15c    カラー 16    ケーシング 16a    中央ケーシング部材 16b    リング状の外部ケーシング部材17,1
8    ねじ 19,20    空隙 21    絶縁材料スリーブ 26    磁石コイル 27,29    線 28    電流源 30    制御装置

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】  マグネトロン陰極の使用の下に陰極ス
    パッタリングにより基板をコーティングするための方法
    であって、この場合、該マグネトロン陰極はスパッタリ
    ング面、内側周縁および外側周縁を有するリング状に閉
    じられたターゲットを有し、さらに永久磁石を含む磁石
    装置を有し、該磁石装置の、ターゲットに幾何学的に類
    似する一方の磁極が外側周縁の外側に設けられており、
    さらに該磁石装置の、幾何学に類似するかつ同様にリン
    グ状に閉じられた他方の磁極が内側周縁の内側に配置さ
    れており、この配置により、磁力線の少なくとも主成分
    がほとんどわん曲されない経路上をスパッタリング面に
    わたり連行されるようにし、さらにリング状の、スパッ
    タリング面にわたり閉じられている磁気トンネルが形成
    されるようにし、この場合、この磁気装置はアース電位
    に対しても陰極電位に対しても自動的に設定調整される
    電位へ置かれるようにした形式の基板のコーティング法
    において、a)磁力線が少なくとも近似的に、ターゲッ
    トの新品状態において存在するようなスパッタリング面
    に平行に走行する磁気トンネルの領域が、永久磁石装置
    の相応の設計により外側ターゲット周縁の近傍において
    変位されるようにし、この構成により別の磁界が存在し
    ない時に最大のターゲット侵食のリング状の領域が外側
    のターゲット周縁の近傍へ変位されるようにし、b)外
    側磁極の外側で、リング状に閉じられた、磁極に幾何学
    に類似するかつこの磁極を囲む磁石コイルを用いて時間
    的に変化する別の磁界を発生するようにし、この場合、
    励磁電流のゼロとは異なる少くとも一つの時間平均値に
    より磁界を形成するようにし、該磁界により磁極方向お
    よび、永久磁石装置の磁界との重畳にもとづいて、最大
    のターゲット侵食のリング状領域が両方のターゲット周
    縁の間の中央へ変位されるようにし、さらにc)励磁電
    流の周期的変化により最大のターゲット侵食の領域を周
    期的に中央位置から両側へ変位させるようにしたことを
    特徴とするマグネトロン陰極の使用の下での陰極スパッ
    タリングによる基板のコーティングする方法。
  2. 【請求項2】  磁石コイルに対してコイル長さの1c
    m毎に100から1000アンペアターンを選定した請
    求項1記載のコーティング法。
  3. 【請求項3】  マグネトロン陰極の使用の下に陰極ス
    パッタリングにより基板をコーティングするための方法
    であって、この場合、該マグネトロン陰極はスパッタリ
    ング面(9a)、内側周縁(9c)および外側周縁(9
    d)有するリング状に閉じられたターゲット(9)を有
    し、さらに永久磁石(7a,7b)を含む磁石装置(7
    )を有し、該磁石装置の、ターゲットに幾何学的に類似
    する一方の磁極(7d)が外側周縁の外側に設けられて
    おり、さらに該磁石装置の幾何学に類似する、かつ同様
    にリング状に閉じられた他方の磁極(7c)が内側周縁
    の内側に配置されており、この配置により、磁力線の少
    なくとも主成分がほとんどわん曲されない経路上をスパ
    ッタリング面にわたり連行されるようにし、さらにリン
    グ状の、スパッタリング面にわたり閉じられている磁気
    トンネルが形成されるようにし、この場合、この磁気装
    置はアース電位に対しても陰極電位に対しても自動的に
    設定調整される電位へ置かれるようにした形式の請求項
    1記載の陰極スパッタリング法による基板のコーティン
    グ法において、a)磁力線が少なくとも近似的に、ター
    ゲット(9)の新品状態において存在するようなスパッ
    タリング面(9a)に平行に走行するような、磁気トン
    ネルの領域が、永久磁石装置(7)の相応の設計により
    外側ターゲット周縁(9d)の近傍において変位される
    ようにし、この構成により別の磁界が存在しない時に最
    大のターゲット侵食のリング状の領域が外側のターゲッ
    ト周縁の近傍へ変位されるようにし、b)外側磁極(7
    d)の外側で、リング状に閉じられた、磁極に幾何学に
    類似するかつこの磁極を囲む磁石コイル(2b)が設け
    られており、該磁石コイルは、時間的に変化する別の磁
    界を発生する制御装置(30)へ接続されており、この
    場合、励磁電流のゼロとは異なる少くとも一つの時間平
    均値により磁界を形成するようにし、該磁界により磁極
    方向および、永久磁石装置(7)の磁界との重畳にもと
    づいて、最大のターゲット侵食のリング状領域が両方の
    ターゲット周縁(9c,9d)の間の中央へ変位される
    ようにし、この場合さらに励磁電流の周期的変位により
    、最大のターゲット侵食の領域を周期的に、中央位置か
    ら両側へ変位させるようにしたマグネトロン陰極。
  4. 【請求項4】  磁石コイルに対してコイル寸法の長さ
    の1cm毎に100から1000アンペアターンを選定
    した請求項3記載のマグネトロン陰極。
  5. 【請求項5】  ターゲット(9)の内側周縁(9c)
    からの内側磁極の磁極間隔“a”をターゲット(9)の
    外側周縁(9d)からの外側磁極(7d)の磁極間隔“
    b”よりも大きくなるようにし、この場合、磁極間隔が
    上下に平行の、ターゲット(9)の新品状態において磁
    極およびターゲット周縁を通って走行する平面に関連づ
    けられている請求項3記載のマグネトロン陰極。
  6. 【請求項6】  内側磁極(7c)の残留磁気を磁石材
    料の相応の選択により外側磁極(7d)の残留磁気より
    も大くした請求項3記載のマグネトロン陰極。
  7. 【請求項7】  内側磁極(7c)の磁極面を外側磁極
    (7d)の磁極面よりも小さくした請求項3記載のマグ
    ネトロン陰極。
  8. 【請求項8】  磁石コイル(26)を管の、4〜20
    回の巻回から例えば50〜10回の巻回から構成し、該
    管を、良好な電流−および熱伝導性の材料から構成しさ
    らに冷却剤源(27)へ結合した請求項3記載のマグネ
    トロン陰極。
JP14157191A 1990-06-13 1991-06-13 マグネトロン陰極を用いた基板のコーティング法および装置 Expired - Lifetime JP3370099B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4018914.7 1990-06-13
DE4018914A DE4018914C1 (ja) 1990-06-13 1990-06-13

Publications (2)

Publication Number Publication Date
JPH04254580A true JPH04254580A (ja) 1992-09-09
JP3370099B2 JP3370099B2 (ja) 2003-01-27

Family

ID=6408334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14157191A Expired - Lifetime JP3370099B2 (ja) 1990-06-13 1991-06-13 マグネトロン陰極を用いた基板のコーティング法および装置

Country Status (6)

Country Link
US (1) US5069772A (ja)
EP (1) EP0461525B1 (ja)
JP (1) JP3370099B2 (ja)
KR (1) KR100224507B1 (ja)
DE (2) DE4018914C1 (ja)
ES (1) ES2066270T3 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182001A (en) * 1990-06-13 1993-01-26 Leybold Aktiengesellschaft Process for coating substrates by means of a magnetron cathode
US5490914A (en) * 1995-02-14 1996-02-13 Sony Corporation High utilization sputtering target for cathode assembly
US5364518A (en) * 1991-05-28 1994-11-15 Leybold Aktiengesellschaft Magnetron cathode for a rotating target
DE4123274C2 (de) * 1991-07-13 1996-12-19 Leybold Ag Vorrichtung zum Beschichten von Bauteilen bzw. Formteilen durch Kathodenzerstäubung
US5174880A (en) * 1991-08-05 1992-12-29 Hmt Technology Corporation Magnetron sputter gun target assembly with distributed magnetic field
DE4202349C2 (de) * 1992-01-29 1997-02-13 Leybold Ag Vorrichtung zur Kathodenzerstäubung
JP2970317B2 (ja) * 1993-06-24 1999-11-02 松下電器産業株式会社 スパッタリング装置及びスパッタリング方法
US5496455A (en) * 1993-09-16 1996-03-05 Applied Material Sputtering using a plasma-shaping magnet ring
ATE130465T1 (de) * 1994-04-07 1995-12-15 Balzers Hochvakuum Magnetronzerstäubungsquelle und deren verwendung.
CN1067118C (zh) * 1994-07-08 2001-06-13 松下电器产业株式会社 磁控管溅射装置
US5597459A (en) * 1995-02-08 1997-01-28 Nobler Technologies, Inc. Magnetron cathode sputtering method and apparatus
US5512150A (en) * 1995-03-09 1996-04-30 Hmt Technology Corporation Target assembly having inner and outer targets
CH691643A5 (de) * 1995-10-06 2001-08-31 Unaxis Balzers Ag Magnetronzerstäubungsquelle und deren Verwendung.
DE19614595A1 (de) * 1996-04-13 1997-10-16 Singulus Technologies Gmbh Vorrichtung zur Kathodenzerstäubung
US5863399A (en) * 1996-04-13 1999-01-26 Singulus Technologies Gmbh Device for cathode sputtering
DE19614599A1 (de) * 1996-04-13 1997-10-16 Singulus Technologies Gmbh Vorrichtung zur Kathodenzerstäubung
AU2001272643A1 (en) * 2000-07-27 2002-02-13 Stephen Robert Burgess Magnetron sputtering
DE10138165A1 (de) * 2001-08-03 2003-02-27 Singulus Technologies Ag Magnetron-Zerstäubungsanlage mit einer Vorrichtung zum Verhindern einer Rückbeschichtung des Zerstäubungstargets
DE10234861A1 (de) * 2002-07-31 2004-02-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Einrichtung zur wechselweisen Abscheidung zweier Materialien durch Kathoden-Zerstäubung
US7718042B2 (en) * 2004-03-12 2010-05-18 Oc Oerlikon Balzers Ag Method for manufacturing sputter-coated substrates, magnetron source and sputtering chamber with such source
EP1609880B1 (de) * 2004-06-22 2008-05-14 Applied Materials GmbH & Co. KG Zerstäubungskatode für Beschichtungsprozesse
US20070012557A1 (en) * 2005-07-13 2007-01-18 Applied Materials, Inc Low voltage sputtering for large area substrates
EP1873809A1 (en) 2006-06-26 2008-01-02 M2 Engineering AB (publ) Sputtering device
US20090314631A1 (en) * 2008-06-18 2009-12-24 Angstrom Sciences, Inc. Magnetron With Electromagnets And Permanent Magnets
US9388490B2 (en) 2009-10-26 2016-07-12 General Plasma, Inc. Rotary magnetron magnet bar and apparatus containing the same for high target utilization
KR102309220B1 (ko) * 2020-11-16 2021-10-07 (주)비엠티 무진동 브레이커

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884793A (en) * 1971-09-07 1975-05-20 Telic Corp Electrode type glow discharge apparatus
US3956093A (en) * 1974-12-16 1976-05-11 Airco, Inc. Planar magnetron sputtering method and apparatus
NL7607473A (nl) * 1976-07-07 1978-01-10 Philips Nv Verstuifinrichting en werkwijze voor het ver- stuiven met een dergelijke inrichting.
US4401539A (en) * 1981-01-30 1983-08-30 Hitachi, Ltd. Sputtering cathode structure for sputtering apparatuses, method of controlling magnetic flux generated by said sputtering cathode structure, and method of forming films by use of said sputtering cathode structure
US4444635A (en) * 1981-07-22 1984-04-24 Hitachi, Ltd. Film forming method
DE3411536A1 (de) * 1983-07-06 1985-01-17 Leybold-Heraeus GmbH, 5000 Köln Magnetronkatode fuer katodenzerstaeubungsanlagen
US4515675A (en) * 1983-07-06 1985-05-07 Leybold-Heraeus Gmbh Magnetron cathode for cathodic evaportion apparatus
ATE47504T1 (de) * 1983-12-05 1989-11-15 Leybold Ag Magnetronkatode zum zerstaeuben ferromagnetischer targets.
JPS60152671A (ja) * 1984-01-20 1985-08-10 Anelva Corp スパツタリング電極
DE3624150C2 (de) * 1986-07-17 1994-02-24 Leybold Ag Zerstäubungskatode nach dem Magnetronprinzip
DE3727901A1 (de) * 1987-08-21 1989-03-02 Leybold Ag Zerstaeubungskathode nach dem magnetronprinzip

Also Published As

Publication number Publication date
EP0461525B1 (de) 1994-12-28
JP3370099B2 (ja) 2003-01-27
US5069772A (en) 1991-12-03
DE59104022D1 (de) 1995-02-09
EP0461525A1 (de) 1991-12-18
KR920001602A (ko) 1992-01-30
KR100224507B1 (ko) 1999-10-15
ES2066270T3 (es) 1995-03-01
DE4018914C1 (ja) 1991-06-06

Similar Documents

Publication Publication Date Title
JPH04254580A (ja) マグネトロン陰極を用いた基板のコーティング法および装置
JP7385621B2 (ja) イオン-イオンプラズマ原子層エッチングプロセス及びリアクタ
US8398834B2 (en) Target utilization improvement for rotatable magnetrons
JP4264474B2 (ja) ペニング放電プラズマ源
JP4491132B2 (ja) プラズマ処理装置
US6929727B2 (en) Rectangular cathodic arc source and method of steering an arc spot
KR100442085B1 (ko) 자기 버킷 및 동심 플라즈마와 재료원에 의한 이온화 물리적 기상 증착 방법 및 장치
US7067034B2 (en) Method and apparatus for plasma forming inner magnetic bucket to control a volume of a plasma
US5174875A (en) Method of enhancing the performance of a magnetron sputtering target
US6178920B1 (en) Plasma reactor with internal inductive antenna capable of generating helicon wave
WO2000079568A2 (en) Plasma reactor with multiple small internal inductive antennas
JP2010525158A (ja) 真空アーク蒸発源、及び真空アーク蒸発源を有するアーク蒸発チャンバ
JPH04289167A (ja) マグネトロン陰極による基板への成膜装置
US6146509A (en) Inverted field circular magnetron sputtering device
US4769101A (en) Apparatus for surface-treating workpieces
BRPI0714437A2 (pt) mÉtodo para separar camadas eletricamente isolantes
JPH06235063A (ja) スパッタリング陰極
KR890004171B1 (ko) 진공 스퍼터링 장치
US20090314631A1 (en) Magnetron With Electromagnets And Permanent Magnets
US5182001A (en) Process for coating substrates by means of a magnetron cathode
RU2187218C1 (ru) Источник ионов (варианты)
KR100274433B1 (ko) 스퍼트링장치 및 스퍼트링방법
JPH10125495A (ja) 壁密着型電極を使用した位相制御多電極型交流放電装置
WO1992004483A1 (en) Method of enhancing the performance of a magnetron sputtering target
RU2119275C1 (ru) Плазменный ускоритель

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9