JPH04254520A - Manufacture of resistance welded oil well pipe high in young's modulus in the circumferential direction of steel pipe and excellent in crushing property - Google Patents

Manufacture of resistance welded oil well pipe high in young's modulus in the circumferential direction of steel pipe and excellent in crushing property

Info

Publication number
JPH04254520A
JPH04254520A JP1347091A JP1347091A JPH04254520A JP H04254520 A JPH04254520 A JP H04254520A JP 1347091 A JP1347091 A JP 1347091A JP 1347091 A JP1347091 A JP 1347091A JP H04254520 A JPH04254520 A JP H04254520A
Authority
JP
Japan
Prior art keywords
modulus
young
steel pipe
circumferential direction
resistance welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1347091A
Other languages
Japanese (ja)
Other versions
JP2596860B2 (en
Inventor
Motofumi Koyumiba
基文 小弓場
Naoki Konno
今野 直樹
Noriaki Suzuki
鈴木 典明
Masaaki Obata
小畠 正秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3013470A priority Critical patent/JP2596860B2/en
Publication of JPH04254520A publication Critical patent/JPH04254520A/en
Application granted granted Critical
Publication of JP2596860B2 publication Critical patent/JP2596860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To offer a method for manufacturing a resistance welded oil well pipe high in the Young's modulus in the circumferential direction of the steel pipe and excellent in crushing properties. CONSTITUTION:This is a method for manufacturing a resistance welded oil well pipe high in the Young's modulus in the circumferential direction of a steel pipe and excellent in crushing properties having features that, at the time of subjecting a slab to hot rolling, the cumulative draft of the steel in the temp. range of [the Ar3 point +50 deg.C] or below to the Ar1 point to 3 to 10% to the thickness of the initial slab and the sizing reduction of area at the time of manufacturing a resistance welded steel pipe is regulated to 2 to 30%.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電縫鋼管の円周方向ヤ
ング率が一般的に知られている値2.10×104 (
kgf/mm2)よりも高く、これに伴い圧潰特性に優
れた電縫油井管の製造方法に関するものである。
[Industrial Application Field] The present invention provides an electric resistance welded steel pipe having a circumferential Young's modulus of 2.10×104 (
The present invention relates to a method for producing an ERW oil country tubular product having a higher crushing property (kgf/mm2) and excellent crushing properties.

【0002】0002

【従来の技術】近年、油井の掘削深さは益々高深度化す
る傾向にあり、これに伴い圧潰特性に優れた油井用鋼管
に対する要求が高まっている。また、耐圧潰特性が高く
なることにより油井管の厚みを薄くすることが可能とな
り、これにより油井の軽量化、鋼材の削減ができるので
、この点からも客先からは圧潰特性に優れた油井用鋼管
に対する要求が非常に厳しくなっている。
BACKGROUND OF THE INVENTION In recent years, the drilling depth of oil wells has tended to become deeper and deeper, and as a result, there has been an increasing demand for steel pipes for oil wells with excellent crushing properties. In addition, by increasing the collapse resistance, it becomes possible to reduce the thickness of oil country tubular goods, which makes it possible to reduce the weight of oil wells and reduce the amount of steel used. Requirements for steel pipes for industrial use are becoming extremely strict.

【0003】圧潰特性に優れた電縫油井管に関する先行
技術としては、特開昭59−260442号公報〔パイ
プ内外表面部の降伏強度の高い高圧潰型油井管〕記載の
ものがある。同技術では電縫鋼管製造後低温での熱処理
を行い、歪時効強化を有効に利用することにより、パイ
プ内外表面部の降伏強度を高め、これにより圧潰特性に
優れた 電縫油井管を得ようとするものである。
[0003] As a prior art related to electric resistance welded oil country tubular goods having excellent crushability, there is one described in Japanese Patent Application Laid-Open No. 59-260442 [High crush type oil country tubular goods with high yield strength on inner and outer surfaces of pipe]. With this technology, after manufacturing ERW steel pipes, heat treatment is performed at low temperatures and by effectively utilizing strain aging strengthening, the yield strength of the pipe's inner and outer surfaces is increased, thereby producing ERW oil country tubular goods with excellent crushing properties. That is.

【0004】0004

【発明が解決しようとする課題】油井用鋼管の圧潰特性
を支配する要因として一般的に、降伏強度、残留応力、
鋼管の真円度、偏肉率等が挙げられる。また、鋼のポア
ソン比やヤング率についても圧潰特性を支配する要因と
考えられているが、これらの値は一般的に不変値とされ
ていた。
[Problem to be Solved by the Invention] Generally, the factors governing the crushing characteristics of steel pipes for oil wells are yield strength, residual stress,
Examples include the roundness of the steel pipe and the unevenness of wall thickness. In addition, the Poisson's ratio and Young's modulus of steel are also considered to be factors that control the crushing properties, but these values were generally considered to be unchangeable values.

【0005】本発明は、従来から一定値とされてきたヤ
ング率(圧潰特性に影響を与えるのは鋼管円周方向のヤ
ング率で2.10×104 (kgf/mm2)とされ
てきた)を積極的に高めることにより圧潰特性を向上さ
せる電縫油井管製造技術を提供することを目的とするも
のである。
[0005] The present invention improves the Young's modulus, which has conventionally been assumed to be a constant value (the Young's modulus in the circumferential direction of the steel pipe that affects the crushing characteristics is 2.10×104 (kgf/mm2)). The object of the present invention is to provide a manufacturing technology for ERW oil country tubular goods that improves the crushing characteristics by actively increasing the crushing characteristics.

【0006】[0006]

【課題を解決するための手段】本発明の要旨とするとこ
ろはかきのとおりである。 (1)  C;0.05〜0.50%、Si;0.05
〜0.30%、Mn;0.5〜2.0%を基本成分とし
て、残部Fe及び不可避的不純元素からなる鋳造スラブ
を熱間圧延するに際して、その鋼の〔Ar3 点+50
℃〕以下Ar1 点までの温度域での累積圧延率を初期
スラブ厚みの3%以上10%以下とし、さらに電縫鋼管
製造時のサイジング絞り率を2%以上30%以下とする
ことを特徴とする鋼管の円周方向ヤング率が高く圧潰特
性に優れた電縫油井管の製造方法。
[Means for Solving the Problems] The gist of the present invention is as described above. (1) C: 0.05-0.50%, Si: 0.05
~0.30%, Mn: 0.5~2.0% as a basic component, and the balance is Fe and unavoidable impurity elements.
°C] or less in the temperature range up to Ar1 point, the cumulative rolling rate is 3% or more and 10% or less of the initial slab thickness, and the sizing reduction rate during the production of ERW steel pipe is 2% or more and 30% or less. A method for producing ERW oil country tubular goods that have a high Young's modulus in the circumferential direction and excellent crushing properties.

【0007】(2)  C;0.05〜0.50%、S
i;0.05〜0.30%、Mn;0.5〜2.0を基
本成分として、Nb;0.005〜0.060%、V;
0.005〜0.060%、Mo;0.10〜1.00
%、Ti;0.005〜0.030%の1種または2種
以上を含み、残部Fe及び不可避的不純元素からなる鋳
造スラブを熱間圧延するに際して、その鋼の〔Ar3 
点+50℃〕以下Ar1 点までの温度域での累積圧延
率を初期スラブ厚みの3%以上10%以下とし、さらに
電縫鋼管製造時のサイジング絞り率を2%以上30%以
下とすることを特徴とする鋼管の円周方向ヤング率が高
く圧潰特性に優れた電縫油井管の製造方法。
(2) C: 0.05-0.50%, S
i; 0.05 to 0.30%, Mn; 0.5 to 2.0 as basic components, Nb; 0.005 to 0.060%, V;
0.005-0.060%, Mo; 0.10-1.00
%, Ti; 0.005 to 0.030%, and the balance is Fe and unavoidable impurity elements.
The cumulative rolling rate in the temperature range up to the Ar1 point (+50°C) and below shall be 3% to 10% of the initial slab thickness, and the sizing reduction rate during the manufacture of ERW steel pipes shall be 2% to 30%. A method for producing ERW oil country tubular goods that feature a high Young's modulus in the circumferential direction of steel pipes and excellent crushing properties.

【0008】一般に、鋼のヤング率は2.10×104
 (kgf/mm2)と考えられている。一方、鋼を温
間、冷間にて強加工したとき集合組織が形成され、これ
に伴いヤング率が変化することが知られている。冶金学
的には、α鉄単結晶の〔111〕方向のヤング率は最大
で2.90×104 (kgf/mm2)であることが
知られている。また〔110〕方向のヤング率は2.1
6×104 (kgf/mm2)であるとされている。 即ち、結晶方位を〔111〕方向に整合させることによ
りヤング率を高めることが可能である。コイルの圧延直
角方向、即ち鋼管の円周方向の結晶方位を〔111〕方
向に整合させることにより、この方向のヤング率は2.
10×104 (kgf/mm2)よりも上昇し、これ
に伴い電縫鋼管の圧潰特性を向上させることが可能とな
る。
Generally, the Young's modulus of steel is 2.10×104
(kgf/mm2). On the other hand, it is known that when steel is subjected to strong warm or cold working, a texture is formed and the Young's modulus changes accordingly. Metallurgically, it is known that the Young's modulus of an α-iron single crystal in the [111] direction is at most 2.90×10 4 (kgf/mm 2 ). Also, the Young's modulus in the [110] direction is 2.1
It is said to be 6×104 (kgf/mm2). That is, it is possible to increase the Young's modulus by aligning the crystal orientation in the [111] direction. By aligning the crystal orientation in the direction perpendicular to the rolling of the coil, that is, in the circumferential direction of the steel pipe, to the [111] direction, the Young's modulus in this direction is 2.
10×10 4 (kgf/mm 2 ), thereby making it possible to improve the crushing characteristics of the ERW steel pipe.

【0009】本発明は、電縫鋼管の円周方向ヤング率を
積極的に高めることにより、圧潰特性を向上させる電縫
鋼管の製造技術に関するものである。鋼の結晶方位を制
御するには熱間圧延条件により集合組織を生成させる方
法が一般的に考えられる。これに対して、本発明者らは
、熱間圧延に加えて、電縫鋼管成形条件を制御すること
により、鋼管の円周方向ヤング率を従来値(2.10×
104 (kgf/mm2))よりも約10%程度向上
させ、これにより従来よりも圧潰特性に優れた電縫油井
管を提供しようとするものである。
The present invention relates to a manufacturing technique for an electric resistance welded steel pipe that improves crushing characteristics by actively increasing the Young's modulus in the circumferential direction of the electric resistance welded steel pipe. In order to control the crystal orientation of steel, it is generally considered that a method of generating texture by changing hot rolling conditions is considered. In contrast, in addition to hot rolling, the present inventors controlled the forming conditions of the ERW steel pipe to increase the Young's modulus in the circumferential direction of the steel pipe to the conventional value (2.10×
104 (kgf/mm2)) by about 10%, thereby providing an ERW oil country pipe with superior crushing properties compared to conventional ones.

【0010】以下にヤング率を高めるための手段につい
て具体的に説明する。まず熱間圧延であるが、連続鋳造
スラブをその鋼のAc3 温度以上に加熱したあと熱間
圧延を行うが、初期の圧延は特に制約はなく、その鋼の
〔Ar3 点+50℃〕以下Ar1 点間で仕上げ圧延
を実施し、累積圧延量を初期スラブ厚みの3%以上とす
ることが必要である。また累積圧延量の上限についての
制約は特にないが、圧延機の能力の関係から10%以下
が適当である。
The means for increasing Young's modulus will be specifically explained below. First, regarding hot rolling, hot rolling is performed after heating the continuous cast slab to a temperature higher than the Ac3 temperature of the steel, but there are no particular restrictions on the initial rolling, and the Ar1 point is below [Ar3 point + 50℃] of the steel. It is necessary to carry out finish rolling in between and make the cumulative rolling amount 3% or more of the initial slab thickness. Although there is no particular restriction on the upper limit of the cumulative rolling amount, 10% or less is appropriate in view of the capacity of the rolling mill.

【0011】仕上げ圧延を〔Ar3 点+50℃〕以下
の低温域で実施し、かつその圧下量を初期スラブ厚みの
3%以上となるような強圧下を施すことにより鋼の集合
組織の形成が助長される。これにより、圧延方向のヤン
グ率とその直角方向ヤング率の間に異方性が生まれる。 これは〔Ar3 点+50℃〕以下ではその鋼は加工さ
れたままの組織が残存するためである。即ち、この様な
低温域ではオーステナイトの再結晶が起こりにくく、そ
のため集合組織が形成されるものである。
[0011] Finish rolling is carried out in a low temperature range below [Ar3 point + 50°C], and the formation of the texture of the steel is promoted by applying strong reduction such that the reduction amount is 3% or more of the initial slab thickness. be done. This creates anisotropy between the Young's modulus in the rolling direction and the Young's modulus in the direction perpendicular to the rolling direction. This is because at temperatures below [Ar3 point +50°C], the steel remains in its processed structure. That is, recrystallization of austenite is difficult to occur in such a low temperature range, and therefore a texture is formed.

【0012】またフェライト変態の開始するAr3 温
度以下、Ar1 温度間のいわゆる2相域で最終圧延を
実施した場合、さらに集合組織の形成が助長される。こ
のように熱間圧延の最終圧延を〔Ar3 点+50℃〕
以下Ar1 点間で行うことにより集合組織を形成させ
、これによりコイルのヤング率にL,C異方性を発生さ
せることができる。この場合、コイルの圧延方向ヤング
率が約2.10×104 (kgf/mm2)に比べて
、圧延直角方向ヤング率は集合組織形成に伴い約7〜8
%程度上昇する(ヤング率の異方性)。
Furthermore, when the final rolling is carried out in a so-called two-phase region between the Ar3 temperature at which ferrite transformation begins and the Ar1 temperature, the formation of texture is further promoted. In this way, the final rolling of hot rolling is carried out [Ar3 point +50℃]
By performing the following process between Ar1 points, a texture is formed, thereby making it possible to generate L and C anisotropy in the Young's modulus of the coil. In this case, the Young's modulus in the rolling direction of the coil is approximately 2.10×104 (kgf/mm2), while the Young's modulus in the rolling direction is approximately 7 to 8 due to the formation of texture.
% (Young's modulus anisotropy).

【0013】次に、このヤング率異方性を有するコイル
を素材として電縫鋼管を製造するが、その成形条件によ
りさらにヤング率異方性を助長させることができる。以
下に電縫鋼管の製造方法について述べる。電縫鋼管は熱
間圧延コイルを素材として冷間成形により製造される。 本発明ではサイジングロールでの加工量を制御すること
により、コイル段階で得られたヤング率異方性をさらに
助長させることを実現した。先述したように熱間圧延段
階で形成された集合組織は、電縫鋼管成形時の加工量(
ここではサイジング量)を制御することによりさらに安
定化し、これに伴いヤング率異方性は拡大する傾向にあ
る。
Next, an electric resistance welded steel pipe is manufactured using the coil having Young's modulus anisotropy, and the Young's modulus anisotropy can be further promoted by changing the forming conditions. The method for manufacturing ERW steel pipes will be described below. ERW steel pipes are manufactured by cold forming from hot rolled coils. In the present invention, by controlling the processing amount with the sizing roll, it has been realized that the Young's modulus anisotropy obtained at the coil stage can be further promoted. As mentioned earlier, the texture formed during the hot rolling stage is affected by the processing amount (
In this case, by controlling the sizing amount), it is further stabilized, and the Young's modulus anisotropy tends to expand accordingly.

【0014】本発明者らは、サイジングでの加工量を2
%以上とすることにより、熱間圧延段階で得られたヤン
グ率異方性をさらに拡大できることを突き止めた。ちな
みに熱間圧延段階では、圧延方向ヤング率(2.10×
104 kgf/mm2 )に対して、圧延直角方向ヤ
ング率は約7〜8%高い値(2.27×104 kgf
 /mm2)であったが、電縫鋼管成形時の加工量を制
御することによりさらにヤング率異方性は拡大し、圧延
方向(管軸方向)に比べて約10%(2.30×104
 kgf /mm2 程度)高い値となる。
[0014] The present inventors have reduced the amount of processing in sizing to 2.
% or more, it was found that the Young's modulus anisotropy obtained in the hot rolling stage could be further expanded. Incidentally, at the hot rolling stage, Young's modulus in the rolling direction (2.10×
104 kgf/mm2), the Young's modulus in the direction perpendicular to rolling is approximately 7 to 8% higher (2.27 x 104 kgf/mm2).
/mm2), but by controlling the processing amount during the forming of the ERW steel pipe, the Young's modulus anisotropy was further expanded to approximately 10% (2.30 x 104) compared to the rolling direction (tube axis direction).
kgf/mm2) is a high value.

【0015】尚、この時のサイジング加工量とは(サイ
ジング前の外周長−サイジング後の外周長)/サイジン
グ前の外周長×100より求めた値である。また、サイ
ジングでの加工量を2%未満とした時はヤング率異方性
の拡大効果は少ない。さらに30%超の高加工量は圧延
機の能力上難しい。従って、サイジングでの加工量は2
%から30%が適当である。
The amount of sizing processing at this time is a value obtained from (outer circumference length before sizing - outer circumference length after sizing)/outer circumference length before sizing x 100. Further, when the processing amount in sizing is less than 2%, the effect of expanding Young's modulus anisotropy is small. Furthermore, a high processing amount of over 30% is difficult due to the capacity of the rolling mill. Therefore, the processing amount for sizing is 2
% to 30% is appropriate.

【0016】以上のように熱間圧延条件と鋼管での加工
量を制御することにより、一般的に用いられているヤン
グ率(2.10×104 kgf /mm2 )に対し
て、鋼管円周方向のヤング率を最大で約10%程度向上
させることができる。このような高圧潰型電縫油井管に
おいて、その成分での制約は特になく、必要に応じて成
分系を選択すればよいが、できるだけ安価な成分系で製
造することが好ましい。
By controlling the hot rolling conditions and the amount of processing in the steel pipe as described above, the Young's modulus (2.10×104 kgf/mm2) that is generally used can be The Young's modulus of can be improved by about 10% at most. In such a high-pressure collapse type ERW oil country pipe, there are no particular restrictions on its components, and the component system may be selected as necessary, but it is preferable to manufacture the product using a component system that is as inexpensive as possible.

【0017】以下に本発明者らが推奨する成分について
簡単に紹介する。Cは必要な強度を得るために重要とな
るが、0.05%未満では本発明の狙いとする降伏強度
35 kgf/mm2 以上を確保することが非常に困
難であるため0.05%以上含有することが好ましい。 また、0.50%超では強度が高くなり過ぎることや、
低温靱性、腐食特性が著しく劣化すること等より、上限
は0.50%が適当である。
[0017] The ingredients recommended by the present inventors will be briefly introduced below. C is important in order to obtain the necessary strength, but if it is less than 0.05%, it is very difficult to secure the yield strength of 35 kgf/mm2 or more, which is the aim of the present invention, so C is contained in an amount of 0.05% or more. It is preferable to do so. Also, if it exceeds 0.50%, the strength will become too high,
Since low-temperature toughness and corrosion characteristics are significantly deteriorated, an appropriate upper limit is 0.50%.

【0018】Siも必要な強度を得るために重要となる
が、電縫溶接性の関点から0.05%から0.30%が
好ましい。Mnも必要な強度を得るために重要であるが
、0.5%未満では本発明の狙いとする降伏強度35 
kgf/mm2 以上を確保することが非常に困難であ
るため0.5%以上含有することが好ましい。また、2
.0%を越えた場合、低温靱性が大幅に劣化することや
、合金コストが高くなることを考慮して、上限は2.0
%が望ましい。
[0018] Although Si is also important in order to obtain the necessary strength, it is preferably 0.05% to 0.30% from the viewpoint of electric resistance weldability. Mn is also important to obtain the necessary strength, but if it is less than 0.5%, the yield strength targeted by the present invention is 35%.
Since it is very difficult to ensure a content of kgf/mm2 or more, it is preferable to contain 0.5% or more. Also, 2
.. The upper limit is 2.0%, considering that if it exceeds 0%, the low temperature toughness will significantly deteriorate and the alloy cost will increase.
% is desirable.

【0019】以上C,Si,Mnを基本成分とするが、
必要に応じてNb,V,Ti,Moを1種または2種以
上添加することもある。まずNbについては熱間圧延時
のオーステナイトの再結晶を大幅に抑制する効果がある
ため、集合組織を形成するには効果的である。但し、0
.005%未満ではその効果が期待出来ず、また0.0
60%を越えて添加しても効果は変わらないため、0.
005%から0.060%が適当である。
[0019] Although C, Si, and Mn are used as the basic components above,
If necessary, one or more of Nb, V, Ti, and Mo may be added. First, Nb has the effect of greatly suppressing recrystallization of austenite during hot rolling, and is therefore effective in forming texture. However, 0
.. If it is less than 0.005%, the effect cannot be expected;
Even if it is added in excess of 60%, the effect will not change, so 0.
0.005% to 0.060% is appropriate.

【0020】VについてもNbと同様に熱間圧延時のオ
ーステナイトの再結晶を遅らせる効果が若干あると言う
報告もあるが明らかではない。Vは低温靱性向上や強度
の向上には効果があるため、必要に応じて添加すること
は効果的である。但し、0.005%未満ではその効果
が期待出来ず、また0.060%を越えて添加しても効
果は変わらないため、0.005%から0.060%が
好ましい。
There is also a report that V has a slight effect of retarding the recrystallization of austenite during hot rolling, similar to Nb, but this is not clear. Since V is effective in improving low-temperature toughness and strength, it is effective to add it as necessary. However, if it is less than 0.005%, the effect cannot be expected, and if it is added in excess of 0.060%, the effect will not change, so 0.005% to 0.060% is preferable.

【0021】Tiについてはスラブ加熱時のオーステナ
イト粒粗大化を抑制し、この結果フェライト粒も細粒と
なることから、低温靱性の向上には効果的である。但し
、0.005%未満ではその効果が期待出来ず、また0
.030%を越えて添加しても効果は変わらないため、
0.005%から0.030%が好ましい。Moは強度
を向上させるために非常に効果的な元素である。但し、
0.10%未満ではその効果が期待出来ず、また1.0
0%を越えて添加しても効果は変わらないため、0.1
0%から1.00%が好ましい。
[0021] Ti suppresses austenite grain coarsening during slab heating, and as a result, ferrite grains become finer, so it is effective in improving low-temperature toughness. However, if it is less than 0.005%, the effect cannot be expected;
.. Even if it is added in excess of 0.30%, the effect will not change, so
0.005% to 0.030% is preferred. Mo is a very effective element for improving strength. however,
If it is less than 0.10%, the effect cannot be expected;
Since the effect does not change even if added in excess of 0%, 0.1
0% to 1.00% is preferred.

【0022】その他精錬時に不可避的に得られるP,S
についてはできるだけ少ないことが好ましい。以上に示
した成分はあくまで一例であり、その他Ni,Cu,C
r,Zr等を必要に応じて添加しても良い。次にヤング
率の測定方法について簡単に説明する。
[0022] Other P and S that are unavoidably obtained during refining
It is preferable that the number of cases is as small as possible. The components shown above are just examples; other components include Ni, Cu, and C.
r, Zr, etc. may be added as necessary. Next, a method for measuring Young's modulus will be briefly explained.

【0023】ヤング率の測定方法については磁気振動に
より共振周波数を測定して求める方法等があるが、本発
明では鋼の音速を測定することによりヤング率を算出し
た。その方法は図1に示す様な小型試験片1を鋼管から
採取し、各面を研磨したあと管軸方向2及び管円周方向
3に超音波を発進してその時の速度からヤング率を算出
した。算出するのに使用した計算式は理論的に波動方程
式から求まるものであり、詳細は割愛するが、その結果
得られる計算式のみ以下に示す。
There are methods for measuring Young's modulus, such as a method of measuring resonance frequency using magnetic vibration, but in the present invention, Young's modulus was calculated by measuring the sound velocity of steel. The method is to take a small test piece 1 as shown in Figure 1 from a steel pipe, polish each surface, and then emit ultrasonic waves in the tube axis direction 2 and tube circumferential direction 3, and calculate Young's modulus from the velocity at that time. did. The calculation formula used for the calculation is theoretically determined from the wave equation, and the details are omitted, but only the calculation formula obtained as a result is shown below.

【0024】[0024]

【数1】[Math 1]

【0025】[0025]

【実施例】本発明の実施例について表1および表2(表
1のつづき)に示した。1〜12までは、本発明の実施
例を示し、13〜17は、従来比較材を示す。尚、表1
および表2(表1のつづき)に示した実施例は全て、外
径339.7mm、肉厚9.6mmサイズの電縫油井管
である。
[Examples] Examples of the present invention are shown in Tables 1 and 2 (continued from Table 1). Nos. 1 to 12 show examples of the present invention, and Nos. 13 to 17 show conventional comparative materials. Furthermore, Table 1
All of the examples shown in Table 2 (continued from Table 1) are electrical resistance welded oil country tubular goods having an outer diameter of 339.7 mm and a wall thickness of 9.6 mm.

【0026】本発明の実施例1〜12では、熱延での圧
延条件として、〔Ar3 +50℃〜Ar1 〕間の累
積圧延量を3〜10%とし、さらに鋼管でのサイジング
量を2〜30%とすることで鋼管C方向のヤング率を従
来一般値である2.10×104 ( kgf/mm2
 )よりも約10%高めることができ、これにより、圧
潰特性を従来材に対して向上させることができた。表1
および表2(表1のつづき)に示した実施例においては
、従来材に対して約20%程度圧潰値が向上している。
[0026] In Examples 1 to 12 of the present invention, the rolling conditions for hot rolling were such that the cumulative rolling amount between [Ar3 +50°C and Ar1] was 3 to 10%, and the sizing amount of the steel pipe was 2 to 30%. %, the Young's modulus in the C direction of the steel pipe is reduced to the conventional general value of 2.10×104 (kgf/mm2
) by about 10%, thereby improving the crushing properties compared to conventional materials. Table 1
In the examples shown in Table 2 (continued from Table 1), the crushing value is improved by about 20% compared to the conventional material.

【0027】[0027]

【表1】[Table 1]

【0028】[0028]

【表2】[Table 2]

【0029】[0029]

【発明の効果】本発明は、電縫鋼管の円周方向ヤング率
が従来一般的に知られている値である2.10×104
  kgf/mm2 よりも約10%高く、圧潰特性に
優れた電縫油井管を製造する方法を提供するものである
。本発明では、電縫鋼管の円周方向ヤング率を高めるこ
とにより圧潰特性を向上させるため、これまでは鋼管の
寸法(外径、肉厚)によってのみ左右されていた弾性域
サイズの鋼管に対しても非常に効果的である。
Effects of the Invention The present invention provides an electric resistance welded steel pipe with a circumferential Young's modulus of 2.10×104, which is a commonly known value.
The object of the present invention is to provide a method for manufacturing an ERW oil country pipe that has an excellent crushing property and is about 10% higher than kgf/mm2. In the present invention, in order to improve the crushing characteristics by increasing the Young's modulus in the circumferential direction of the ERW steel pipe, we have developed It is also very effective.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は本発明における鋼管のヤング率(L,C
方向)を測定する方法を示す簡略図である。
[Figure 1] Figure 1 shows the Young's modulus (L, C
FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  C;0.05〜0.50%、Si;0
.05〜0.30%、Mn;0.5〜2.0%を基本成
分として、残部Fe及び不可避的不純元素からなる鋳造
スラブを熱間圧延するに際して、その鋼の〔Ar3 点
+50℃〕以下Ar1 点までの温度域での累積圧延率
を初期スラブ厚みの3%以上10%以下とし、さらに電
縫鋼管製造時のサイジング絞り率を2%以上30%以下
とすることを特徴とする鋼管の円周方向ヤング率が高く
圧潰特性に優れた電縫油井管の製造方法。
Claim 1: C: 0.05-0.50%, Si: 0
.. 05 to 0.30%, Mn: 0.5 to 2.0% as a basic component, and the balance is Fe and unavoidable impurity elements. A steel pipe characterized in that the cumulative rolling ratio in the temperature range up to the Ar1 point is 3% or more and 10% or less of the initial slab thickness, and the sizing reduction ratio during the manufacture of the ERW steel pipe is 2% or more and 30% or less. A method for manufacturing ERW oil country tubing that has a high circumferential Young's modulus and excellent crushing properties.
【請求項2】  C;0.05〜0.50%、Si;0
.05〜0.30%、Mn;0.5〜2.0を基本成分
として、Nb;0.005〜0.060%、V;0.0
05〜0.060%、Mo;0.10〜1.00%、T
i;0.005〜0.030%の1種または2種以上を
含み、残部Fe及び不可避的不純元素からなる鋳造スラ
ブを熱間圧延するに際して、その鋼の〔Ar3 点+5
0℃〕以下Ar1 点までの温度域での累積圧延率を初
期スラブ厚みの3%以上10%以下とし、さらに電縫鋼
管製造時のサイジング絞り率を2%以上30%以下とす
ることを特徴とする鋼管の円周方向ヤング率が高く圧潰
特性に優れた電縫油井管の製造方法。
Claim 2: C: 0.05-0.50%, Si: 0
.. 05-0.30%, Mn; 0.5-2.0 as the basic component, Nb; 0.005-0.060%, V; 0.0
05-0.060%, Mo; 0.10-1.00%, T
When hot rolling a cast slab containing one or more of 0.005 to 0.030% and the balance consisting of Fe and unavoidable impurity elements, the [Ar3 point +5
The cumulative rolling rate in the temperature range up to Ar1 point (0℃) or below is set to 3% or more and 10% or less of the initial slab thickness, and the sizing reduction ratio during the production of ERW steel pipe is set to 2% or more and 30% or less. A method for manufacturing ERW oil country tubular goods that have a high Young's modulus in the circumferential direction and excellent crushing properties.
JP3013470A 1991-02-04 1991-02-04 Method for manufacturing ERW oil well pipe with high Young's modulus in circumferential direction of steel pipe and excellent crush characteristics Expired - Lifetime JP2596860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3013470A JP2596860B2 (en) 1991-02-04 1991-02-04 Method for manufacturing ERW oil well pipe with high Young's modulus in circumferential direction of steel pipe and excellent crush characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3013470A JP2596860B2 (en) 1991-02-04 1991-02-04 Method for manufacturing ERW oil well pipe with high Young's modulus in circumferential direction of steel pipe and excellent crush characteristics

Publications (2)

Publication Number Publication Date
JPH04254520A true JPH04254520A (en) 1992-09-09
JP2596860B2 JP2596860B2 (en) 1997-04-02

Family

ID=11834023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3013470A Expired - Lifetime JP2596860B2 (en) 1991-02-04 1991-02-04 Method for manufacturing ERW oil well pipe with high Young's modulus in circumferential direction of steel pipe and excellent crush characteristics

Country Status (1)

Country Link
JP (1) JP2596860B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029272A1 (en) * 1999-10-19 2001-04-26 Aspector Oy Method of producing ultra-fine grain structure for unalloyed or low-alloyed steel
JP2007031822A (en) * 2005-07-29 2007-02-08 Jfe Steel Kk High-rigidity steel tube and its manufacturing method
WO2015045373A1 (en) * 2013-09-25 2015-04-02 Jfeスチール株式会社 Process for manufacturing high-carbon electric resistance welded steel pipe, and automobile part
CN104907352A (en) * 2015-05-20 2015-09-16 湖州华特不锈钢管制造有限公司 Condenser stainless steel pipe production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542970A (en) * 1977-06-10 1979-01-10 Nippon Steel Corp Manufacture of high strength, high toughness steel tube of special form
JPS5623223A (en) * 1979-07-31 1981-03-05 Nippon Steel Corp Production of high-young's modulus steel material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542970A (en) * 1977-06-10 1979-01-10 Nippon Steel Corp Manufacture of high strength, high toughness steel tube of special form
JPS5623223A (en) * 1979-07-31 1981-03-05 Nippon Steel Corp Production of high-young's modulus steel material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029272A1 (en) * 1999-10-19 2001-04-26 Aspector Oy Method of producing ultra-fine grain structure for unalloyed or low-alloyed steel
US6719860B1 (en) 1999-10-19 2004-04-13 Aspector Oy Method of producing ultra-fine grain structure for unalloyed or low-alloyed steel
JP2007031822A (en) * 2005-07-29 2007-02-08 Jfe Steel Kk High-rigidity steel tube and its manufacturing method
WO2015045373A1 (en) * 2013-09-25 2015-04-02 Jfeスチール株式会社 Process for manufacturing high-carbon electric resistance welded steel pipe, and automobile part
JP2015062920A (en) * 2013-09-25 2015-04-09 Jfeスチール株式会社 Method for manufacturing high carbon electro-resistance-welded steel pipe excellent in reliability of electro-resistance-welded zone
CN104907352A (en) * 2015-05-20 2015-09-16 湖州华特不锈钢管制造有限公司 Condenser stainless steel pipe production method

Also Published As

Publication number Publication date
JP2596860B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
JP5339006B1 (en) Hot coil for line pipe and manufacturing method thereof
US6846371B2 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
JP4072009B2 (en) Manufacturing method of UOE steel pipe with high crushing strength
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JPH1192859A (en) High tensile strength hot rolled steel plate having ultrafine structure and its production
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JPH04254520A (en) Manufacture of resistance welded oil well pipe high in young's modulus in the circumferential direction of steel pipe and excellent in crushing property
JPH04254521A (en) Manufacture of resistance welded oil well pipe high in young's modulus in the circumferential direction of steel pipe and excellent in crushing property
JP2003105441A (en) METHOD FOR MANUFACTURING SEAMLESS TUBE OF 13 Cr MARTENSITIC STAINLESS STEEL HAVING HIGH STRENGTH AND HIGH TOUGHNESS
JPH05125438A (en) Manufacture of low yield ratio high tensile strength steel
JP3539545B2 (en) High-tensile steel sheet excellent in burring property and method for producing the same
JP2001247931A (en) Non-heattreated high strength seamless steel pipe and its production method
JP2613155B2 (en) ERW oil well pipe excellent in crushing characteristics and method of manufacturing the same
CN116323065A (en) Square steel pipe, method for manufacturing same, and building structure
JP3937964B2 (en) High strength and high toughness martensitic stainless steel seamless pipe manufacturing method
JPS62192539A (en) Manufacture of high gamma value hot rolled steel plate
JP2001131703A (en) High strength steel tube and producing method therefor
CN113646455B (en) Steel material for line pipe and method for producing same, and line pipe and method for producing same
TWI595099B (en) Low yield ratio steel material and method of producing the same
JPS6148531A (en) Manufacture of hot-rolled low-carbon steel sheet having superior deep drawability
JPH05255750A (en) Production of seamless steel tube having low hardness and high toughness and excellent in ssc resistance
JPS6289813A (en) Manufacture of hot rolled steel strip for low yield ratio and high tension resistance welded tube
JP3257334B2 (en) Manufacturing method of hot-rolled steel sheet for deep drawing with excellent vertical cracking resistance and roundness
JP2022146646A (en) Method for manufacturing hot rolled coil
JPH04168217A (en) Manufacture of high toughness and high tensile strength hot rolled steel sheet excellent in uniformity

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960917