JPH04254317A - Semiconductor exposure aligner - Google Patents

Semiconductor exposure aligner

Info

Publication number
JPH04254317A
JPH04254317A JP3035063A JP3506391A JPH04254317A JP H04254317 A JPH04254317 A JP H04254317A JP 3035063 A JP3035063 A JP 3035063A JP 3506391 A JP3506391 A JP 3506391A JP H04254317 A JPH04254317 A JP H04254317A
Authority
JP
Japan
Prior art keywords
stage
guide
rotary
axis
original plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3035063A
Other languages
Japanese (ja)
Other versions
JP2860609B2 (en
Inventor
Yukio Yamane
幸男 山根
Kazuya Ono
一也 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3506391A priority Critical patent/JP2860609B2/en
Publication of JPH04254317A publication Critical patent/JPH04254317A/en
Application granted granted Critical
Publication of JP2860609B2 publication Critical patent/JP2860609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces

Abstract

PURPOSE:To enable rotary correction of high precision, by a method wherein, when an X-Y stage is moved in one direction at the time of reference position correction of rotary direction, the stage is locked in order not to move in a direction of the other axis. CONSTITUTION:Laser interferometers 1, 2 are reset, and a theta rotary mechanism 6 and the laser interferometers 1, 2 are initialized, which are arranged at the starting position of measurement by moving an X-Y stage 4. In this state, the air only on the single side of an X stage 4 is turned OFF, thereby bringing an X guide into close contact with the inner surface single side of the X stage 4. Then an X axis interferometer is turned OFF, and yawing control is performed by moving and controlling the Y stage 4. Then parallel deviation and the like are calculated in the state that the X stage 4 is fixed, and the yawing component of the Y guide and the rotary variation component of a thetarotary table 5 are eliminated. Thereby accurate rotary correction value can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体ウエハまたは液
晶表示パネル等の平板状物体にパターンを形成するため
の露光装置に関し、特に半導体メモリや演算装置等の高
密度集積回路チップの製造の際に回路パターンの焼付を
行なうべきウエハ等の被露光体の姿勢を適確に保持して
高精度な露光を行なうことができる露光位置決め装置に
関する。
[Field of Industrial Application] The present invention relates to an exposure apparatus for forming patterns on flat objects such as semiconductor wafers or liquid crystal display panels, and particularly for manufacturing high-density integrated circuit chips such as semiconductor memories and arithmetic devices. The present invention relates to an exposure positioning apparatus that can perform highly accurate exposure by accurately holding the posture of an exposed object such as a wafer on which a circuit pattern is to be printed.

【0002】0002

【従来の技術】従来この種の装置、例えばレチクル上に
描かれたパターンをウエハ上に投影するステッパ等の露
光装置では、レチクルとウエハとの位置合せを行なう機
能が備えられており、それにより位置合せを行なった後
に露光を行なっていた。
2. Description of the Related Art Conventionally, this type of apparatus, for example, an exposure apparatus such as a stepper that projects a pattern drawn on a reticle onto a wafer, is equipped with a function to align the reticle and the wafer. Exposure was performed after alignment.

【0003】そして、このような位置合せは、一般的に
は、投影すべきパターンが描かれたレチクル等の原板と
ウエハ等の被露光体とのずれ量を計測し、その結果に基
づいて被露光体をレーザ測長制御により移動したり、ま
たは原板と被露光体とを移動したりすることにより、行
なわれていた。
[0003] Such alignment is generally performed by measuring the amount of misalignment between an original plate such as a reticle on which a pattern to be projected is drawn and an object to be exposed such as a wafer, and adjusting the position of the object based on the result. This has been done by moving the exposed object under laser length measurement control or by moving the original plate and the object to be exposed.

【0004】そして、その装置(ウエハステージ)の位
置決めにはX、Y軸に関してそれぞれレーザー光により
位置決めを行ない、ヨーイング(回転)変動成分検出用
としてテーブルの1軸側に平行に2本レーザーを入射し
ていた。この1組(2本)のレーザー光の値によってX
Y平面移動時のヨーイング変動成分検出と制御を行なっ
ていた。
[0004]The device (wafer stage) is positioned using laser beams for each of the X and Y axes, and two laser beams are incident parallel to one axis of the table to detect yawing (rotation) fluctuation components. Was. By the value of this one set (two) laser beams,
Yawing fluctuation components were detected and controlled during movement in the Y plane.

【0005】しかしながら、このような干渉計制御によ
るXYθ位置決め装置に於いては、レーザー干渉計をリ
セットした際の原点位置を復帰させる手段がフォトSW
であるためその再現精度(特に回転方向)に問題があっ
た。その為、リセット時や長期的な参照ミラー面の変動
分の補正としてはレチクルとウエハステージ上に設けら
れた基準マークの相対位置を計測していた。その計測の
手段としては公知の種々の方法、例えばレチクルと基準
マークを焼付光で直接計測する方法、又は、レチクルと
ウエハを第3の目(検出器)でそれぞれ計測して行う方
法、さらには、レチクルのマークをウエハステージ上に
直接焼付けてその焼付パターンを第3の目で計測する方
法等がある。
However, in such an XYθ positioning device using interferometer control, the means for returning the origin position when the laser interferometer is reset is a photo SW.
Therefore, there was a problem with its reproducibility (especially in the direction of rotation). Therefore, the relative position of the reticle and the reference mark provided on the wafer stage has been measured to compensate for the fluctuations in the reference mirror surface during reset or over a long period of time. The measurement can be performed using various known methods, such as directly measuring the reticle and reference mark with printing light, or measuring the reticle and wafer with a third eye (detector), and There is a method in which marks on a reticle are directly printed on a wafer stage and the printed pattern is measured with a third eye.

【0006】特に、エキシマステッパーの様に投影レン
ズを通してマークを検出する事が困難な状態では必ずレ
チクルを直接焼付けて計測・補正をしなければならなか
った。
In particular, in situations where it is difficult to detect marks through a projection lens, such as with an excimer stepper, it has always been necessary to directly print the reticle for measurement and correction.

【0007】そのためにウエハステージの片軸(例えば
Y軸)のガイド面を基準にしてY方向のみを移動制御し
もう片軸(X軸)の干渉計を計測のみに使用してYガイ
ド軸に対する回転成分を検出し、その値をヨーイング計
測の2軸にフィードバックする事により回転成分補正を
自動的に行なう事が出来るようにしている。
For this purpose, the movement of the wafer stage is controlled only in the Y direction with reference to the guide surface of one axis (for example, the Y axis), and the interferometer on the other axis (X axis) is used only for measurement, so that the movement relative to the Y guide axis is controlled. By detecting the rotational component and feeding back its value to the two axes of yawing measurement, rotational component correction can be performed automatically.

【0008】このような回転変動補正技術は例えば本願
出願人の提案に係る特開昭61−251028号公報に
開示されている。
Such a rotational fluctuation correction technique is disclosed, for example, in Japanese Patent Laid-Open No. 61-251028, which was proposed by the applicant of the present application.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、片軸(
例えばY軸)移動時のもう片軸(X軸)のX方向の規制
手段については、その機構造の剛性のみに頼っていたた
め、そのステージの機械的ズレや変動成分によってY方
向移動時のX方向の計測が正しく出来ないという問題が
あった。
[Problem to be solved by the invention] However, one shaft (
For example, the means for restricting the other axis (X-axis) in the X direction when moving (Y-axis) relies only on the rigidity of the machine structure, so the mechanical shift and fluctuation components of the stage can cause There was a problem that the direction could not be measured correctly.

【0010】特に静圧ステージの場合では、移動方向に
直交する方向の制御を切ってしまうために計測そのもの
が成立しないという問題があった。
Particularly in the case of a static pressure stage, there is a problem in that measurement itself cannot be performed because control in a direction perpendicular to the direction of movement is turned off.

【0011】本発明は、上述の問題点に鑑み、静圧ステ
ージに於いても干渉計リセット時やミラーの経時変化に
よる回転変動補正を自己診断により容易に行える事が出
来、極めて高い精度の安定したアライメントが可能な位
置決め装置の提供を目的とする。
In view of the above-mentioned problems, the present invention makes it possible to easily correct rotational fluctuations due to interferometer reset and mirror changes over time even in a static pressure stage by self-diagnosis, and to achieve extremely high precision and stability. The purpose of the present invention is to provide a positioning device that can perform precise alignment.

【0012】0012

【課題を解決するための手段及び作用】上記目的を達成
するために、回転方向誤差計測時に移動方向と直交する
軸の駆動部をロックさせ、移動方向と直交する側への変
動成分を除去し、干渉計による計測値が正確な値となる
様にしている。
[Means and effects for solving the problem] In order to achieve the above object, the drive unit of the axis perpendicular to the moving direction is locked when measuring the rotational direction error, and the fluctuation component to the side perpendicular to the moving direction is removed. , to ensure that the values measured by the interferometer are accurate.

【0013】[0013]

【実施例】図1は、本発明の実施例の構成説明図であり
、縮小投影露光装置(ステッパ)を示している。図に於
いて、8はレンズ、9はレチクルであり、この2部材以
外がウエハステージ系となる。図2は、本発明に係る、
ステージの実施例で静圧タイプのウエハステージを示し
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram of the configuration of an embodiment of the present invention, showing a reduction projection exposure apparatus (stepper). In the figure, 8 is a lens, 9 is a reticle, and the components other than these two members constitute a wafer stage system. FIG. 2 shows, according to the present invention,
In the example of the stage, a static pressure type wafer stage is shown.

【0014】1,2はレーザー干渉計、3はミラー(被
測定面X,Y)、4はXYテーブル(X,Yステージ)
、5はθ回転テーブル、6は圧電素子からなる回転駆動
機構、7はXY駆動部(モーター)、10は駆動回路等
を含む制御ボックスである。レーザー干渉計2は、ここ
ではY方向について設置されている。
1 and 2 are laser interferometers, 3 is a mirror (measured surface X, Y), and 4 is an XY table (X, Y stage).
, 5 is a θ rotation table, 6 is a rotation drive mechanism made of a piezoelectric element, 7 is an XY drive unit (motor), and 10 is a control box including a drive circuit and the like. The laser interferometer 2 is installed here in the Y direction.

【0015】図3は、図2のXテーブル部断面を表わし
ている。Xステージ4に対し、15はエアーを供給する
ためのニップル、16はエアの供給板である。
FIG. 3 shows a cross section of the X table portion of FIG. 2. For the X stage 4, 15 is a nipple for supplying air, and 16 is an air supply plate.

【0016】ヨーイングの計測手段は、レーザー測長に
限らず、コリメーター等を使用することも可能である。
The means for measuring yawing is not limited to laser length measurement, but it is also possible to use a collimator or the like.

【0017】レーザー干渉計1,2がリセットされると
、回転駆動機構6が初期位置駆動を行う。この状態で干
渉計1,2の回転方向についても初期化されるため、そ
の再現精度が問題となってくる。
When the laser interferometers 1 and 2 are reset, the rotational drive mechanism 6 drives them to their initial positions. In this state, the rotational directions of the interferometers 1 and 2 are also initialized, so the accuracy of their reproduction becomes a problem.

【0018】その為、図2のエアガイドのX方向干渉計
を制御OFFにし、Xステージ4をXガイドにエアーに
よって固定する(セルフロック)。
Therefore, the X-direction interferometer of the air guide shown in FIG. 2 is turned off, and the X stage 4 is fixed to the X guide by air (self-locking).

【0019】具体的には、図4(A)に示す様にニップ
ル15−■、■、■から供給しているエアーを図4(B
)に示される様にニップル15−■だけエアー供給をO
FFにする。すると、Xステージ4は、ニップル15−
■からの供給エアーによって定盤して上をXガイド12
を固定した状態で移動し、16−■のエア供給板とXガ
イド12が突き当たり密着した状態となる。この状態で
Y方向のみ計測制御を行ってYガイド12に沿って、リ
ニアモーター7により駆動する。この際のX方向の参照
ミラー面計測値によってYガイドとの平行偏差を算出し
、その値を干渉計1、2に補正値として送り、回転機構
6を動かす事により回転方向の基準出しを行なう。
Specifically, as shown in FIG. 4(A), the air supplied from the nipples 15-■,
), turn on the air supply only to nipple 15-■.
Make it FF. Then, the X stage 4 moves the nipple 15-
■The top is placed on the surface plate by the air supplied from the X guide 12.
The air supply plate 16-2 and the X guide 12 are brought into close contact with each other. In this state, measurement control is performed only in the Y direction, and the linear motor 7 is driven along the Y guide 12. At this time, the parallel deviation with the Y guide is calculated based on the reference mirror surface measurement value in the X direction, and the value is sent as a correction value to the interferometers 1 and 2, and the reference for the rotation direction is determined by moving the rotation mechanism 6. .

【0020】この時、Y方向の回転機構が変動しない様
、レーザ干渉計1、2でヨーイング制御を行なっていれ
ば、Yガイドのヨーイング成分及びθ回転テーブルの回
転変動成分は取り除いた形で計測出来るため、より正確
な回転補正を行なえる。この一連の流れを図5のフロー
チャートに示す。
At this time, if yawing control is performed using the laser interferometers 1 and 2 so that the rotation mechanism in the Y direction does not fluctuate, the yawing component of the Y guide and the rotation fluctuation component of the θ rotary table can be removed from the measurement. This allows for more accurate rotation correction. This series of steps is shown in the flowchart of FIG.

【0021】図5において、まずレーザー干渉計がリセ
ットされ(ステップ31)、θ回転機構およびレーザー
干渉計が初期化される(ステップ  32、33)。続
いてXYステージを移動し測定開始位置に配置する(ス
テップ34)。この状態で前述のようにXステージの片
側エアのみOFFとし、図4(B)に示すように、Xガ
イドをXステージの内面片側に密着させる(ステップ3
5)。ここでX軸干渉計をOFFとし(ステップ36)
、Yステージを移動制御して(ステップ37)、ヨーイ
ング制御を行う(ステップ38)。このとき、Xステー
ジが固定されYガイドのヨーイング成分およびθ回転テ
ーブルの回転変動成分が除かれた状態で前述のように平
行偏差等を算出し、正確な回転補正値が得られる(ステ
ップ39〜44)。
In FIG. 5, first, the laser interferometer is reset (step 31), and the θ rotation mechanism and laser interferometer are initialized (steps 32, 33). Subsequently, the XY stage is moved and placed at the measurement start position (step 34). In this state, as described above, turn off the air on only one side of the X stage, and bring the X guide into close contact with one side of the inner surface of the
5). Now turn off the X-axis interferometer (step 36)
, and control the movement of the Y stage (step 37), and perform yawing control (step 38). At this time, with the X stage fixed and the yawing component of the Y guide and the rotational fluctuation component of the θ rotary table removed, parallel deviation etc. are calculated as described above, and accurate rotation correction values are obtained (steps 39 to 39). 44).

【0022】上記例は、Yガイドを基準としているが、
Xガイド側を基準として使用しても同様の事が言える。
[0022] The above example is based on the Y guide, but
The same thing can be said even if the X guide side is used as a reference.

【0023】さらに、このガイド面とレチクル面との平
行を予め保証しておくか又は、残差分を把握していれば
、常にレチクルに対して平行保証を行う事が可能となる
Furthermore, if the parallelism between the guide surface and the reticle surface is guaranteed in advance, or if the residual difference is known, it is possible to always guarantee the parallelism of the reticle.

【0024】前記、実施例は、ウエハステージ側につい
て述べているが、レチクル側についても同様である。図
3は、レチクルステージ側に図1と同様の位置計測手段
を設けた構成例を示す。
Although the above embodiments have been described on the wafer stage side, the same applies to the reticle side. FIG. 3 shows a configuration example in which a position measuring means similar to that in FIG. 1 is provided on the reticle stage side.

【0025】又、前記実施例は静圧ガイドによるウエハ
ステージの実施例であるが、ガイド面が摺動又は転動で
あるステージであっても同様の事が言える。
Further, although the above embodiment is an example of a wafer stage using a static pressure guide, the same can be said of a stage whose guide surface is sliding or rolling.

【0026】さらに、前記実施例は、ヨーイング制御を
行なうステージを前提としているが、ミラー取付部等の
機械的な経時変化だけに限定すれば、回転変動チェック
として使用出来るため、X,Y軸それぞれ1軸のステー
ジについても同様に定期チェック機能として利用出来る
Furthermore, although the above embodiment assumes a stage that performs yawing control, if it is limited to mechanical changes over time such as in the mirror mounting portion, it can be used as a rotational fluctuation check. The single-axis stage can also be used as a regular check function.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
干渉計リセット時の回転原点再現性誤差やミラー取付部
の経時変化による回転変動成分(干渉計がリセットされ
ない場合)を焼付光による直接露光等の手段でなく、自
分自身の干渉計の自動計測により容易に補正出来る。 又、計測時に於けるガイド部のヨーイング成分も除去す
る事が可能となる為極めて、高い精度の回転補正が可能
となる。
[Effects of the Invention] As explained above, according to the present invention,
The rotational origin reproducibility error when resetting the interferometer and the rotational fluctuation component due to changes over time in the mirror mounting part (if the interferometer is not reset) can be detected by automatic measurement using your own interferometer, rather than by direct exposure using a printing light. Can be easily corrected. Furthermore, since it is possible to remove the yawing component of the guide portion during measurement, it is possible to perform rotation correction with extremely high accuracy.

【0028】以上のことから、極めて重ね合わせ精度の
高い、高生産性および高融通性を有するステッパーの様
な高精度位置決め装置を提供する事が出来る。
From the above, it is possible to provide a high-precision positioning device such as a stepper that has extremely high overlay accuracy, high productivity, and high flexibility.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例に係る露光装置の構成説明図で
ある。
FIG. 1 is an explanatory diagram of the configuration of an exposure apparatus according to an embodiment of the present invention.

【図2】本発明の実施例に係る静圧ウエハステージの説
明図である。
FIG. 2 is an explanatory diagram of a static pressure wafer stage according to an embodiment of the present invention.

【図3】本発明の別の実施例の構成説明図である。FIG. 3 is a configuration explanatory diagram of another embodiment of the present invention.

【図4】本発明の実施例の作用説明図である。FIG. 4 is an explanatory diagram of the operation of the embodiment of the present invention.

【図5】本発明の実施例のフローチャートである。FIG. 5 is a flowchart of an embodiment of the invention.

【符号の説明】[Explanation of symbols]

1,2  レーザー干渉計 3  ミラー 4  XYテーブル(Xステージ、Yステージ)5  
θ回転テーブル(微動ステージ)6  θ回転駆動機構 7  駆動モーター(Xモーター、Yモーター)8  
投影レンズ 9  レチクル 10  制御ボックス 11  ウエハチャック 12  ガイド(Yガイド,Xガイド)14  ウエハ
1, 2 Laser interferometer 3 Mirror 4 XY table (X stage, Y stage) 5
θ rotation table (fine movement stage) 6 θ rotation drive mechanism 7 Drive motor (X motor, Y motor) 8
Projection lens 9 Reticle 10 Control box 11 Wafer chuck 12 Guide (Y guide, X guide) 14 Wafer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  露光転写すべきパターンを有する原板
と、該パターンを投影する被露光体と、該原板と被露光
体を相互に位置合わせする位置決め手段と、前記原板ま
たは被露光体を搭載したXYテーブルと、XY平面に平
行な面内で回転可能な回転テーブルと、前記原板または
被露光体のXY各方向の位置を検出する位置検出手段と
、前記回転テーブルの回転制御手段と、前記位置検出手
段の検出結果に基づき前記回転テーブルのリセット時の
回転方向基準位置の補正を行う演算手段とを具備した装
置に於いて、回転方向基準位置補正時に上記XYステー
ジを一方向に移動させる際、もう一軸側に変動しない様
ステージをロックする事を特徴とした半導体露光装置。
1. An original plate having a pattern to be exposed and transferred, an exposed object onto which the pattern is projected, positioning means for mutually positioning the original plate and the exposed object, and the original plate or the exposed object is mounted. an XY table, a rotary table rotatable in a plane parallel to the XY plane, a position detection means for detecting the position of the original plate or the exposed object in each of the X and Y directions, a rotation control means for the rotary table, and the position In an apparatus equipped with a calculation means for correcting the reference position in the rotational direction at the time of resetting the rotary table based on the detection result of the detection means, when the XY stage is moved in one direction when correcting the reference position in the rotational direction, A semiconductor exposure device characterized by locking the stage so that it does not move toward the other axis.
【請求項2】  XYテーブルをXYの一方向に沿って
移動するときに、移動方向のレーザー干渉計を用いた検
出値により該方向の移動位置制御を行うとともに、該移
動方向と平行にレーザー光を当て積極的にヨーイング制
御を行いガイド及び回転駆動機構の変動分を除去する事
を特徴とした請求項1記載の半導体露光装置。
2. When moving the XY table along one direction of the 2. The semiconductor exposure apparatus according to claim 1, wherein fluctuations in the guide and rotational drive mechanism are removed by actively performing yawing control.
JP3506391A 1991-02-06 1991-02-06 Semiconductor exposure equipment Expired - Fee Related JP2860609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3506391A JP2860609B2 (en) 1991-02-06 1991-02-06 Semiconductor exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3506391A JP2860609B2 (en) 1991-02-06 1991-02-06 Semiconductor exposure equipment

Publications (2)

Publication Number Publication Date
JPH04254317A true JPH04254317A (en) 1992-09-09
JP2860609B2 JP2860609B2 (en) 1999-02-24

Family

ID=12431564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3506391A Expired - Fee Related JP2860609B2 (en) 1991-02-06 1991-02-06 Semiconductor exposure equipment

Country Status (1)

Country Link
JP (1) JP2860609B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2384875A1 (en) * 2009-01-30 2011-11-09 Konica Minolta Opto, Inc. Device of producing wafer lens and method of producing wafer lens
JP2014042048A (en) * 2006-12-18 2014-03-06 Kla-Tencor Corp Substrate processing apparatus and method
JP2014096456A (en) * 2012-11-08 2014-05-22 Canon Inc Stage device and method for adjusting the same, exposure system, and method for manufacturing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014042048A (en) * 2006-12-18 2014-03-06 Kla-Tencor Corp Substrate processing apparatus and method
EP2384875A1 (en) * 2009-01-30 2011-11-09 Konica Minolta Opto, Inc. Device of producing wafer lens and method of producing wafer lens
EP2384875A4 (en) * 2009-01-30 2014-03-12 Konica Minolta Opto Inc Device of producing wafer lens and method of producing wafer lens
JP2014096456A (en) * 2012-11-08 2014-05-22 Canon Inc Stage device and method for adjusting the same, exposure system, and method for manufacturing device

Also Published As

Publication number Publication date
JP2860609B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
US7884918B2 (en) Exposure apparatus and method of manufacturing device
KR0139039B1 (en) Exposure apparatus and device manufacturing method using the same
JP5864929B2 (en) Imprint apparatus and article manufacturing method
JPH09162113A (en) Orthogonality measuring method, stage apparatus and aligner
US4640619A (en) Microlithographic calibration scheme
JP2646412B2 (en) Exposure equipment
JPH0584663B2 (en)
US5850291A (en) Projection exposure apparatus and method for controlling a stage on the basis of a value corrected by ABBE error
JP2002050560A (en) Stage device, measuring apparatus and method, aligner and exposure method
JPH0257333B2 (en)
JPH09223650A (en) Aligner
JP2860609B2 (en) Semiconductor exposure equipment
JP2777931B2 (en) Exposure equipment
JPH1083954A (en) Exposure device
JP2006100590A (en) Proximity aligner
US7782441B2 (en) Alignment method and apparatus of mask pattern
JP3198718B2 (en) Projection exposure apparatus and method for manufacturing semiconductor device using the same
JP3702486B2 (en) Exposure method and reticle used therefor
JPH1187228A (en) Aligner and method of exposure
JPH09330862A (en) Method for adjusting aligner
KR102333943B1 (en) Exposure apparatus, stage calibration system, and stage calibration method
KR0163838B1 (en) Scan type exposure apparatus and exposure method using the same
JP2002367878A (en) Alignment correcting method and aligner
JPS6341021A (en) Reduction stepper
JP2006210803A (en) Step type proximity exposure equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees