JPH0425238B2 - - Google Patents

Info

Publication number
JPH0425238B2
JPH0425238B2 JP60062799A JP6279985A JPH0425238B2 JP H0425238 B2 JPH0425238 B2 JP H0425238B2 JP 60062799 A JP60062799 A JP 60062799A JP 6279985 A JP6279985 A JP 6279985A JP H0425238 B2 JPH0425238 B2 JP H0425238B2
Authority
JP
Japan
Prior art keywords
molecular beam
monomer
group
zns
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60062799A
Other languages
Japanese (ja)
Other versions
JPS61222988A (en
Inventor
Shigeo Kaneda
Meiso Yokoyama
Takao Setoyama
Shuji Sato
Shinichi Motoyama
Norio Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seiki Co Ltd
Original Assignee
Nippon Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seiki Co Ltd filed Critical Nippon Seiki Co Ltd
Priority to JP6279985A priority Critical patent/JPS61222988A/en
Publication of JPS61222988A publication Critical patent/JPS61222988A/en
Publication of JPH0425238B2 publication Critical patent/JPH0425238B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (ア) 産業上の利用分野 本発明は、青色発光材料として最も有望視され
ている―族化合物半導体素子の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a method for manufacturing a - group compound semiconductor element, which is considered to be the most promising blue light emitting material.

(イ) 従来の技術 半導体素子の製造方法として液相成長法、気相
成長法がよく知られている。また近年、分子線エ
ピタキシヤル法の優秀性が認められ、種々の半導
体素子の形成に用いられている。分子線エピタキ
シヤル法に関し、特開昭57−188889号公報、同58
−86731号公報等が公知である。
(a) Prior Art Liquid phase growth and vapor phase growth are well known methods for manufacturing semiconductor devices. Furthermore, in recent years, the superiority of molecular beam epitaxial method has been recognized and it is used for forming various semiconductor devices. Regarding the molecular beam epitaxial method, JP-A-57-188889, JP-A No. 58
-86731 publication etc. are publicly known.

(ウ) 従来技術の問題点 上記の半導体形成方法は主に―族(GaAs
等)―族(SiC等)化合物半導体等に用いら
れ、実用化されているが、これらの方法により
―族化合物半導体(ZnS等)は実用されるに至
つていない。―族化合物の単結晶薄膜を形成
してP型・N型の導伝性制御が可能となれば青色
発光ダイオードや短波長レーザ等のオプトエレク
トロニクス素子の進歩が約束される。
(c) Problems with the conventional technology The above semiconductor formation method is mainly based on - group (GaAs
etc.) - Group (SiC, etc.) compound semiconductors have been used and put into practical use, but - group compound semiconductors (ZnS, etc.) have not been put into practical use by these methods. If it becomes possible to control P-type and N-type conductivity by forming a single-crystalline thin film of - group compounds, progress in optoelectronic devices such as blue light-emitting diodes and short-wavelength lasers is promised.

しかしながら、―族化合物半導体の形成に
おいて、液相成長法、気相成長法はほぼ熱平衝状
態での成長であるために単結晶薄膜を成長させる
成長基板を高温にしなければならず、その結果形
成された薄膜中の空格子の数が多くなるとともに
不純物が混入して多数の格子欠陥が生じてしま
う。多数の格子欠陥や不純物が結晶中に存在する
と自己補償効果等によりP型・N型の導伝性制御
ができず、素子として用いることはできない。
However, in the formation of - group compound semiconductors, the liquid phase growth method and the vapor phase growth method grow in an almost thermal equilibrium state, so the growth substrate on which the single crystal thin film is grown must be heated to a high temperature. As the number of vacancies in the formed thin film increases, impurities are mixed in, resulting in a large number of lattice defects. If a large number of lattice defects or impurities are present in the crystal, P-type/N-type conductivity cannot be controlled due to self-compensation effects, etc., and the crystal cannot be used as an element.

一方、分子線エピタキシヤル法(以下、MBE
と略記する。)は非熱平衡状態における反応であ
るため成長基板温度は高温でなくてよく、上記液
相成長法や気相成長法に比べ、空格子や不純物に
よる格子欠陥をはかるに少なく抑えることができ
る。しかし、結晶中には必ず格子欠陥は含まれる
ものであつて、―族化合物半導体においては
イオン結合性が強いために自己補償が著しく、
MBEにより格子欠陥を極力抑えるようにしても
ドーパントを加えると自己補償効果によつてP
型・N型の導伝性制御が非常に困難である。
On the other hand, molecular beam epitaxial method (hereinafter referred to as MBE)
It is abbreviated as ) is a reaction in a non-thermal equilibrium state, so the growth substrate temperature does not need to be high, and lattice defects due to vacancies and impurities can be suppressed to a much lower level than in the liquid phase growth method or vapor phase growth method. However, lattice defects are always included in crystals, and because - group compound semiconductors have strong ionic bonding, self-compensation is remarkable.
Even if lattice defects are suppressed as much as possible by MBE, adding a dopant will cause P due to the self-compensation effect.
It is extremely difficult to control type and N-type conductivity.

(エ) 発明の目的 本発明は、結晶性の良好な―族化合物の単
結晶薄膜を成長させることを第一の目的とし、も
つてP型・N型の導伝性制御を可能とする―
族化合物半導体素子を形成することを第二の目的
とする。
(d) Purpose of the Invention The primary purpose of the present invention is to grow a single crystal thin film of a - group compound with good crystallinity, thereby making it possible to control P-type and N-type conductivity.
The second purpose is to form a group compound semiconductor device.

(オ) 発明の概要 上記目的を達成するため本発明は、族元素の
固体から成る分子線源を適宜手段により分子線と
して成長基板に供給し、かつ、族元素を含む気
体から成る分子線源を適宜手段により分解された
一量体もしくは一量体と二量体の混合の分子線と
して前記成長基板に供給し、前記両分子線の相対
的強度を適宜変化させて化学量論的組成のエピタ
キシヤル層を形成することを特徴とする。
(E) Summary of the Invention In order to achieve the above object, the present invention provides a method for supplying a molecular beam source made of a solid group element to a growth substrate as a molecular beam by an appropriate means, and a molecular beam source consisting of a gas containing a group element. is supplied to the growth substrate as a molecular beam of a monomer or a mixture of a monomer and a dimer decomposed by an appropriate means, and the relative intensity of both molecular beams is appropriately changed to obtain a stoichiometric composition. It is characterized by forming an epitaxial layer.

(カ) 実施例 第1図は本発明の一実施例を示し、本発明者ら
が行つた実験装置の概略図である。
(F) Example FIG. 1 shows an example of the present invention, and is a schematic diagram of an experimental apparatus conducted by the present inventors.

図中、1が半導体成長装置であつて、チヤンバ
2内に延出するガスセル3、クヌードセンセル
4,5、チヤンバ内に配設された成長基板6、こ
の基板6を保持する基板台7、上記クヌードセン
セル4,5それぞれの分子線放出端近くに配設さ
れたシヤツタ8,9、上記基板6の近くに配設さ
れたシヤツタ10、ガスセル3の分子線源となる
H2Sガスのボンベ11、このボンベ11のバルブ
12、このバルブ12に連結された流量調整弁1
3、この流量調整弁13とガスセル3とを連結す
る可変リーク弁14、チヤンバ2内を所望の気圧
とする排気装置15により構成される。なお、他
の構成部品(例えばRHEEDパターン測定用の装
置や上記以外の排気装置、バルブ、質量分析計
等)は省略してある。
In the figure, reference numeral 1 denotes a semiconductor growth apparatus, in which a gas cell 3 extends into a chamber 2, Knudsen cells 4 and 5, a growth substrate 6 disposed in the chamber, and a substrate stand 7 that holds this substrate 6. , shutters 8 and 9 disposed near the molecular beam emission ends of the Knudsen cells 4 and 5, respectively, and a shutter 10 disposed near the substrate 6, which serves as a molecular beam source for the gas cell 3.
H2S gas cylinder 11, valve 12 of this cylinder 11, flow rate adjustment valve 1 connected to this valve 12
3. It is composed of a variable leak valve 14 that connects the flow rate adjustment valve 13 and the gas cell 3, and an exhaust device 15 that maintains the inside of the chamber 2 at a desired atmospheric pressure. Note that other components (for example, a device for RHEED pattern measurement, exhaust devices other than those mentioned above, valves, mass spectrometers, etc.) are omitted.

第2図は第1図中のガスセル3の要部断面図で
ある。このガスセル3は、石英からなる管形状の
壁16内にヒートワイヤ17を通したものであ
る。18は壁16周囲に配設されたタンタル製熱
シールド板であつて、壁16周囲からの輻射熱に
よる影響を抑えるためのものである。
FIG. 2 is a sectional view of a main part of the gas cell 3 in FIG. 1. This gas cell 3 has a heat wire 17 passed through a tube-shaped wall 16 made of quartz. Reference numeral 18 is a tantalum heat shield plate disposed around the wall 16 to suppress the influence of radiant heat from around the wall 16.

以上の実験装置において、クヌードセンセル4
内に族の分子線源としてZn(亜鉛)、クヌード
センセル5内にドーパントとしてGa(ガリウム)、
ガスセル3の分子線源として族元素S(硫黄)
を含む気体であるH2S(硫化水素)を用いて実験
を行つた。まず、ドーピングをせずに即ちドーパ
ントなしとして―族化合物を成長させ、その
特性を測定した。
In the above experimental apparatus, Knudsen cell 4
Zn (zinc) as a molecular beam source in the inner group, Ga (gallium) as a dopant in the Knudsen cell 5,
Group element S (sulfur) as a molecular beam source for gas cell 3
The experiment was conducted using H 2 S (hydrogen sulfide), a gas containing . First, a - group compound was grown without doping, that is, without a dopant, and its properties were measured.

第3図は基板温度に対する、成長したZnS(硫
化亜鉛)中の、Znの占める割合を示すグラフで
ある。なお、基板6は基板台7中のヒータにより
所望の温度に制御される。
FIG. 3 is a graph showing the ratio of Zn in grown ZnS (zinc sulfide) to the substrate temperature. Note that the temperature of the substrate 6 is controlled to a desired temperature by a heater in the substrate stand 7.

同図からわかるように、基板温度が上昇すると
Sリツチの状態となる。これは、族元素を含む
気体H2Sが、ガスセル3のヒートワイヤ17の加
熱により、 2H2S→2H2+S2 S2→2S1 のように分解されて、S分子線には二量体のみな
らず一量体が含まれていることを示している。こ
のことは、日本真空技術株式会社発行の「真空ハ
ンドブツク」によれば、Zn,S一量体、S二量
体、ΣS、ZnSの蒸気圧曲線は第4図のように表
わされ、基板温度が上昇したときに、S一量体の
みがZnよりも蒸気圧が低いことによつて明らか
である。
As can be seen from the figure, when the substrate temperature rises, the S-rich state occurs. This is because the gas H 2 S containing group elements is decomposed as 2H 2 S → 2H 2 +S 2 S 2 → 2S 1 by heating with the heat wire 17 of the gas cell 3, and the S molecular beam has two molecules. This shows that not only bodies but also monomers are included. According to the "Vacuum Handbook" published by Japan Vacuum Technology Co., Ltd., the vapor pressure curves of Zn, S monomer, S dimer, ΣS, and ZnS are expressed as shown in Figure 4, and the substrate It is evident that only the S monomer has a lower vapor pressure than Zn as the temperature increases.

次に、Sの分子線中に含まれる一量体と二量体
との大小関係を調べるため、H2Sガスの導入圧に
対して成長したZnS中のS一量体の占める割合を
示したのが第5図である。同図によれば、H2Sガ
ス導入圧が上昇するにつれて化学量論的組成(成
長したZnSのZnとSとの構成比が1:1)に近づ
いている。
Next, in order to investigate the size relationship between the monomer and dimer contained in the S molecular beam, we show the proportion of S monomer in ZnS grown with respect to the introduction pressure of H 2 S gas. Figure 5 shows this. According to the figure, as the H 2 S gas introduction pressure increases, the composition approaches the stoichiometric composition (the composition ratio of Zn and S in the grown ZnS is 1:1).

第6図にH2Sガス導入圧に対するS一量体(同
図中のS1)のモル分率を、ガスセル3内のヒート
ワイヤによる分解温度(図中のTcr)を1200〓,
1300〓,1400〓,1500〓、の四温度について、第
7図にH2Sのガス導入圧に対するS二量体(図中
のS2)のモル分率を、上記と同じ四温度につい
て、それぞれ示す。両図から、H2Sガス導入圧が
上昇するにつれて、S一量体のモル分率は減少
し、S二量体は増加していることがわかる。第5
図に示したグラフの実験は分解温度920℃(=
1193〓)で行つており、第6図、第7図中の分解
温度1200〓の曲線とほぼ同一と考えられるから、
第5図のグラフの実験においてはS一量体よりも
S二量体の方が多く分子線中に存在していると考
えてよい。これは、H2Sガス導入圧が低いときに
は、(第4図から明らかなように付着係数がほぼ
1である)S一量体が多く発生しているためにS
リツチとなつているものが、H2Sガス導入圧を高
くしたことによつてS一量体が少なくなりS二量
体が増えたために、ZnとS二量体との相補性に
よつて化学量論的組成に近づくものと考えられる
からである。
Figure 6 shows the molar fraction of S monomer (S 1 in the figure) with respect to the H 2 S gas introduction pressure, the decomposition temperature (Tcr in the figure) by the heat wire in the gas cell 3, 1200〓,
For the four temperatures of 1300〓, 1400〓, 1500〓, Fig. 7 shows the mole fraction of S dimer (S 2 in the figure) against the gas introduction pressure of H 2 S, for the same four temperatures as above. Each is shown below. From both figures, it can be seen that as the H 2 S gas introduction pressure increases, the mole fraction of S monomer decreases and the mole fraction of S dimer increases. Fifth
In the experiment shown in the graph shown in the figure, the decomposition temperature was 920℃ (=
1193〓), which is considered to be almost the same as the curve for the decomposition temperature 1200〓 in Figures 6 and 7.
In the experiment shown in the graph of FIG. 5, it can be considered that more S dimers exist in the molecular beam than S monomers. This is because when the H 2 S gas introduction pressure is low, a large amount of S monomer is generated (as is clear from Figure 4, the adhesion coefficient is approximately 1).
However, due to the increase in the H 2 S gas introduction pressure, S monomers decreased and S dimers increased, and due to the complementarity between Zn and S dimers. This is because it is considered that the composition approaches the stoichiometric composition.

以上のことから、H2Sガスの熱分解により生じ
た分子線を構成する族分子は、Sの一量体と二
量体の混合であつて、二量体の方が多く含まれて
いることがわかる。
From the above, the group molecules that make up the molecular beam produced by thermal decomposition of H 2 S gas are a mixture of S monomers and dimers, with the dimer being more abundant. I understand that.

第8図はZnの分子線強度の変化に対するZnS中
のZnの占める割合を示すものである。この第8
図のように、Sリツチの状態からZn分子線強度
が増大するにつれて化学量論的組成に近づき、化
学量論的組成となつて後、Zn分子線強度のある
領域内では化学量論的組成の状態を保持し、その
後Znリツチの状態となることが、MBEにより成
長する他の化合物半導体と同様に明らかである。
FIG. 8 shows the ratio of Zn in ZnS to changes in Zn molecular beam intensity. This eighth
As shown in the figure, as the Zn molecular beam intensity increases from the S-rich state, the composition approaches the stoichiometric composition. It is clear that the Zn-rich state is maintained and then becomes a Zn-rich state, similar to other compound semiconductors grown by MBE.

第9図はH2Sガス導入圧3×10-5[Torr]、基
板温度360℃、H2Sガスの分解温度920℃として、
Zn分子線強度に対する成長したZnS中のZnの占
める割合を実験データから求めたグラフを示して
いる。このグラフから、Znの分子線強度を増大
し、9×1015[Mole/cm2・s]付近となつたとき
に化学量的組成となつていることがわかる。上記
H2Sガス導入圧、及び分解温度からS分子線強度
はおよそ7×1014[Mole/cm2・s]であるからZn
とSとの分子線強度比がおよそ13:1付近でSリ
ツチの状態から化学量的組成へ移つている。この
分子線強度比13:1程度というのは成長基板温度
等の要因によつて変化するが、Znの分子線の方
がSの分子線よりも強いのはそれらの要因によら
ない。これはSの分子線中にS一量体が含まれて
いることによる。
In Figure 9, the H 2 S gas introduction pressure is 3×10 -5 [Torr], the substrate temperature is 360°C, and the H 2 S gas decomposition temperature is 920°C.
This graph shows the ratio of Zn in grown ZnS to Zn molecular beam intensity determined from experimental data. From this graph, it can be seen that a stoichiometric composition is achieved when the molecular beam intensity of Zn is increased to around 9×10 15 [Mole/cm 2 ·s]. the above
Since the S molecular beam intensity is approximately 7×10 14 [Mole/cm 2・s] based on the H 2 S gas introduction pressure and decomposition temperature, Zn
When the molecular beam intensity ratio between S and S is around 13:1, the state shifts from an S-rich state to a stoichiometric composition. This molecular beam intensity ratio of about 13:1 varies depending on factors such as the temperature of the growth substrate, but the fact that the Zn molecular beam is stronger than the S molecular beam is not dependent on these factors. This is due to the S monomer being included in the S molecular beam.

第10図はZn分子線強度9×1015[Mole/cm2
s]のときの成長したZnS表面のRHEEDパター
ンであつて、良好な表面(単結晶薄膜)が成長し
ていることがわかる。
Figure 10 shows the Zn molecular beam intensity 9×10 15 [Mole/cm 2
This is the RHEED pattern of the ZnS surface grown at the time of s], and it can be seen that a good surface (single crystal thin film) has grown.

第8図において、Sリツチ領域をA,Znリツ
チ領域をB,化学量的組成の領域のうち、Sリツ
チ領域に近に部分をC,Znリツチに近い部分を
Dとした。これらの領域のうち、結晶性の良好な
領域はC,Dであるから、C,D部分にドーピン
グしてN型及びP型の導伝性制御を行い、半導体
素子を形成すればよい。C部分では化学量論的組
成であるが、厳密にはSリツチの傾向があり、D
部分では逆にZnリツチの傾向がある。従つて、
C部分においてZn格子位置を置換するドーパン
ト(ドナー)を添加し、D部分においてS格子位
置を置換するドーパント(アクセプタ)を添加す
れば、ドーパントが成長過程のZnS中に入り易
い。このとき、ドーピングすることで自己補償効
果が起つてZnの空格子が生じても、上述のよう
にZnの分子線強度がSの分子線強度よりも大き
いため、この空格子をつぶすことができ、また、
Sの空格子が生じてもS一量体の基板滞在時間が
長いため、この空格子をつぶすことができる。
In FIG. 8, the S-rich region is designated as A, the Zn-rich region as B, the portion of the stoichiometric composition region near the S-rich region as C, and the portion as close to the Zn-rich region as D. Among these regions, the regions C and D have good crystallinity, so the C and D regions may be doped to control N-type and P-type conductivity to form a semiconductor element. The C part has a stoichiometric composition, but strictly speaking it tends to be S-rich, and the D
On the contrary, there is a tendency towards Zn richness in some parts. Therefore,
By adding a dopant (donor) to substitute the Zn lattice position in the C part and a dopant (acceptor) to substitute the S lattice position in the D part, the dopant can easily enter the ZnS during the growth process. At this time, even if a self-compensation effect occurs due to doping and a vacancy is created in Zn, this vacancy cannot be collapsed because the molecular beam intensity of Zn is larger than that of S as described above. ,Also,
Even if an S vacancy occurs, the S monomer stays in the substrate for a long time, so this vacancy can be collapsed.

第11図はC部分においてGaをドーピングし
た半導体素子のフオトルミネツセンス特性のグラ
フを示すものである。この第11図のグラフか
ら、自己付活性発光の小さい、即ち格子欠陥の少
ない―族化合物半導体素子の一つであるN型
ZnSが形成されることがわかる。これと同様に、
第8図のD部分においてS格子位置を置換するド
ーパント、例えばPをドーピングすれば、P型の
ZnSが形成されることは言うまでもない。
FIG. 11 is a graph showing the photoluminescence characteristics of a semiconductor device doped with Ga in the C portion. From the graph in FIG. 11, it is clear that
It can be seen that ZnS is formed. Similarly,
If a dopant, such as P, is doped to replace the S lattice position in the D part of FIG. 8, the P-type
Needless to say, ZnS is formed.

なお、本実施例では―族化合物半導体素子
として、ZnSを形成したものを示したが、ZnSe
(セレン化亜鉛)等、他の―族化合物半導体
素子でも同様である。
In this example, ZnS was formed as the - group compound semiconductor element, but ZnSe
The same applies to other - group compound semiconductor devices such as (zinc selenide).

また、本実施例では族分子線をガスセルにて
供給するものを示したが、これは族元素の蒸気
圧が高く、クヌードセンセルでは分子線強度の制
御が難しいことからガスセルとしたものであり、
ガスセル以外でも、族元素を含む気体から成る
分子線源を分解された一量体もしくは一量体と二
量体の混合の分子線として供給し得るものであれ
ばよい。この際、族元素の一量体もしくは一量
体と二量体の混合とは、族元素の多量体を完全
に含まない場合はもちろん、半導体形成において
問題とならない程度のわずかな量を含んでいる場
合をも含む。
In addition, in this example, the group molecular beam was supplied using a gas cell, but the gas cell was used because the vapor pressure of group elements is high and it is difficult to control the molecular beam intensity using a Knudsen cell. can be,
Any device other than the gas cell may be used as long as it can supply a molecular beam source made of a gas containing group elements as a molecular beam of a decomposed monomer or a mixture of a monomer and a dimer. In this case, a monomer of a group element or a mixture of a monomer and a dimer includes not only a case where a multimer of a group element is not completely contained but also a small amount that does not cause a problem in semiconductor formation. Including cases where there are.

さらに、族の分子線、ドーパントの分子線の
供給は実施例に示したクヌードセンセル以外の方
法によつてもよいことは言うまでもない。
Furthermore, it goes without saying that the molecular beam of the group and the molecular beam of the dopant may be supplied by a method other than the Knudsen cell shown in the Examples.

(キ) 発明の効果 以上述べた本発明によれば、格子欠陥の少な
い、高品質でP・N型の導伝性制御を可能とした
―族化合物半導体を形成することができる。
(G) Effects of the Invention According to the present invention described above, it is possible to form a - group compound semiconductor with few lattice defects, high quality, and capable of controlling P/N type conductivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す装置の概略
図、第2図は第1図中のガスセルの要部断面図、
第3図は成長したZnS中のZnの占める割合を示す
グラフ、第4図はZn,S,ZnSの蒸気圧曲線、第
5図はH2Sガス導入圧に対する、ZnS中のSの占
める割合を示すグラフ、第6図はH2Sガス導入圧
に対する、S分子線中のS一量体のモル分率を示
すグラフ、第7図はH2Sガス導入圧に対するS分
子線中のS二量体のモル分率を示すグラフ、第8
図はZn分子線強度に対する成長したZnS中のZn
の占める割合を示す一般理論値のグラフで第9図
はその実験値のグラフ、第10図は成長したZnS
単結晶薄膜表面のRHEEDパターンを示す写真、
第11図はZnS単結晶薄膜にGaをドーピングし
たときのフオトルミネツセンス特性を示すグラフ
である。 1…半導体成長装置、2…チヤンバ、3…ガス
セル、4,5…クヌードセンセル、6…成長基
板、7…基板台、8,9,10…シヤツタ、17
…ヒートワイヤ。
FIG. 1 is a schematic diagram of an apparatus showing an embodiment of the present invention, FIG. 2 is a sectional view of a main part of the gas cell in FIG. 1,
Figure 3 is a graph showing the ratio of Zn in grown ZnS, Figure 4 is the vapor pressure curve of Zn, S, and ZnS, and Figure 5 is the ratio of S in ZnS to the H 2 S gas introduction pressure. Figure 6 is a graph showing the mole fraction of S monomer in the S molecular line versus the H 2 S gas introduction pressure, and Figure 7 is a graph showing the S monomer mole fraction in the S molecular line versus the H 2 S gas introduction pressure. Graph showing mole fraction of dimer, No. 8
The figure shows Zn in grown ZnS versus Zn molecular beam intensity.
Figure 9 is a graph of the experimental value, and Figure 10 is a graph of the general theoretical value showing the proportion of ZnS.
Photograph showing the RHEED pattern on the surface of a single crystal thin film,
FIG. 11 is a graph showing the photoluminescence characteristics when a ZnS single crystal thin film is doped with Ga. DESCRIPTION OF SYMBOLS 1... Semiconductor growth apparatus, 2... Chamber, 3... Gas cell, 4, 5... Knudsen cell, 6... Growth substrate, 7... Substrate stand, 8, 9, 10... Shutter, 17
...heat wire.

Claims (1)

【特許請求の範囲】[Claims] 1 分子線エピタキシヤル法により形成される
―族化合物半導体素子の製造方法であつて、
族元素の固体から成る分子線源を適宜手段により
分子線として成長基板に供給し、かつ、族元素
を含む気体から成る分子線源を適宜手段により分
解された一量体もしくは一量体と二量体の混合の
分子線として前記成長基板に供給し、前記両分子
線の相対的強度を適宜変化させて化学量論的組成
のエピタキシヤル層を形成することを特徴とする
―族化合物半導体素子の製造方法。
1. A method for manufacturing a - group compound semiconductor device formed by a molecular beam epitaxial method, comprising:
A molecular beam source consisting of a solid group element is supplied as a molecular beam to a growth substrate by an appropriate means, and a molecular beam source consisting of a gas containing a group element is mixed with a decomposed monomer or a monomer by an appropriate means. - group compound semiconductor device, characterized in that a molecular beam of a mixture of molecules is supplied to the growth substrate, and the relative intensity of both the molecular beams is appropriately changed to form an epitaxial layer having a stoichiometric composition. manufacturing method.
JP6279985A 1985-03-27 1985-03-27 Production of ii-vi compound semiconductor element Granted JPS61222988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6279985A JPS61222988A (en) 1985-03-27 1985-03-27 Production of ii-vi compound semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6279985A JPS61222988A (en) 1985-03-27 1985-03-27 Production of ii-vi compound semiconductor element

Publications (2)

Publication Number Publication Date
JPS61222988A JPS61222988A (en) 1986-10-03
JPH0425238B2 true JPH0425238B2 (en) 1992-04-30

Family

ID=13210753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6279985A Granted JPS61222988A (en) 1985-03-27 1985-03-27 Production of ii-vi compound semiconductor element

Country Status (1)

Country Link
JP (1) JPS61222988A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157416A (en) * 1987-12-15 1989-06-20 Matsushita Electric Ind Co Ltd Production of zinc sulfide thin film
JPH0251240A (en) * 1988-08-12 1990-02-21 Sanyo Electric Co Ltd Manufacture of p-type znse

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528374A (en) * 1978-08-23 1980-02-28 Yasuji Kumagai Forming method for compound film and manufacturing apparatus therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528374A (en) * 1978-08-23 1980-02-28 Yasuji Kumagai Forming method for compound film and manufacturing apparatus therefor

Also Published As

Publication number Publication date
JPS61222988A (en) 1986-10-03

Similar Documents

Publication Publication Date Title
US5637531A (en) Method of making a crystalline multilayer structure at two pressures the second one lower than first
JP3788104B2 (en) Gallium nitride single crystal substrate and manufacturing method thereof
US4619718A (en) Method of manufacturing a Group II-VI semiconductor device having a PN junction
JP2010132556A (en) n-TYPE GALLIUM NITRIDE SINGLE CRYSTAL SUBSTRATE
JPH0350834B2 (en)
US4465527A (en) Method for producing a group IIB-VIB compound semiconductor crystal
US3984263A (en) Method of producing defectless epitaxial layer of gallium
JP2000332296A (en) P-type ii-vi compound semiconductor crystal, its growing method, and semiconductor device using the same
JPS6230693B2 (en)
Sugou et al. Conditions for OMVPE growth of GaInAsP/InP crystal
JPH0425238B2 (en)
US4983249A (en) Method for producing semiconductive single crystal
JPS60111482A (en) Method of producing light emitting diode
Hartmann Vapour phase epitaxy of II–VI compounds: A review
JPH0253097B2 (en)
US5423284A (en) Method for growing crystals of N-type II-VI compound semiconductors
JPS58156598A (en) Method for crystal growth
Yamaga et al. Growth of polycrystalline CdS films by low-pressure metalorganic chemical vapor deposition
JPH08335555A (en) Fabrication of epitaxial wafer
JPH0463040B2 (en)
JP2519232B2 (en) Method for producing compound semiconductor crystal layer
JPH0754805B2 (en) Vapor growth method of compound semiconductor
JPS6118184A (en) Light-emitting element
Yao et al. Molecular beam epitaxy of ZnSe and ZnTe thin-film single crystals
JPS63319296A (en) Production of semiconductor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term