JPH04251958A - Integrated circuit device - Google Patents

Integrated circuit device

Info

Publication number
JPH04251958A
JPH04251958A JP127791A JP127791A JPH04251958A JP H04251958 A JPH04251958 A JP H04251958A JP 127791 A JP127791 A JP 127791A JP 127791 A JP127791 A JP 127791A JP H04251958 A JPH04251958 A JP H04251958A
Authority
JP
Japan
Prior art keywords
semiconductor
region
substrate
polycrystalline silicon
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP127791A
Other languages
Japanese (ja)
Other versions
JP2827191B2 (en
Inventor
Atsuo Hirabayashi
温夫 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP127791A priority Critical patent/JP2827191B2/en
Publication of JPH04251958A publication Critical patent/JPH04251958A/en
Application granted granted Critical
Publication of JP2827191B2 publication Critical patent/JP2827191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve overload capacity with heat dissipation to the main body of a semiconductor base body by connecting a polycrystalline silicon region to the front side semiconductor region of a dielectric-isolated semiconductor base body from its rear side. CONSTITUTION:A substrate 1 is bonded to a substrate 2 via a dielectric film 3 and dielectric-isolated into a plurality of semiconductor regions 20 by dielectric films 5 and polycrystalline silicon 6: these dielectric-isolated semiconductor regions 21-23 have built-in transistors 51-53, respectively. Particularly, a polycrystalline silicon region 30 is built from the rear side of a semiconductor base body 10 into a semiconductor region 2 with a built-in bipolar transistor 51. The substrate 2 that is the main body of the semiconductor base body 10 is p-type reverse to n-type of the substrate 1. The polycrystalline silicon region 30 is the same as the semiconductor region 21, but built in n-type reverse to the substrate 2. This process can solve a contradiction between the prevention of interference of circuit components of an integrated circuit due to dielectric isolation and deterioration in heat dissipation of semiconductor regions.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は誘電体分離されたウエハ
ないしチップに組み込まれるBiMOS形等の集積回路
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated circuit device such as a BiMOS type integrated circuit device incorporated in a dielectrically separated wafer or chip.

【0002】0002

【従来の技術】周知のように集積回路装置では、その構
成回路部分の相互間に半導体の内部を介して動作の干渉
が起きるおそれがあるので、半導体内を互いに独立な動
作電位を賦与できる半導体領域に分離して、それぞれに
トランジスタやダイオード等の回路要素ないし回路要素
群からなる回路部分を振り分けて作り込んだ上で、回路
部分間を配線膜により相互接続する。このため半導体内
を複数個の半導体領域に分離する手段としてはふつう接
合分離法が一般的であるが、pn接合に頼っているため
分離が必ずしも完全でなく、かつ半導体領域相互間に余
分なトランジスタやダイオードが寄生しているため動作
時にラッチアップ等の思いがけないトラブルや誤動作が
発生することがある。
2. Description of the Related Art As is well known, in an integrated circuit device, there is a possibility that operation interference may occur between the component circuit parts of the integrated circuit device through the inside of the semiconductor. The circuit is divided into regions, and circuit parts each consisting of a circuit element or a group of circuit elements such as a transistor or a diode are distributed and created in each region, and then the circuit parts are interconnected by a wiring film. For this reason, junction isolation is commonly used as a means of separating semiconductor regions into multiple semiconductor regions, but since it relies on pn junctions, isolation is not always perfect, and extra transistors are required between semiconductor regions. Due to the presence of parasitic diodes and diodes, unexpected problems such as latch-up or malfunction may occur during operation.

【0003】この点を解決するため本発明が対象とする
集積回路装置では、それ用のチップないしウエハである
半導体基体が複数個の半導体領域に誘電体分離される。 この誘電体分離構造にも、よく知られているように多結
晶シリコンで本体を構成する構造と1対の半導体基板を
接合した構造とがあるが、ここでは後者の基板接合形の
半導体基体とそれに組み込まれた集積回路装置の従来構
造を図3と図4を参照して以下に簡単に説明する。
In order to solve this problem, in an integrated circuit device to which the present invention is directed, a semiconductor substrate, which is a chip or a wafer for the device, is dielectrically separated into a plurality of semiconductor regions. As is well known, this dielectric separation structure includes a structure in which the main body is made of polycrystalline silicon and a structure in which a pair of semiconductor substrates are bonded together. The conventional structure of the integrated circuit device incorporated therein will be briefly described below with reference to FIGS. 3 and 4.

【0004】図3(a) は1対の半導体基板1と2を
相互に接合した状態を示し、その一方の基板1に例えば
n形のものを用いその表面をスチーム酸化法による酸化
シリコン等の誘電体膜3で覆った後に、基板2の鏡面仕
上げした表面に吸着させた状態で高温下の熱処理により
両基板1と2を誘電体膜3を介して相互に強固に接合し
て半導体基体10とする。次の図3(b) では基板1
をその表面から研削して集積回路を作り込むに適するふ
つうは数十μmの厚みに仕上げる。
FIG. 3(a) shows a state in which a pair of semiconductor substrates 1 and 2 are bonded to each other. One of the substrates 1 is made of, for example, an n-type substrate, and its surface is coated with silicon oxide or the like using a steam oxidation method. After covering with the dielectric film 3, both substrates 1 and 2 are firmly bonded to each other via the dielectric film 3 by heat treatment at high temperature while adsorbed onto the mirror-finished surface of the substrate 2, thereby forming the semiconductor substrate 10. shall be. In the next figure 3(b), the board 1
The surface is ground to a thickness of several tens of micrometers, which is suitable for fabricating integrated circuits.

【0005】図3(c) 以降が基板1を複数個の半導
体領域に誘電体分離する工程であって、同図(c) で
基板1の表面から溝4をプラズマエッチング法等により
誘電体膜3に達するまで切ることにより基板1を半導体
領域21〜23に分割し、同図(d) でその溝4を含
めた表面をスチーム酸化法等により誘電体膜5で覆い、
かつ熱CVD法等により溝4を埋めるように多結晶シリ
コン6を成長させた後、最後に同図(e)で研削等によ
って溝4内を除く多結晶シリコン6と誘電体膜5を除去
して半導体領域21〜23を露出させることにより半導
体基体10の完成状態とする。
The process from FIG. 3(c) onwards is a step of dielectrically separating the substrate 1 into a plurality of semiconductor regions, and in FIG. The substrate 1 is divided into semiconductor regions 21 to 23 by cutting the semiconductor regions 21 to 23 until the grooves 4 are cut, and as shown in FIG.
Then, polycrystalline silicon 6 is grown to fill the trenches 4 by a thermal CVD method, etc., and finally, as shown in FIG. By exposing the semiconductor regions 21 to 23, the semiconductor substrate 10 is completed.

【0006】この図3(e) の完成状態では、基板2
をその本体とする半導体基体10は図示のようにその基
板1が複数個の半導体領域21〜23に分割され、これ
ら半導体領域はそれらを周囲から囲む誘電体膜5と相互
間を埋める多結晶シリコン6とによって相互に誘電体分
離され、かつ基板2からも誘電体膜3によって誘電体分
離されているので、各半導体領域21〜23内に作り込
む集積回路の回路部分を互いに完全に独立した電位下で
動作させることができる。
In the completed state shown in FIG. 3(e), the substrate 2
As shown in the figure, the semiconductor substrate 10 has a semiconductor substrate 10 which is divided into a plurality of semiconductor regions 21 to 23, and these semiconductor regions have a dielectric film 5 surrounding them and a polycrystalline silicon film 5 filling the gaps between them. 6 and dielectrically separated from the substrate 2 by the dielectric film 3. Therefore, the circuit portions of the integrated circuit formed in each of the semiconductor regions 21 to 23 can be placed at completely independent potentials from each other. It can be operated under

【0007】図4はこの半導体基体10に集積回路を組
み込んだ状態をごく簡略に示し、この例では集積回路は
BiCMOS形であり、半導体領域21内にバイポーラ
トランジスタ51が,半導体領域22と23内にMOS
トランジスタ52と53がそれぞれ図のように作り込ま
れている。バイポーラトランジスタ51は半導体領域2
1をn形コレクタ領域とする pnp形でp形のベース
層51aおよびn形のエミッタ層51bとコレクタ接続
層51cを備え、MOSトランジスタ52はnチャネル
形で半導体領域22に拡散されたp形のウエル52aと
ゲート52bと1対のn形のソース・ドレイン層52c
とp形のサブストレート接続層52dを備え、MOSト
ランジスタ53は半導体領域23をn形ウエルとするp
チャネル形でゲート53aと1対のp形のソース・ドレ
イン層53bとn形のサブストレート接続層53cを備
え、図で簡略に示されたそれらの端子が図示しない配線
膜を介して集積回路を形成するように接続される。
FIG. 4 very simply shows a state in which an integrated circuit is incorporated into this semiconductor substrate 10. In this example, the integrated circuit is a BiCMOS type, and a bipolar transistor 51 is installed in the semiconductor region 21, and a bipolar transistor 51 is installed in the semiconductor regions 22 and 23. to MOS
Transistors 52 and 53 are built in as shown in the figure. Bipolar transistor 51 is located in semiconductor region 2
The MOS transistor 52 is of the n-channel type and has a p-type base layer 51a, an n-type emitter layer 51b, and a collector connection layer 51c, with 1 being an n-type collector region. A well 52a, a gate 52b, and a pair of n-type source/drain layers 52c
and a p-type substrate connection layer 52d, and the MOS transistor 53 has a p-type substrate connection layer 52d in which the semiconductor region 23 is an n-type well.
It has a channel type gate 53a, a pair of p-type source/drain layers 53b, and an n-type substrate connection layer 53c, and these terminals, which are simply shown in the figure, connect to the integrated circuit via a wiring film (not shown). connected to form a

【0008】このように誘電体分離された半導体基体1
0を利用する集積回路装置は、半導体領域21〜23に
振り分けて作り込まれるその回路部分51〜53の動作
時に相互干渉が発生するおそれが少なく、かつ半導体領
域間に寄生トランジスタやダイオードが存在しないので
動作が非常に確実でかつ安定しており、とくに高い動作
信頼性が要求される回路や高周波信号を取り扱う回路等
に使用される。
The semiconductor substrate 1 thus dielectrically separated
In an integrated circuit device using 0, there is little possibility that mutual interference will occur during the operation of the circuit parts 51 to 53, which are divided into the semiconductor regions 21 to 23, and there are no parasitic transistors or diodes between the semiconductor regions. Therefore, the operation is very reliable and stable, and it is used especially in circuits that require high operational reliability and circuits that handle high-frequency signals.

【0009】[0009]

【発明が解決しようとする課題】上述のように誘電体分
離された半導体基体を利用する従来の集積回路装置は、
その動作が確実で安定な利点を有する反面、誘電体膜で
取り囲まれた半導体領域の内部で発生した熱の放散が不
充分になりやすく、大電力を扱う回路部分が作り込まれ
た半導体領域でとくに温度の異常上昇が起こりやすい問
題がある。
[Problems to be Solved by the Invention] Conventional integrated circuit devices that utilize dielectrically isolated semiconductor substrates as described above are
Although it has the advantage of reliable and stable operation, the heat generated inside the semiconductor region surrounded by a dielectric film tends to be insufficiently dissipated, and it is difficult to dissipate heat generated inside the semiconductor region surrounded by a dielectric film. In particular, there is the problem that abnormal temperature rises are likely to occur.

【0010】例えば図4の例では、MOSトランジスタ
52や53によりディジタル信号を処理した結果に基づ
いて外部負荷をバイポーラトランジスタ51により駆動
するので、電力の取扱量はバイポーラトランジスタ51
が最大で、従ってそれが作り込まれた半導体領域21の
内部発熱が大で最も温度が異常上昇しやすい。
For example, in the example shown in FIG. 4, since the external load is driven by the bipolar transistor 51 based on the result of processing digital signals by the MOS transistors 52 and 53, the amount of power handled is less than that of the bipolar transistor 51.
is the largest, and therefore the internal heat generation of the semiconductor region 21 in which it is formed is large, and the temperature is most likely to rise abnormally.

【0011】この内部発熱の放散が不充分なのは各半導
体領域がその下面と周囲をそれぞれ誘電体膜3と5によ
り完全に囲まれているほか、その上面も図4では省略さ
れているが酸化シリコン等の絶縁膜によってほぼ覆われ
ていて、それらの膜厚が例え薄くても熱伝導率がシリコ
ンに比べるとずっと低いためであり、とくに短時間内に
大きな負荷が掛かった時に誘電体膜3や5が放熱上のバ
リアになって内部発熱がそのまま半導体領域の温度上昇
になるので、その中に作り込まれた回路部分の過負荷耐
量が低下することになる。
The dissipation of this internal heat generation is insufficient because each semiconductor region is completely surrounded by dielectric films 3 and 5 on its lower surface and periphery, respectively, and its upper surface is also covered with silicon oxide, although this is not shown in FIG. This is because the thermal conductivity of these films is much lower than that of silicon even if they are thin, and especially when a large load is applied in a short period of time, the dielectric film 3 or 5 acts as a barrier for heat dissipation, and internal heat generation directly increases the temperature of the semiconductor region, resulting in a reduction in the overload resistance of the circuit built therein.

【0012】本発明の目的は、かかる誘電体分離による
集積回路の回路部分間の干渉防止と半導体領域の放熱悪
化との間の矛盾を解決して半導体基体内の誘電体分離さ
れた半導体基体の半導体領域の放熱を改良することにあ
る。
An object of the present invention is to solve the contradiction between preventing interference between circuit parts of an integrated circuit by dielectric separation and deteriorating heat dissipation in the semiconductor region, and to improve the dielectric separation of the semiconductor substrate within the semiconductor substrate. The purpose is to improve heat dissipation in semiconductor regions.

【0013】[0013]

【課題を解決するための手段】本発明によれば、半導体
基体の表面側の互いに誘電体分離された半導体領域に集
積回路を構成する回路部分をそれぞれ組み込み、この表
面側の所定半導体領域に対し半導体基体内部で接続する
多結晶シリコン領域を半導体基体の裏面側から作り込み
、この多結晶シリコン領域に接続する前記所定半導体領
域用の裏面電極を半導体基体の裏面側に設けることによ
り上述の目的が達成される。
[Means for Solving the Problems] According to the present invention, circuit parts constituting an integrated circuit are incorporated into semiconductor regions dielectrically separated from each other on the front side of a semiconductor substrate, and a predetermined semiconductor region on the front side The above object is achieved by forming a polycrystalline silicon region to be connected inside the semiconductor substrate from the back side of the semiconductor substrate, and providing a back electrode for the predetermined semiconductor region connected to this polycrystalline silicon region on the back side of the semiconductor substrate. achieved.

【0014】なお、上記の多結晶シリコン領域はそれが
接続される半導体領域と同導電形とするのがよく、かつ
その不純物濃度を高めて接続抵抗を低めるのが有利であ
る。また、半導体基体が1対の基板を接合する基板接合
形の場合、半導体基体の本体をなす基板の導電形を半導
体領域に誘電体分離する基板と逆導電形とし、多結晶シ
リコン領域の導電形を本体用基板と逆導電形とするのが
有利である。
[0014] The polycrystalline silicon region is preferably of the same conductivity type as the semiconductor region to which it is connected, and it is advantageous to increase its impurity concentration to lower the connection resistance. In addition, if the semiconductor substrate is a substrate bonding type in which a pair of substrates are bonded, the conductivity type of the substrate forming the main body of the semiconductor substrate is opposite to that of the substrate dielectrically separated into the semiconductor region, and the conductivity type of the polycrystalline silicon region is It is advantageous that the conductivity type is opposite to that of the main body substrate.

【0015】本発明の実際適用面では、バイポーラトラ
ンジスタが組み込まれる半導体領域に接続する多結晶シ
リコン領域を設けて、それに対応する裏面電極をバイポ
ーラトランジスタのコレクタ電極とするのが有利である
In the practical application of the invention, it is advantageous to provide a polycrystalline silicon region which is connected to the semiconductor region in which the bipolar transistor is integrated, the corresponding back electrode being the collector electrode of the bipolar transistor.

【0016】[0016]

【作用】本発明は前項の構成中にいう多結晶シリコン領
域を所定の半導体領域に対して半導体基体の裏面側から
それに接続するように設けることによって、その半導体
領域の内部発熱を多結晶シリコン領域を介して半導体基
体の本体側に放熱させ、半導体領域より熱容量がずっと
大きいこの本体部分をいわば熱吸収体に利用して半導体
領域を冷却するとともに、半導体基体のいわば遊んでい
る裏面側を利用して多結晶シリコン領域に接続された裏
面電極を半導体領域用の端子として設けることより、半
導体領域の表面側にこの端子を導出する必要をなくして
その分だけ面積を節約できるようにしたものである。従
って、本発明では半導体領域の放熱が向上し、かつ集積
回路を作り込むに要するチップ面積を節約できる。
[Operation] By providing the polycrystalline silicon region referred to in the above-mentioned structure to be connected to a predetermined semiconductor region from the back side of the semiconductor substrate, the internal heat generation of the semiconductor region is absorbed by the polycrystalline silicon region. The heat is radiated to the main body side of the semiconductor substrate through the semiconductor substrate, and this main body portion, which has a much larger heat capacity than the semiconductor region, is used as a heat absorber to cool the semiconductor region, and the back side of the semiconductor substrate, which is idle, is used. By providing a backside electrode connected to the polycrystalline silicon region as a terminal for the semiconductor region, there is no need to lead out this terminal to the front side of the semiconductor region, and the area can be saved accordingly. . Therefore, according to the present invention, heat dissipation in the semiconductor region is improved, and the chip area required for fabricating an integrated circuit can be saved.

【0017】[0017]

【実施例】以下、図1と図2を参照しながら本発明の実
施例を説明する。図1は本発明による集積回路装置の従
来の図4に対応する断面図、図2はその製造方法を従来
の図3と同様な要領で示す半導体基体の断面図で、対応
部分に同じ符号が付されているので以下の説明中の重複
部分は省略することとする。なお、以下の実施例では半
導体基体を基板接合形とするが、本発明は本体が多結晶
シリコンにより構成される誘電体分離形半導体基体を利
用する場合にも適用できる。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view of an integrated circuit device according to the present invention, which corresponds to the conventional FIG. Therefore, duplicate parts in the following explanation will be omitted. In the following embodiments, the semiconductor substrate is of a substrate-bonded type, but the present invention can also be applied to the case of using a dielectric-separated type semiconductor substrate whose main body is made of polycrystalline silicon.

【0018】本発明の図1の実施例においても、基板1
が誘電体膜3を介して基板2と接合され、誘電体膜5と
多結晶シリコン6により複数個の半導体領域20に誘電
体分離され、この誘電体分離された半導体領域21〜2
3にトランジスタ51〜53がそれぞれ作り込まれてい
る点は従来の図4と全く同じであるが、これらの内のバ
イポーラトランジスタ51が作り込まれている半導体領
域21に対して半導体基体10の裏面側から多結晶シリ
コン領域30が作り込まれている点が異なる。また、図
示の実施例では半導体基体10の本体である基板2に基
板1のn形とは逆のp形が用いられている点が異なり、
多結晶シリコン領域30は半導体領域21と同じである
が基板2と逆のn形で作り込まれる。
In the embodiment of the present invention shown in FIG.
is bonded to the substrate 2 via the dielectric film 3, dielectrically separated into a plurality of semiconductor regions 20 by the dielectric film 5 and polycrystalline silicon 6, and the dielectrically separated semiconductor regions 21 to 2
The point that transistors 51 to 53 are respectively formed in the semiconductor substrate 10 is completely the same as in the conventional structure shown in FIG. The difference is that a polycrystalline silicon region 30 is formed from the side. Further, the illustrated embodiment differs in that the substrate 2, which is the main body of the semiconductor substrate 10, is of p-type, which is opposite to the n-type of substrate 1.
The polycrystalline silicon region 30 is the same as the semiconductor region 21, but is formed in an n-type opposite to that of the substrate 2.

【0019】この npn形のバイポーラトランジスタ
51は従来どおり半導体領域21をそのn形のコレクタ
領域として作り込まれ、多結晶シリコン領域30はこの
コレクタ領域用の端子を裏面側から低い接続抵抗で導出
できるようにn形の高不純物濃度で作り込まれ、その下
面に図示しない酸化膜に明けた窓を介して導電接触する
アルミの裏面電極40を設けてコレクタ端子Cとする。 従って、トランジスタ51用の半導体領域21の表面か
らベース端子Bとエミッタ端子Eを導出するだけでよく
、従来の図4のようにコレクタ接続層51cを拡散する
必要がないのでその分の面積を節約することができる。
This npn type bipolar transistor 51 is fabricated in the semiconductor region 21 as its n type collector region as before, and the polycrystalline silicon region 30 allows a terminal for this collector region to be led out from the back side with low connection resistance. A collector terminal C is provided on the lower surface of the aluminum back electrode 40 which is in conductive contact through a window in the oxide film (not shown). Therefore, it is only necessary to lead out the base terminal B and emitter terminal E from the surface of the semiconductor region 21 for the transistor 51, and there is no need to diffuse the collector connection layer 51c as in the conventional case shown in FIG. 4, so the area can be saved. can do.

【0020】なお、図の例ではベース層51aのエミッ
タ層51bとの間にいわゆるベース幅を形成する部分の
面積を増してトランジスタ51の電流容量をできるだけ
大きく取るため、ベース層51aを半導体領域51の表
面の一部のみに拡散して半導体領域21の露出面積を残
しているが、とくにその必要がない場合はこれを表面全
域から拡散してエミッタ層51bの下側部分のみをベー
ス幅形成領域とすれば、半導体領域21に要する面積を
一層縮小できる。
In the illustrated example, in order to increase the area of the portion forming the so-called base width between the base layer 51a and the emitter layer 51b to increase the current capacity of the transistor 51 as much as possible, the base layer 51a is connected to the semiconductor region 51. It is diffused into only a part of the surface of the emitter layer 51b to leave an exposed area of the semiconductor region 21, but if this is not particularly necessary, it is diffused from the entire surface and only the lower part of the emitter layer 51b is left as the base width forming region. If so, the area required for the semiconductor region 21 can be further reduced.

【0021】多結晶シリコン領域30はもちろん誘電体
膜3を介することなく半導体領域21と直接に接続され
るので、半導体領域21の内部発熱は図1ではHで示す
ようにこの接続部と多結晶シリコン領域30を介して基
板2の方に放熱される。半導体基体10の本体である基
板2の熱容量は半導体領域21に比べて格段に大きいの
で、本発明では半導体領域21は基板2を放熱体に利用
して強力に冷却される。
Since the polycrystalline silicon region 30 is of course directly connected to the semiconductor region 21 without intervening the dielectric film 3, the internal heat generation of the semiconductor region 21 is caused by the connection between this connection and the polycrystalline silicon region 21, as indicated by H in FIG. Heat is radiated toward the substrate 2 via the silicon region 30. Since the heat capacity of the substrate 2, which is the main body of the semiconductor body 10, is much larger than that of the semiconductor region 21, in the present invention, the semiconductor region 21 is strongly cooled by using the substrate 2 as a heat sink.

【0022】ついで、図2を参照して製造方法を説明す
る。同図(a) は従来技術の図3(a)に対応し、n
形の基板1をスチーム酸化法により1〜2μmの膜厚に
付けた酸化シリコン等の誘電体膜3を介して 300〜
500 μmの厚みのこの実施例ではp形の基板2に接
合した状態を示す。次いで基板1を図のLの面まで研削
して集積回路を組み込むに適した数十μm例えば30〜
60μmの厚みをもつ図3(b) に相当する状態とす
る。
Next, the manufacturing method will be explained with reference to FIG. Figure 3(a) corresponds to Figure 3(a) of the prior art, and n
A dielectric film 3 made of silicon oxide or the like is applied to a substrate 1 having a shape of 1 to 2 μm using a steam oxidation method.
This example, which has a thickness of 500 μm, shows a state in which it is bonded to a p-type substrate 2. Next, the substrate 1 is ground to the surface indicated by L in the figure to a thickness of several tens of μm, for example, 30 to 30 μm, suitable for incorporating an integrated circuit.
The state corresponds to that shown in FIG. 3(b) with a thickness of 60 μm.

【0023】次の図2(b) は基板1を半導体領域2
1〜23に誘電体分離した状態を示し、前に図3(c)
,(d) で説明した要領で溝4を切った後に誘電体膜
5を付け、さらに多結晶シリコン6を成長させて図の状
態とする。なお、各半導体領域21〜23のサイズは場
合により異なるが例えば数十μm角程度とされる。
Next, in FIG. 2(b), the substrate 1 is connected to the semiconductor region 2.
Figures 1 to 23 show the state of dielectric separation, and Figure 3(c) shows the dielectrically separated state.
, (d) After cutting the groove 4, a dielectric film 5 is attached, and polycrystalline silicon 6 is further grown to obtain the state shown in the figure. Note that the size of each of the semiconductor regions 21 to 23 varies depending on the case, but is, for example, about several tens of μm square.

【0024】図2(c) は半導体基体10の裏面側か
らの掘り込み工程であって、裏面に付けた酸化膜7等を
マスクとして、例えばSF6 とO2 を反応ガスとす
るプラズマエッチング法を利用して10μm径程度の深
い穴8を誘電体膜3に達するまで掘り込み、さらにその
底に残る誘電体膜3を数十%のふっ酸水溶液によるエッ
チングで除去して図示の状態とする。この際、穴8の側
面に図のように若干の傾斜が付くようプラズマエッチン
グの条件を設定するのが次工程で多結晶シリコンを成長
させる上で有利である。
FIG. 2(c) shows a step of digging from the back side of the semiconductor substrate 10, in which a plasma etching method using, for example, SF6 and O2 as reaction gases is used, using the oxide film 7 etc. attached to the back side as a mask. Then, a deep hole 8 with a diameter of about 10 μm is dug until it reaches the dielectric film 3, and the dielectric film 3 remaining at the bottom is removed by etching with an aqueous solution of several tens of percent hydrofluoric acid to form the state shown in the figure. At this time, it is advantageous in growing polycrystalline silicon in the next step to set the plasma etching conditions so that the side surface of the hole 8 has a slight slope as shown in the figure.

【0025】図2(d) はこの多結晶シリコン9の成
長工程であって、望ましくは同図(c) の状態から酸
化膜7をエッチングで除去した後、シラン等を原料ガス
とする例えば熱CVD法により多結晶シリコン9を穴8
内を完全に埋めるよう成長させ、この際に原料ガスにフ
ォスフィンを添加することにより多結晶シリコン9を強
くn形にドープして数百mΩcm以下の低固有抵抗値を
持たせる。 なお、図2(b) の工程で明ける溝4の幅を図2(c
) の工程で明ける穴8の径とほぼ同程度に揃えて置く
ことにより、図2(b)の多結晶シリコン6と図2(d
) の多結晶シリコン9の成長工程を共通化することも
可能である。
FIG. 2(d) shows the growth process of this polycrystalline silicon 9. Preferably, after removing the oxide film 7 by etching from the state shown in FIG. Polycrystalline silicon 9 is formed into hole 8 by CVD method.
At this time, by adding phosphine to the source gas, the polycrystalline silicon 9 is strongly doped to the n-type and has a low resistivity value of several hundred mΩcm or less. Note that the width of the groove 4 created in the process of Fig. 2(b) is shown in Fig. 2(c).
) By aligning the diameters of the holes 8 made in the process of step 2 to approximately the same extent, the polycrystalline silicon 6 in FIG. 2(b) and the polycrystalline silicon 6 in FIG.
) It is also possible to share the growth process of polycrystalline silicon 9.

【0026】図2(e) は半導体基体10の研削工程
であって、その両面を研削することにより図示のように
表面側では溝4内の多結晶シリコン6を残して半導体領
域21〜23を露出させ、裏面側では穴8内の多結晶シ
リコン9を残して基板2を露出させる。なお、この研削
のかわりに塩素系の反応ガス等を用いるプラズマエッチ
ング法を利用するのも有利で、この場合半導体領域21
〜23上に残る誘電体膜5はウエットエッチング法によ
り簡単に除去できる。
FIG. 2E shows the process of grinding the semiconductor substrate 10. By grinding both sides of the semiconductor substrate 10, the semiconductor regions 21 to 23 are left on the surface side, leaving the polycrystalline silicon 6 in the groove 4, as shown in the figure. The polycrystalline silicon 9 in the hole 8 is left and the substrate 2 is exposed on the back side. Note that instead of this grinding, it is also advantageous to use a plasma etching method using a chlorine-based reactive gas, and in this case, the semiconductor region 21
The dielectric film 5 remaining on 23 can be easily removed by wet etching.

【0027】この図2(e) の工程により穴8内の多
結晶シリコンが半導体領域21に接続された前述の多結
晶シリコン領域30とされ、図1のように集積回路の回
路部分51〜53をそれぞれ作り込むに適する誘電体分
離された半導体領域21〜23を備える半導体基体10
が完成する。なお、以上の実施例では多結晶シリコン領
域30をバイポーラトランジスタ51が作り込まれる半
導体領域21に対して設けるようにしたが、もちろん必
要に応じて外部負荷駆動用のMOSトランジスタ等の他
の回路部分が作り込まれる半導体領域にも設けられる。 また、集積回路の回路部分が作り込まれる複数個の半導
体領域に対し必要に応じてそれぞれ多結晶シリコン領域
を接続することができるのはもちろんである。
Through the process shown in FIG. 2(e), the polycrystalline silicon in the hole 8 is converted into the aforementioned polycrystalline silicon region 30 connected to the semiconductor region 21, and the circuit portions 51 to 53 of the integrated circuit are formed as shown in FIG. A semiconductor substrate 10 comprising dielectrically separated semiconductor regions 21 to 23 suitable for forming
is completed. In the above embodiment, the polycrystalline silicon region 30 is provided in the semiconductor region 21 in which the bipolar transistor 51 is formed, but of course other circuit parts such as MOS transistors for driving an external load may be provided as necessary. It is also provided in the semiconductor region where the semiconductor is fabricated. Furthermore, it is of course possible to connect polycrystalline silicon regions to a plurality of semiconductor regions in which circuit portions of an integrated circuit are formed, as necessary.

【0028】[0028]

【発明の効果】以上述べたとおり本発明では、半導体基
体の表面側の互いに誘電体分離された半導体領域内に集
積回路を構成する回路部分をそれぞれ組み込み、この表
面側の所定半導体領域に半導体基体内部で接続する多結
晶シリコン領域を半導体基体の裏面側から作り込み、こ
の多結晶シリコン領域に接続する所定半導体領域用の裏
面電極を半導体基体の裏面側に設けることにより、次の
効果が得られる。
Effects of the Invention As described above, in the present invention, circuit parts constituting an integrated circuit are incorporated in semiconductor regions dielectrically separated from each other on the front surface side of a semiconductor substrate, and the semiconductor substrate is placed in a predetermined semiconductor region on the front surface side. By forming a polycrystalline silicon region to be internally connected from the back side of the semiconductor substrate and providing a back electrode for a predetermined semiconductor region connected to this polycrystalline silicon region on the back side of the semiconductor substrate, the following effects can be obtained. .

【0029】(a) 誘電体分離された半導体基体の表
面側の半導体領域に対しその裏面側から多結晶シリコン
領域を接続することにより、半導体領域の内部発熱を多
結晶シリコン領域を通して半導体基体の本体に放熱させ
、半導体領域より熱容量がずっと大きいこの本体部を熱
吸収体に利用して集積回路の回路部分が作り込まれてい
る半導体領域を有効に冷却できるので、その回路部分の
電圧,電流を処理する能力とくに過負荷耐量を向上でき
る。
(a) By connecting a polycrystalline silicon region from the back side to the semiconductor region on the front side of the dielectrically separated semiconductor substrate, internal heat generation in the semiconductor region is transferred to the main body of the semiconductor substrate through the polycrystalline silicon region. The main body, which has a much larger heat capacity than the semiconductor area, can be used as a heat absorber to effectively cool the semiconductor area in which the circuit parts of the integrated circuit are built, thereby reducing the voltage and current of the circuit parts. Processing ability, especially overload tolerance, can be improved.

【0030】(b) 半導体基体の裏面側を利用して多
結晶シリコン領域に接続された裏面電極を設けて半導体
領域に作り込まれた回路部分の端子とすることより、半
導体領域の表面側から導出すべき端子数を減少させて回
路部分を作り込むに要する半導体領域の面積を節約でき
る。
(b) By using the back side of the semiconductor substrate to provide a back electrode connected to the polycrystalline silicon region to serve as a terminal for a circuit part built into the semiconductor region, it is possible to By reducing the number of terminals to be led out, the area of the semiconductor region required for building the circuit portion can be saved.

【0031】本発明による集積回路装置は外部負荷を直
接に駆動するため取り扱う電力量が大きくなる出力回路
が集積化される場合にとくに適し、その負荷駆動能力の
向上とチップ面積の節約の両面で顕著な効果を奏し得る
ものである。
The integrated circuit device according to the present invention is particularly suitable when an output circuit that directly drives an external load and therefore handles a large amount of electric power is integrated, and is advantageous in terms of both improving the load driving ability and saving chip area. This can have a remarkable effect.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による集積回路装置の実施例を示す誘電
体分離形半導体基体の一部拡大断面図である。
FIG. 1 is a partially enlarged sectional view of a dielectrically separated semiconductor substrate showing an embodiment of an integrated circuit device according to the present invention.

【図2】図1の実施例に対応する集積回路装置用の半導
体基体の製造方法例を主な工程ごとの状態で示すその一
部拡大断面図である。
2 is a partially enlarged cross-sectional view showing each main step of an example of a method for manufacturing a semiconductor substrate for an integrated circuit device corresponding to the embodiment of FIG. 1; FIG.

【図3】従来の集積回路装置用の誘電体分離形半導体基
体の製造方法を主な工程ごとの状態で示すその一部拡大
断面図である。
FIG. 3 is a partially enlarged cross-sectional view showing each main step of a conventional method for manufacturing a dielectrically isolated semiconductor substrate for an integrated circuit device.

【図4】従来技術による集積回路装置を示す誘電体分離
形半導体基体の一部拡大断面図である。
FIG. 4 is a partially enlarged sectional view of a dielectrically isolated semiconductor substrate showing an integrated circuit device according to the prior art.

【符号の説明】[Explanation of symbols]

1    半導体基体を構成する基板 2    半導体基体を構成する基板 3    誘電体膜 5    誘電体膜 6    多結晶シリコン 7    多結晶シリコン 10    半導体基体 20    半導体領域 21    半導体領域 22    半導体領域 23    半導体領域 30    多結晶シリコン領域 40    裏面電極 50    集積回路の回路部分 1    Substrate constituting the semiconductor substrate 2    Substrate constituting the semiconductor substrate 3 Dielectric film 5 Dielectric film 6 Polycrystalline silicon 7 Polycrystalline silicon 10 Semiconductor substrate 20 Semiconductor area 21 Semiconductor area 22 Semiconductor area 23 Semiconductor area 30 Polycrystalline silicon region 40    Back electrode 50 Circuit part of integrated circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体基体の表面側の互いに誘電体分離さ
れた半導体領域内に集積回路を構成する回路部分をそれ
ぞれ組み込み、この表面側の所定半導体領域に半導体基
体内部で接続する多結晶シリコン領域を半導体基体の裏
面側から作り込み、この多結晶シリコン領域に接続する
所定半導体領域用の裏面電極を半導体基体の裏面側に設
けたことを特徴とする集積回路装置。
1. Circuit parts constituting an integrated circuit are incorporated in semiconductor regions dielectrically separated from each other on the surface side of a semiconductor substrate, and a polycrystalline silicon region is connected to a predetermined semiconductor region on the surface side inside the semiconductor substrate. 1. An integrated circuit device characterized in that a semiconductor substrate is formed from the back side of the semiconductor substrate, and a back electrode for a predetermined semiconductor region connected to the polycrystalline silicon region is provided on the back side of the semiconductor substrate.
【請求項2】請求項1に記載の装置において、多結晶シ
リコン領域の導電形を所定半導体領域と同じにしたこと
を特徴とする集積回路装置。
2. The integrated circuit device according to claim 1, wherein the polycrystalline silicon region has the same conductivity type as the predetermined semiconductor region.
【請求項3】請求項1に記載の装置において、所定半導
体領域内に組み込む回路部分がそれをコレクタ領域とす
るバイポーラトランジスタであり、裏面電極がコレクタ
電極であることを特徴とする集積回路装置。
3. The integrated circuit device according to claim 1, wherein the circuit portion built into the predetermined semiconductor region is a bipolar transistor having the collector region thereof, and the back surface electrode is the collector electrode.
JP127791A 1991-01-10 1991-01-10 Integrated circuit device Expired - Fee Related JP2827191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP127791A JP2827191B2 (en) 1991-01-10 1991-01-10 Integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP127791A JP2827191B2 (en) 1991-01-10 1991-01-10 Integrated circuit device

Publications (2)

Publication Number Publication Date
JPH04251958A true JPH04251958A (en) 1992-09-08
JP2827191B2 JP2827191B2 (en) 1998-11-18

Family

ID=11496962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP127791A Expired - Fee Related JP2827191B2 (en) 1991-01-10 1991-01-10 Integrated circuit device

Country Status (1)

Country Link
JP (1) JP2827191B2 (en)

Also Published As

Publication number Publication date
JP2827191B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
KR900005124B1 (en) Complementary semiconductor device
JP2974211B2 (en) SOI semiconductor device
JP3130323B2 (en) MOSFET having substrate source contact and method of manufacturing the same
US7656003B2 (en) Electrical stress protection apparatus and method of manufacture
US6798037B2 (en) Isolation trench structure for integrated devices
JPH0685177A (en) Semiconductor integrated circuit device
JPH04233764A (en) Vertical-type transistor
KR100208632B1 (en) Semiconductor integrated circuit and method of fabricating it
US5191401A (en) MOS transistor with high breakdown voltage
US5356827A (en) Method of manufacturing semiconductor device
US5476809A (en) Semiconductor device and method of manufacturing the same
JP2007243140A (en) Semiconductor device, electronic equipment, and semiconductor device fabrication method
JP2002270815A (en) Semiconductor device and driver circuit constituted of the semiconductor device
JPH1070245A (en) Integrated circuit including device dielectrically insulated from substrate and junction insulated device
US7119431B1 (en) Apparatus and method for forming heat sinks on silicon on insulator wafers
JPH04363046A (en) Manufacture of semiconductor device
JP2979554B2 (en) Method for manufacturing semiconductor device
JPH05121664A (en) Semiconductor device
US4512076A (en) Semiconductor device fabrication process
JPH0629376A (en) Integrated circuit device
CN109686734B (en) Chip with isolation structure
EP0386779B1 (en) MOS field-effect transistor having a high breakdown voltage
JPH04251958A (en) Integrated circuit device
CN109599358B (en) Method for manufacturing chip with isolation structure
EP0428067A2 (en) Semiconductor integrated circuit and method of manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees