JPH04250882A - Production of pure water - Google Patents

Production of pure water

Info

Publication number
JPH04250882A
JPH04250882A JP118191A JP118191A JPH04250882A JP H04250882 A JPH04250882 A JP H04250882A JP 118191 A JP118191 A JP 118191A JP 118191 A JP118191 A JP 118191A JP H04250882 A JPH04250882 A JP H04250882A
Authority
JP
Japan
Prior art keywords
chamber
exchange resin
pure water
water
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP118191A
Other languages
Japanese (ja)
Inventor
Fujio Koide
富士夫 小出
Hajime Uchino
肇 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
Original Assignee
Nippon Rensui Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rensui Co filed Critical Nippon Rensui Co
Priority to JP118191A priority Critical patent/JPH04250882A/en
Publication of JPH04250882A publication Critical patent/JPH04250882A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain pure water having high purity and stable water quality with the electric power consumption lower than in the conventional methods by housing a mixed body composed of a weakly acidic cation exchange resin of a regeneration type and an II type strongly basic anion exchange resin of a regeneration type into the desalting chamber of an electrolytic dialysis device, then executing an electrolytic dialysis while passing the water to be treated in the desalting chamber. CONSTITUTION:The electrolytic dialysis device is constituted of the desalting chamber 7 formed of the alternately arranged anion exchange membranes 5 and cation exchange membranes 6 and a thickening chamber 8 between a cathode chamber 4 having a cathode 2 and an anion chamber 3 having an anode 3. The mixed body composed of the weakly acidic cation exchange resin of the regeneration type and the II type strongly basic anion exchange resin of the regeneration type is housed into the desalting chamber 7 thereof and thereafter, the electrolytic dialysis is executed while the water to be treated is circulated into the desalting chamber 7, by which the pure water is produced. Consequently, the pure water having the high purity and the stable water quality is obtd. with the electric power consumption lower than in the conventional method.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は純水の製造方法に関し、
さらに詳しくはイオン交換樹脂とイオン交換膜を組合せ
て純水を得る電気再生式純水製造方法の改良に関する。
[Industrial Application Field] The present invention relates to a method for producing pure water,
More specifically, the present invention relates to an improvement in an electrically regenerated pure water production method for producing pure water by combining an ion exchange resin and an ion exchange membrane.

【0002】0002

【従来の技術】純水を製造する方法として、再生された
イオン交換樹脂床に被処理水を通水して純水を得、不純
物を吸着してイオン交換能力の減退したイオン交換樹脂
床は酸やアルカリの再生剤を用いて再生した後、再び利
用するイオン交換樹脂法が広く採用されている。この方
法ではイオン交換樹脂の再生に再生剤として酸やアルカ
リを使用するために酸性及びアルカリ性の再生廃液が排
出される問題点がある。
[Prior Art] As a method for producing pure water, purified water is obtained by passing water to be treated through a regenerated ion exchange resin bed. The ion exchange resin method, in which the material is regenerated using an acid or alkali regenerant and then reused, is widely used. This method uses acid or alkali as a regenerating agent to regenerate the ion exchange resin, so there is a problem in that acidic and alkaline regeneration waste liquids are discharged.

【0003】そのために再生剤を用いない純水製造方法
が要望されており、近年、イオン交換樹脂とイオン交換
膜を組合せた電気再生式純水製造方法が注目されている
。この方法は、陰イオン交換膜と陽イオン交換膜とが交
互に配列組込まれた電気透析装置の脱塩室に陰イオン交
換樹脂と陽イオン交換樹脂との混合樹脂層を形成させ、
この脱塩室に被処理水を通液しつつ電圧を印加して電気
透析を行うことにより純水を製造する方法である。 しかし、この方法においても次のような問題点がある。 即ち、長時間運転を続けると脱塩室の混合イオン交換樹
脂層の電気導電率が不均一になり混合イオン交換樹脂層
が均一再生されないため純水の純度が徐々に低下する欠
点である。
[0003] Therefore, there is a demand for a method for producing pure water that does not use a regenerating agent, and in recent years, an electric regeneration method for producing pure water that combines an ion exchange resin and an ion exchange membrane has been attracting attention. This method involves forming a mixed resin layer of an anion exchange resin and a cation exchange resin in a desalination chamber of an electrodialysis device in which anion exchange membranes and cation exchange membranes are arranged and incorporated in an alternating manner.
In this method, pure water is produced by applying a voltage to perform electrodialysis while passing the water to be treated through this desalination chamber. However, this method also has the following problems. That is, if the operation continues for a long time, the electric conductivity of the mixed ion exchange resin layer in the demineralization chamber becomes non-uniform, and the mixed ion exchange resin layer is not uniformly regenerated, resulting in a gradual decrease in the purity of the pure water.

【0004】このような問題点を解決する方法として、
本出願人は、先に電気透析装置の脱塩室に収容するイオ
ン交換樹脂として再生形の弱塩基性イオン交換樹脂と弱
酸性イオン交換樹脂との混合体を収容することを提案し
た。(特開平2−17715号)、電気再生式純水製造
方法では、イオン交換樹脂の再生は直流電流を用いて行
うため、消費電力量をいかに下げるかが重要であるが、
この方法では高純度の純水が安定して得られるものの比
較的高電圧の電流を要するため消費電力量が大きくなる
こと、さらにはイオン交換膜の寿命を短くするおそれが
ある等の欠点があった。
[0004] As a method to solve such problems,
The present applicant previously proposed storing a mixture of a regenerated weakly basic ion-exchange resin and a weakly acidic ion-exchange resin as an ion-exchange resin in the demineralization chamber of an electrodialyzer. (Japanese Unexamined Patent Publication No. 2-17715), in the electric regeneration pure water production method, the ion exchange resin is regenerated using direct current, so it is important to reduce the power consumption.
Although this method can stably obtain high-purity pure water, it has disadvantages such as a relatively high voltage current, which increases power consumption, and may shorten the life of the ion exchange membrane. Ta.

【0005】[0005]

【発明が解決しようとする課題】かかる背景の下、本発
明者等は電気再生式純水製造方法の消費電力は主として
電流の2乗に脱塩室の電気伝導率を乗じた値で示される
ことから、脱塩室の電気抵抗を低減化する方法について
研究を重ね、本発明を完成するに至った。
[Problems to be Solved by the Invention] Against this background, the present inventors have determined that the power consumption of the electric regeneration pure water production method is mainly expressed as the value obtained by multiplying the square of the current by the electrical conductivity of the desalination chamber. Therefore, we conducted repeated research on a method for reducing the electrical resistance of the demineralization chamber, and finally completed the present invention.

【0006】[0006]

【課題を解決するための手段】即ち、本発明は電気再生
式純水製造方法において、脱塩室の電気抵抗を軽減した
方法であって、その要旨とするところは、陰極を備えた
陰極室と陽極を備えた陽極室の間に、陽イオン交換膜及
び陰イオン交換膜を交互に配列した電気透析装置の脱塩
室に再生形の弱酸性陽イオン交換樹脂と再生形のII型
強塩基性陰イオン交換樹脂の混合体を収容した後、該脱
塩室に被処理水を通液しながら電気透析を行うことによ
り純水を製造することを特徴とする純水製造方法を要旨
とするものである。
[Means for Solving the Problems] That is, the present invention is a method for reducing the electrical resistance of a demineralization chamber in an electrically regenerated pure water production method. A regenerated weakly acidic cation exchange resin and a regenerated type II strong base are placed in the demineralization chamber of an electrodialysis machine in which cation exchange membranes and anion exchange membranes are arranged alternately between the anode chamber and the anode. The present invention provides a method for producing pure water, which comprises storing a mixture of anion exchange resins and then performing electrodialysis while passing the water to be treated through the desalination chamber to produce pure water. It is something.

【0007】本発明について更に詳細に説明すれば、イ
オン交換樹脂とイオン交換膜とを組合せて純水を製造す
る公知方法において、脱塩室に収容するイオン交換樹脂
として、再生形の弱酸性陽イオン交換樹脂と再生形のI
I型強塩基性陰イオン交換樹脂の混合体を用い、脱塩室
の電気導電率を大きくして、消費電力量の少ない純水製
造方法を提供するものである。本発明者等は脱塩室の電
気抵抗の低減化を検討するために、各種イオン交換樹脂
の官能基の違いによるイオン交換樹脂自体の電気伝導率
を測定して検討を加え、その結果下記の評価を得た。
To explain the present invention in more detail, in a known method for producing pure water by combining an ion exchange resin and an ion exchange membrane, a regenerated form of weakly acidic cation is used as the ion exchange resin housed in the desalting chamber. Ion exchange resin and regenerated form I
The present invention provides a method for producing pure water with low power consumption by using a mixture of Type I strongly basic anion exchange resins and increasing the electrical conductivity of a demineralization chamber. In order to consider reducing the electrical resistance of the demineralization chamber, the present inventors measured and investigated the electrical conductivity of the ion exchange resin itself due to differences in the functional groups of various ion exchange resins, and as a result, the following results were obtained. It got a good reputation.

【0008】[0008]

【表1】[Table 1]

【0009】すなわち、従来の電気再生式純水製造方法
のように、再生形の強形イオン交換樹脂同志の混合体を
採用すると、脱塩室の電気抵抗は小さくなるものの、電
流は主として再生形のイオン交換樹脂に流れるために、
負荷形になったイオン交換樹脂から負荷イオンが除去さ
れにくく、十分な再生がなされない。よって徐々に負荷
形の樹脂の割合が増加して行くため処理水の水質がそれ
につれて低下して行く。また反対に再生形の弱形イオン
交換樹脂同志の混合体を採用した場合は、安定した水質
の純水が得られるが、イオン交換樹脂の電気伝導率が小
さいため高電圧の電源を必要とし、消費電力量が大きく
なる欠点がある。そこで、本発明では陽イオン交換樹脂
として再生形の弱形イオン交換樹脂を、陰イオン交換樹
脂として再生形のII型強形イオン交換樹脂の混合体を
採用する。この混合体は均一に混合され、電気透析装置
の脱塩室に収容される。
That is, if a mixture of regenerated strong ion exchange resins is used as in the conventional electric regeneration pure water production method, although the electrical resistance of the demineralization chamber becomes small, the current mainly flows from the regenerated type. In order to flow into the ion exchange resin,
Loaded ions are difficult to remove from the loaded ion exchange resin, and sufficient regeneration is not achieved. Therefore, since the proportion of loaded resin gradually increases, the quality of the treated water decreases accordingly. On the other hand, if a mixture of regenerated weak ion exchange resins is used, pure water with stable water quality can be obtained, but because the electrical conductivity of the ion exchange resin is low, a high voltage power source is required. The disadvantage is that power consumption is large. Therefore, in the present invention, a mixture of a regenerated weak ion exchange resin as the cation exchange resin and a regenerated Type II strong ion exchange resin as the anion exchange resin is employed. This mixture is mixed uniformly and placed in the desalination chamber of the electrodialysis machine.

【0010】この脱塩室に被処理水の通液を行いつつ電
気透析を行なえば、混合体の電気伝導率は弱形イオン交
換樹脂同志の混合体に比べてはるかに大きいので、脱塩
室の電気抵抗も小さくなり、そのため高電圧の電流を必
要とせずに少ない電力量で水質の安定した純水を得るこ
とができる。また、長時間通液を続けることにより混合
体への負荷が増大しても、本発明の弱酸性陽イオン交換
樹脂とII型強塩基性陰イオン交換樹脂との混合体に於
いては、負荷形になると電気伝導率が大きくなり、電流
が通りやすくなる。故に負荷形は直ちに再生形に再生さ
れることになり、混合体全体に対する負荷形の割合は増
大することもなく、しかも従来の消費電力よりも少ない
電力量で再生することができ、高純度の純水を供給する
ことができる。
[0010] If electrodialysis is performed while the water to be treated is passed through the demineralization chamber, the electrical conductivity of the mixture is much higher than that of a mixture of weak ion exchange resins. The electrical resistance of the water is also reduced, so pure water of stable quality can be obtained with a small amount of electricity without the need for high-voltage current. In addition, even if the load on the mixture increases due to continuous flow of liquid for a long time, the mixture of the weakly acidic cation exchange resin of the present invention and the type II strong basic anion exchange resin will not be able to handle the load. When shaped, its electrical conductivity increases, making it easier for electric current to pass through it. Therefore, the loaded type is immediately regenerated into the regenerated type, and the ratio of the loaded type to the entire mixture does not increase.Moreover, it can be regenerated with less power consumption than conventional power consumption, and it is possible to achieve high purity. Can supply pure water.

【0011】本発明の詳細を図1によって説明する。図
1は本発明で用いられる電気透析装置の縦断面略図であ
る。電気透析装置は、陽極板1を収容した陽極室3及び
陰極板2を収容した陰極室4と、その間に交互に配列さ
れた陰イオン交換膜5と陽イオン交換膜6とで形成され
た脱塩室7及び濃縮室8とにより構成されている。
The details of the present invention will be explained with reference to FIG. FIG. 1 is a schematic vertical cross-sectional view of an electrodialysis apparatus used in the present invention. The electrodialysis device consists of an anode chamber 3 containing an anode plate 1, a cathode chamber 4 containing a cathode plate 2, and an anion exchange membrane 5 and a cation exchange membrane 6 arranged alternately between them. It is composed of a salt chamber 7 and a concentration chamber 8.

【0012】陽極室3および陰極室4には、電導性をも
たせるように電解室溶液を収容する。この電解質溶液の
濃度は漸次低下していくので、常に一定値を維持するの
が好ましい。その方法として、濃縮室8から排出される
濃縮水の一部を循環させるよにうしておくとよい。脱塩
室7には、再生形の弱酸性陽イオン交換樹脂及び再生形
のII型の強塩基性陰イオン交換樹脂から成る混合イオ
ン交換樹脂が収納される。
[0012] The anode chamber 3 and the cathode chamber 4 contain an electrolytic chamber solution to provide electrical conductivity. Since the concentration of this electrolyte solution gradually decreases, it is preferable to always maintain a constant value. As a method for this, it is preferable to circulate a part of the concentrated water discharged from the concentration chamber 8. The desalting chamber 7 houses a mixed ion exchange resin consisting of a regenerated weakly acidic cation exchange resin and a regenerated Type II strongly basic anion exchange resin.

【0013】上記のように構成された電気透析装置の脱
塩室7及び濃縮室8に被処理水を流通させながら直流電
流を通ずると、脱塩室7では被処理水中の不純物イオン
はイオン交換樹脂により除去され、純水が製造されると
共に、イオン交換樹脂に吸着した不純物イオンはイオン
交換膜により電気透析され濃縮室8に移動し、濃縮室8
から濃縮水として流出する。
When a direct current is passed through the demineralization chamber 7 and concentration chamber 8 of the electrodialysis apparatus constructed as described above while flowing the water to be treated, impurity ions in the water to be treated are ion-exchanged in the demineralization chamber 7. At the same time, impurity ions adsorbed on the ion exchange resin are electrodialyzed by the ion exchange membrane and moved to the concentration chamber 8, where they are removed by the resin and pure water is produced.
It flows out as concentrated water.

【0014】本発明で採用される弱酸性陽イオン交換樹
脂としては、三次元に縮重合した高分子基体に交換基と
してリン酸基、カルボン酸基等の交換基が結合したイオ
ン交換樹脂であって、交換基の解離定数(pK)が2〜
6の範囲にあるものが好ましい。一方、強塩基性陰イオ
ン交換樹脂としては、交換基として4級アンモニウム基
を有するものであって、特に交換基の構造が下記のよう
であって、塩基性度のやや低い解離定数(pK)13以
上のII型のものが採用される。
The weakly acidic cation exchange resin employed in the present invention is an ion exchange resin in which an exchange group such as a phosphoric acid group or a carboxylic acid group is bonded to a three-dimensionally condensed polymer base. Therefore, the dissociation constant (pK) of the exchange group is 2~
Those in the range of 6 are preferred. On the other hand, strongly basic anion exchange resins have a quaternary ammonium group as an exchange group, and in particular, the structure of the exchange group is as shown below, and the dissociation constant (pK) is slightly low in basicity. 13 or higher type II types are adopted.

【0015】[0015]

【化1】 本発明に採用される弱酸性の陽イオン交換樹脂としては
、アンバーライトIRC−84(商品名、ロームアンド
ハースCo.製)、ダウエックスCCR−20(商品名
、ダウケミカルCo.製)、デュオライトCC−3(商
品名、ロームアンドハースCo.製)、レバチットCN
P−80(商品名、バイエルAG製)、イマックZ−5
(商品名、ロームアンドハースCo.製)、ダイヤイオ
ンWK−20(商品名、三菱化成(株)製)等の市販品
がある。
embedded image The weakly acidic cation exchange resins used in the present invention include Amberlite IRC-84 (trade name, manufactured by Rohm and Haas Co.), DOWEX CCR-20 (trade name, manufactured by Dow Chemical Co.). ), Duolite CC-3 (product name, manufactured by Rohm and Haas Co.), Revachit CN
P-80 (product name, manufactured by Bayer AG), Imac Z-5
There are commercially available products such as (trade name, manufactured by Rohm and Haas Co.) and Diaion WK-20 (trade name, manufactured by Mitsubishi Kasei Corporation).

【0016】またII型の強塩基性陰イオン交換樹脂と
しては、アンバーライトIRA−410、IRA−91
0、デュオライトA−102D、A−162(以上、商
品名、ロームアンドハースCo.製)、アイオナックA
−550(商品名、サイブロンCo.製)、レバチット
M−600、MP−600(以上、商品名バイエルAG
.製)、イマックS5−42(商品名、ロームアンドハ
ースCo.製)、ダイヤイオンSA−20A、PA40
0番台(以上、商品名  三菱化成(株)製)等の市販
品がある。
[0016] Type II strongly basic anion exchange resins include Amberlite IRA-410 and IRA-91.
0, Duolite A-102D, A-162 (all product names, manufactured by Rohm and Haas Co.), IONAC A
-550 (product name, manufactured by Cyblon Co.), Revachit M-600, MP-600 (product name: Bayer AG)
.. ), Imac S5-42 (product name, manufactured by Rohm and Haas Co.), Diaion SA-20A, PA40
There are commercially available products such as No. 0 series (all product names manufactured by Mitsubishi Kasei Corporation).

【0017】上述のイオン交換樹脂を従来の方法により
再生形にした後、イオン交換容量比で弱酸性陽イオン交
換樹脂:強塩基性陰イオン交換樹脂=1:2〜2:1の
範囲で均一に混合し、それらを電気透析装置の脱塩室に
収容する。本発明は脱塩室に収容するイオン交換樹脂の
混合体に特徴を有するものであり、イオン交換を含めた
電気透析装置やその運転条件等については従来公知のも
のを適宜組合せて用いることができる。例えば、本発明
に用いる電気透析装置は、陰極と陽極の電極間に陽イオ
ン交換膜と陰イオン交換膜が交互に配列された構造であ
れば、公知の電気透析装置が特に制限されることなく採
用される。
After the above-mentioned ion exchange resin is made into a regenerated form by a conventional method, the ion exchange capacity ratio of weakly acidic cation exchange resin:strongly basic anion exchange resin is uniform in the range of 1:2 to 2:1. and house them in the desalination chamber of the electrodialysis machine. The present invention is characterized by a mixture of ion exchange resins housed in a desalination chamber, and conventionally known electrodialysis equipment including ion exchange and its operating conditions can be used in combination as appropriate. . For example, the electrodialysis device used in the present invention is not particularly limited to known electrodialysis devices as long as it has a structure in which cation exchange membranes and anion exchange membranes are alternately arranged between the cathode and anode electrodes. Adopted.

【0018】その代表的なものは、陰極及び陽極間に陽
イオン交換膜と陰イオン交換膜をそれぞれ室枠を介して
交互に配列し、これらの両イオン交換膜と室枠によって
脱塩室と濃縮室とを形成させた構造よりなるフィルター
プレス型やユニットセル型等の電気透析装置である。か
かる電気透析装置に用いる膜数あるいは脱塩室及び濃縮
室の流路間隔(膜間隔)等は、被処理水の塩量及び処理
量により適宜選択される。
A typical method is to alternately arrange cation exchange membranes and anion exchange membranes between the cathode and the anode through a chamber frame, and use these ion exchange membranes and the chamber frame to form a demineralization chamber. This is an electrodialysis device such as a filter press type or a unit cell type that has a structure in which a concentration chamber is formed. The number of membranes used in such an electrodialysis apparatus, the channel spacing between the demineralization chamber and the concentration chamber (membrane spacing), etc. are appropriately selected depending on the salt content and treatment amount of the water to be treated.

【0019】[0019]

【実施例】以下、実施例によって、本発明をさらに具体
的に説明するが、本発明はこれら実施例によって何ら限
定されない。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples in any way.

【0020】実施例1 図1に示した電気透析装置を用いて純水の製造を行なっ
た。脱塩室は3室、濃縮室は2室であって、各脱塩室は
縦390mm、横130mm、幅8mmで、その各脱塩
室には再生形の弱酸性陽イオン交換樹脂ダイヤイオンW
K20(商品名、三菱化成(株)製)、106mlと再
生形のII型強塩基性陰イオン交換樹脂ダイヤイオンP
A418(商品名、三菱化成(株)製)、300mlを
均一の混合状態にして収納した。
Example 1 Pure water was produced using the electrodialysis apparatus shown in FIG. There are 3 desalting chambers and 2 concentrating chambers, each desalting chamber is 390 mm long, 130 mm wide, and 8 mm wide, and each desalting chamber is filled with regenerated weakly acidic cation exchange resin Diamond W.
K20 (trade name, manufactured by Mitsubishi Kasei Corporation), 106ml and recycled type II strong basic anion exchange resin Diaion P
A418 (trade name, manufactured by Mitsubishi Kasei Corporation), 300 ml, was mixed uniformly and stored.

【0021】一方、各濃縮室は縦390mm、横130
mm、幅2mmであって、何も充填しなかった。次に純
水にNaClを溶解して電気伝導度を20μs/cmに
調整し、これを被処理水とした。この被処理水を上記電
気透析装置の脱塩室には26l/hr、濃縮室には20
l/hr及び電極室には100l/hrの条件で通水す
ると同時に電極室の電極板には直流電流200mAを一
定に保持しつつ通電し、脱塩室より流出する処理水の電
気伝導度及び印加電圧の変化を測定した。200時間通
水した時の結果は図2及び図3に示す通りであった。
On the other hand, each concentration chamber has a length of 390 mm and a width of 130 mm.
mm, width 2 mm, and was not filled with anything. Next, NaCl was dissolved in pure water to adjust the electrical conductivity to 20 μs/cm, and this was used as water to be treated. This treated water is fed to the desalination chamber of the electrodialysis machine at 26 l/hr and to the concentration chamber at 20 l/hr.
Water is passed through the electrode chamber at a rate of 100 l/hr, and at the same time, a direct current of 200 mA is applied to the electrode plate of the electrode chamber at a constant rate to determine the electrical conductivity and Changes in applied voltage were measured. The results when water was passed for 200 hours were as shown in FIGS. 2 and 3.

【0022】比較例1 実施例1で用いたものと同じ電気透析装置において、各
脱塩室には再生形の弱酸性陽イオン交換樹脂ダイヤイオ
ンWK20(商品名、三菱化成(株)製)、106ml
と再生形の弱塩基性陰イオン交換樹脂ダイヤイオンWA
30(商品名、三菱化成(株)製)、300mlを混合
状態にして収納して通水テストを行なった。
Comparative Example 1 In the same electrodialysis apparatus as that used in Example 1, each demineralization chamber was filled with regenerated weakly acidic cation exchange resin Diaion WK20 (trade name, manufactured by Mitsubishi Kasei Corporation), 106ml
and regenerated form of weakly basic anion exchange resin Diaion WA
30 (trade name, manufactured by Mitsubishi Kasei Corporation), 300 ml was mixed and stored, and a water flow test was conducted.

【0023】被処理水の水質、通水条件及び通電条件は
実施例1と同一条件とし、実施例1と同様に処理水の電
気伝導度及び印加電圧の変化を測定した。その結果は図
2及び図3に示す通りであった。
The water quality, water flow conditions, and current flow conditions of the water to be treated were the same as in Example 1, and changes in the electrical conductivity and applied voltage of the treated water were measured in the same manner as in Example 1. The results were as shown in FIGS. 2 and 3.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は電気透析装置の断面略図である。FIG. 1 is a schematic cross-sectional view of an electrodialysis device.

【符号の説明】[Explanation of symbols]

1    陽極板 2    陰極板 3    陽極室 4    陰極室 5    陰イオン交換膜 6    陽イオン交換膜 7    脱塩室 8    濃縮室 1 Anode plate 2 Cathode plate 3 Anode chamber 4 Cathode chamber 5 Anion exchange membrane 6 Cation exchange membrane 7 Demineralization room 8 Concentration chamber

【図2】図2は実施例1及び比較例1の処理水質の経時
変化を電気伝導度(μs/cm)で示した図である。縦
軸は処理水質(μs/cm)、横軸は通水時間(hr)
を表わす。
FIG. 2 is a diagram showing changes over time in the quality of treated water in Example 1 and Comparative Example 1 in electrical conductivity (μs/cm). The vertical axis is treated water quality (μs/cm), and the horizontal axis is water flow time (hr).
represents.

【符号の説明】[Explanation of symbols]

1    実施例1の結果 2    比較例1の結果 1 Results of Example 1 2 Results of Comparative Example 1

【図3】図3は実施例1及び比較例1の印加電圧(V)
の経時変化を示した図である。縦軸は印加電圧(V)、
横軸は通水時間(hr)を表わす。
[Figure 3] Figure 3 shows the applied voltage (V) of Example 1 and Comparative Example 1.
FIG. 2 is a diagram showing changes over time. The vertical axis is the applied voltage (V),
The horizontal axis represents water flow time (hr).

【符号の説明】[Explanation of symbols]

1    実施例1の結果 2    比較例1の結果 1 Results of Example 1 2 Results of Comparative Example 1

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  陰極を備えた陰極室と陽極を備えた陽
極室の間に、陽イオン交換膜及び陰イオン交換膜を交互
に配列した電気透析装置の脱塩室に、再生形の弱酸性陽
イオン交換樹脂と再生形のII型強塩基性陰イオン交換
樹脂との混合体を収容した後、該脱塩室に被処理水を通
液しながら電気透析を行うことにより純水を製造するこ
とを特徴とする純水製造方法。
Claim 1: A regenerated form of weak acid After accommodating a mixture of a cation exchange resin and a regenerated type II strongly basic anion exchange resin, pure water is produced by performing electrodialysis while passing the water to be treated through the desalination chamber. A pure water production method characterized by:
JP118191A 1991-01-09 1991-01-09 Production of pure water Pending JPH04250882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP118191A JPH04250882A (en) 1991-01-09 1991-01-09 Production of pure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP118191A JPH04250882A (en) 1991-01-09 1991-01-09 Production of pure water

Publications (1)

Publication Number Publication Date
JPH04250882A true JPH04250882A (en) 1992-09-07

Family

ID=11494283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP118191A Pending JPH04250882A (en) 1991-01-09 1991-01-09 Production of pure water

Country Status (1)

Country Link
JP (1) JPH04250882A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512173A (en) * 1993-04-21 1996-04-30 Nippon Rensui Co. Demineralization apparatus and cloth for packing diluting chamber of the demineralization apparatus
JP2002119974A (en) * 2000-10-12 2002-04-23 Kurita Water Ind Ltd Pure water making method
JP2010227731A (en) * 2009-03-25 2010-10-14 Japan Organo Co Ltd Electric deionized water production apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512173A (en) * 1993-04-21 1996-04-30 Nippon Rensui Co. Demineralization apparatus and cloth for packing diluting chamber of the demineralization apparatus
JP2002119974A (en) * 2000-10-12 2002-04-23 Kurita Water Ind Ltd Pure water making method
JP4631148B2 (en) * 2000-10-12 2011-02-16 栗田工業株式会社 Pure water production method
JP2010227731A (en) * 2009-03-25 2010-10-14 Japan Organo Co Ltd Electric deionized water production apparatus

Similar Documents

Publication Publication Date Title
US3686089A (en) Method of separation of ions from a solution
JP2751090B2 (en) Pure water production equipment
CN107960062B (en) Bipolar electrodialysis methods and systems
JP3956836B2 (en) Electrodeionization equipment
JPH0757308B2 (en) Electrodialysis tank
WO1997046492A1 (en) Process for producing deionized water by electrical deionization technique
JP3644759B2 (en) Electric regenerative pure water manufacturing method and pure water manufacturing apparatus
JP2001079553A (en) Method for packing ion exchanger in electric deionizer, and electric deionizer
JP3512425B2 (en) Electrochemical treatment of ion exchange materials
US5064538A (en) Membrane process for acid recovery
JP3788318B2 (en) Electrodeionization apparatus and electrodeionization method
JPH04250882A (en) Production of pure water
JP6163078B2 (en) Desalination method and desalting apparatus
JP2001259646A (en) Electric deionized water producer
JP3501339B2 (en) Electric deionized water production equipment
JP2002205071A (en) Electric deionized water manufacturing apparatus and method of manufacturing deionized water
JP3729347B2 (en) Electric regenerative desalination equipment
JP3729348B2 (en) Electric regenerative desalination equipment
JP2003326269A (en) Electric regenerative demineralizer
JP4660890B2 (en) Operation method of electrodeionization equipment
JP2001259645A (en) Deionized water production method
JP4107166B2 (en) Deionization method
JPH03224688A (en) Production of pure water
JP2000005763A (en) Electric deionized water production device
JPH0564786A (en) Production of pure water