JPH0425077B2 - - Google Patents

Info

Publication number
JPH0425077B2
JPH0425077B2 JP60217414A JP21741485A JPH0425077B2 JP H0425077 B2 JPH0425077 B2 JP H0425077B2 JP 60217414 A JP60217414 A JP 60217414A JP 21741485 A JP21741485 A JP 21741485A JP H0425077 B2 JPH0425077 B2 JP H0425077B2
Authority
JP
Japan
Prior art keywords
coated
temperature
alloy
metal
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60217414A
Other languages
Japanese (ja)
Other versions
JPS6274478A (en
Inventor
Toshio Shinohara
Hironari Tanabe
Shunsuke Nakayama
Takayuki Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK filed Critical Dai Nippon Toryo KK
Priority to JP21741485A priority Critical patent/JPS6274478A/en
Publication of JPS6274478A publication Critical patent/JPS6274478A/en
Publication of JPH0425077B2 publication Critical patent/JPH0425077B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、本来的に塗料に対して付着性の悪い
金属又は合金上に塗料を密着被覆する方法に関す
る。 (従来技術) 従来、塗装が施される金属としては鉄が最も一
般的であるが、最近では装飾上あるいは防食上の
観点から鉄以外の金属、例えばステンレス、亜
鉛、アルミニウム、銅等の金属が使用されること
が多くなつて来ている。これらの金属に対して、
美装上あるいは表面保護上、塗料を塗布すること
が要求される。しかして、これらの金属は塗料と
の付着性が非常に悪いという問題点があつた。そ
の大きな要因の一つには、これらの金属表面に生
成する酸化皮膜が挙げられ、これが塗料の付着性
を阻害すると云われている。従つて、これらの金
属への塗装に際しては、素地金属と反応性を有す
る化合物を添加した塗料を使用するとか、表面を
ケミカルエツチングする等の方法が行われてい
る。しかし、前者は使用出来る塗料の種類が限定
されるとか、後者の方法は処理が困難な部位があ
る等種種の問題点があつた。 一方、鉄等の表面にある種の金属や合金等を溶
射し、防食性の向上を計ることは古くから行われ
ていた。従来の金属溶射は、例えば鉄素地上に亜
鉛あるいは亜鉛−アルミニウム合金等の鉄より卑
な金属を溶射し、電気化学的に鉄を保護すること
が最も一般的であつた。従来の溶射方式は、ガス
フレーム溶射及び電気アーク溶射方法が代表的な
ものであり、この種の溶射方式においては、溶融
された金属粒子が高温のまま被塗物上に付着する
ため熱による歪の発生や、被塗物の限定、あるい
は溶射時の環境や施工作業性等の問題、更には高
温に保持された金属の拡散による塗着効率の低下
やフユームの問題、其の他高温にさらされた状態
により金属の酸化(酸化被膜の形成→塗料付着性
低下)等種々の問題点があるため、長期間の防食
性が要求される場合等、ごく限られた場合に使用
されているのが現状である。 本発明は前記の如き従来技術における問題点を
解決し、塗料の付着性が非常に悪い、銅、銅合
金、亜鉛、亜鉛合金、アルミニウム、アルミニウ
ム合金及びステンレスから選ばれた素地に対し付
着性の優れた塗膜を形成するための被覆方法を提
供しようとするものである。 (問題点を解決するための手段) すなわち、本発明は、銅、銅合金、亜鉛、亜鉛
合金、アルミニウム、アルミニウム合金及びステ
ンレスから選ばれた被塗物表面をブラスト処理す
ることなく、前記と同種の金属又は合金をアーク
溶融すると同時に高速気流中に移行させ、急激に
過冷却し、微粒化させて被塗物表面に低温溶射
し、ついで合成樹脂塗膜を塗布することを特徴と
する被覆方法に関する。 (本発明の具体的内容) 本発明において、被塗物としての、銅、亜鉛、
アルミニウムは金属そのものであり、又、銅合金
とは銅を主成分とし、少量のNi、Zn、Sn、Al、
Fe、Mn、Pb、Co、Si、P等の一種もしくは二
種以上の成分を混入せしめて得られる合金であ
り、亜鉛合金とは亜鉛を主成分とし、少量のAl、
Cu、Mg、Pb、Fe、Cd、Sn等の一種もしくは二
種以上の成分を混入せしめて得られる合金であ
り、アルミニウム合金とは、アルミニウムを主成
分としZn、Mg、Cr、Si、Mn、Ni、Pb、Bi、
Cu等の一種もしくは二種以上の成分を少量混合
して得られる合金である。更に、ステンレスとは
SUS304、SUS316、SUS403、SUS410、
SUS414、SUS416、SUS420等の合金である。当
然のことながら、これらの金属又は合金がメツキ
されたものも上記範囲に包含されるものである。 本発明において、前記金属又は合金被塗物面上
に溶射される金属又は合金は、前記金属又は合金
と同種のものが使用される。ここで同種とは例え
ば、銅被塗物面上には銅金属又は銅合金を溶射
し、又銅合金上には銅金属又は銅合金を溶射する
ことを意味し、更に例えばCu−Ni合金上にCu−
Mn合金を溶射するというように少量混合される
成分が異なる合金同志の組合せも包含されるもの
である。本発明の被覆方法において被塗物と同種
の金属又は合金を用いる理由は、被塗物金属と溶
射金属間の異種金属接触腐蝕の防止及び被塗物金
属と溶射被膜の接着力向上を目的とするためであ
る。 本発明の被覆方法において使用される合成樹脂
塗料としては、一般に市販されている公知の合成
樹脂塗料がいずれも使用出来る。例えば、ビスフ
エノール型エポキシ樹脂、フエノールノボラツク
型エポキシ樹脂、ポリグリコール型エポキシ樹
脂、エステル型エポキシ樹脂等を展色剤としたも
の、あるいはこれらを歴青質変性もしくはウレタ
ン変性したものに、アミンアダクト、ポリアミ
ン、ポリアミド樹脂等のアミノ系硬化剤又はポリ
イソシアネート硬化剤を配合したエポキシ樹脂塗
料;塩化ゴムあるいはこれとロジン、クマロン−
インデン樹脂、フエノール樹脂、石油樹脂、可塑
剤等を混合した塩化ゴム塗料;塩化ビニルのホモ
ポリマー又は、塩化ビニルと酢酸ビニル、塩化ビ
ニリデン等との共重合体を展色剤とした塩化ビニ
ル樹脂塗料;アクリル酸又はメタクリル酸、これ
らのアルキルエステル、スチレン、ビニルトルエ
ン等のモノマーから選ばれた二種以上の共重合体
を展色剤とするアクリル樹脂塗料;フタル酸等の
多塩基酸、グリセリン等の多価アルコール及び脂
肪酸を縮合反応して得られる反応生成物を展色剤
とするアルキド樹脂塗料;多塩基酸と多価アルコ
ールの縮合反応により得られる生成物を展色剤と
するポリエステル樹脂塗料;ポリエステルポリオ
ール、ポリエーテルポリオール、アクリルポリオ
ール等のポリオール成分を主剤とし、ポリイソシ
アネートを硬化剤とするポリウレタン樹脂塗料
(歴青質変性を含む);水酸基含有フツ素共重合体
を主成分とし、ポリイソシアネートあるいはメラ
ミン樹脂を硬化剤とする常温硬化もしくは加熱硬
化型フツ素樹脂、フツ化ビニル樹脂、フツ化ビニ
リデン樹脂等を展色剤とするフツ素樹脂塗料;其
の他シリコーン樹脂、シリコーン変性アルキド樹
脂、シリコーン変性アクリル樹脂等を展色剤とす
るシリコーン樹脂塗料;其の他フエノール樹脂、
メラミン樹脂等が挙げられる。 前記合成樹脂塗料には、必要により着色顔料、
体質顔料、染料、其の他レベリング剤、紫外線吸
収剤、分散安定剤等の各種添加剤などを添加混合
し得る。又、本発明に使用される合成樹脂塗料は
溶剤系、水溶性系、水分散系、無溶剤系のいずれ
であつてもよい。更に、前記合成樹脂塗料は常温
乾燥型もしくは強制乾燥(加熱を含む)型のいず
れであつてもよい。 次に、本発明の被覆方法につき説明する。 まず、前記被塗物の表面に前記溶射金属を低温
溶射する。尚、前記被塗物の表面に予めブラスト
処理を施す必要はない。 本発明に於いて、低温溶射とは溶射金属をアー
ム溶融すると同時に、その溶融箇所の前方周辺に
おいて低温の空気流又は不活性気体流を高速で噴
射し、その間に生じる減圧部により高速噴射流に
溶射金属溶融体を移行させて、急激に過冷却し、
微粒化しつつ飛行せしめ被塗物の表面に低温で溶
射金属を溶着せしめる方法を云い、この低温溶射
法それ自体は従来から成形金型の製造方法として
知られているものである。 上記低温溶射は、例えば溶射金属として亜鉛を
用いる場合、次のようにして行ない得る。亜鉛を
約1350℃でアーク溶融すると同時に、約0℃〜約
10℃に冷却した窒素の如き不活性気体を圧縮空気
圧約5〜10Kg/cm2で噴射し、溶融箇所と噴射流と
の間に生じた約0.2〜約0.7気圧の減圧部により亜
鉛溶融体を高速噴射流に移行させて急激に過冷却
状態とし、微粒化し、被塗物表面に約15℃の温度
で約5〜5000μ、好ましくは20〜1000μの溶射被
膜を形成する。その他の詳細な低温溶射の条件
は、後述する実施例から一層明瞭となろう。 上記の如く低温溶射を行なうことにより、その
他の溶射方法、例えば電気アーク溶射方法に較べ
より一層微細な凹凸状でしかも酸化されていない
表面を有する溶射被膜を得ることが出来、更に被
塗物上の溶着温度も低いので溶射被膜は熱歪がな
く、それ故溶射被膜に対する合成樹脂塗料の付着
性及び被塗物に対する溶射被膜の付着性は極めて
良好である。 本発明に於いては、かくして得られた溶射被膜
の上に、前記合成樹脂塗料を塗布する。塗布は、
常法により、例えばエアースプレー、エアレスス
プレー、ローラー、刷毛等により乾燥膜厚が約25
〜300μ程度になるように行ない得る。 かくして本発明の方法により本来塗料に対し付
着性の悪い被塗物に優れた付着性で前記合成樹脂
塗料を塗布することが出来、被塗物の美装あるい
は保護を一層効率よくしかも確実に行なうことが
出来る。 以下、本発明の詳細を実施例により説明する。
「部」又は「%」は「重量部」又は「重量%」を
示す。 実施例 1 低温溶射の被塗物は亜鉛とし、これに亜鉛合金
の低温溶射を実施した。亜鉛合金の組成は亜鉛
99.932、鉛0.05、鉄0.012、カドミニウム0.005、
銅0.001からなるものである。低温溶射条件は溶
射線径1.6mmφ、溶射線搬速2m/分、圧縮空気
圧7.5Kg/cm2、ガン先端空気圧6.0Kg/cm2、減圧度
0.5気圧、亜鉛合金溶融温度1550℃、圧縮空気温
度5℃とした。得られた溶射被膜の厚さは1mm、
被塗物温度は25℃であつた。被塗物と溶射被膜の
付着強度は表−1に示した。尚、付着強度は引張
試験機にて1mm/分の引張速度で垂直引張を行な
うことにより測定した。 又この溶射被膜上に、以下に配合を示すエポキ
シ樹脂塗料とアルキド樹脂塗料を各々乾燥膜厚が
100μm及び50μmになるようエアースプレー塗布
し、7日間常温乾燥せしめた。これらの初期付着
性及び耐湿試験300時間後の二次付着性を評価し
その結果を第2表に示した。 〔エポキシ樹脂塗料〕 (主剤) エポキシ樹脂 15部 キシロール 25 メチルイソブチルケトン 22.5 酸化チタン 5 炭酸カルシウム 7.5 (硬化剤) ポリアミド樹脂 10 キシロール 10 イソブタノール 5 前記エポキシ樹脂はシエル化学(株)商品名エピコ
ート#1001〔エポキシ当量450〜520〕を、ボリア
ミド樹脂は富士化成(株)製商品名トーマイド#210
を各々使用した。使用直前に主剤75部に対し硬化
剤25部を配合しエポキシ樹脂塗料組成物を得た。 〔アルキド樹脂塗料〕 大豆油変性中油型アルキド樹脂 15部 (油長50%、酸価5) 塩化ゴム 15 塩素化パラフイン40% 7 酸化チタン 15 金属ドライヤー 2 皮張り防止剤 0.5 沈降防止剤 1 キシロール 44.5 実施例 2 被塗物はアルミニウム金属として、これにアル
ミニウム金属の低温溶射を施した。低温溶射条件
は溶射線径1.6mmφ、溶射線搬速5m/分、圧縮
空気圧7.0Kg/cm2、ガン先端空気圧5.8Kg/cm2、減
圧度0.5気圧、アルミニウム溶融温度1600℃、圧
縮空気温度3℃とした。得られた溶射被膜の厚さ
は0.5mm、被塗物温度は20℃であつた。ついで、
前記実施例1と同様に被塗物と溶射被膜間の付着
強度を測定し、その結果を第1表に示した。又、
前記溶射被膜上に、前記エポキシ樹脂塗料とアル
キド樹脂塗料を各々実施例1と同様に塗布した。
その付着強度を測定し、その結果を第2表に示し
た。 実施例 3 被塗物はステンレスSUS304とし、これにステ
ンレスSUS316の低温溶射を実施した。低温溶射
条件は溶射線径1.6mmφ、溶射線搬速2m/分、
圧縮空気圧7.5Kg/cm2、ガン先端空気圧6.0Kg/
cm2、減圧度0.5気圧、ステンレス316溶融温度2700
℃、圧縮空気温度0℃とした。得られた溶射被膜
の厚さは500μ、被塗物温度は40℃であつた。つ
いで、前記実施例1と同様に被塗物と溶射被膜間
の付着強度を測定し、その結果を第1表に示し
た。又、前記溶射被膜上に、前記エポキシ樹脂塗
料とアルキド樹脂塗料を各々実施例1と同様に塗
布した。その付着強度を測定し、その結果を第2
表に示した。 実施例 4 被塗物は、亜鉛合金とし、これに亜鉛合金の低
温溶射を実施した。亜鉛合金の組成は亜鉛
99.932、鉛0.05、鉄0.012、カドミウム0.005、銅
0.001からなるものである。低温溶射条件は溶射
線径1.6mmφ、溶射線搬速8m/分、圧縮窒素ガ
ス圧7.5Kg/cm2、ガン先端圧力6.0Kg/cm2、減圧度
0.5気圧、亜鉛合金溶融温度1550℃、圧縮空気圧
0℃とした。得られた溶射被膜の厚さは500μm、
被塗物温度は20℃であつた。ついで、前記実施例
1と同様に被塗物と溶射被膜間の付着強度を測定
し、その結果を第1表に示した。又、前記溶射被
膜上に、前記エポキシ樹脂塗料とアルキド樹脂塗
料を各々実施例1と同様に塗布した。その付着強
度を測定し、その結果を第2表に示した。 実施例 5 被塗物はアルミニウム合金とし、これにアルミ
ニウム金属の低温溶射を実施した。被塗物のアル
ミニウム合金は、アルミニウム97.25、マグネシ
ウム2.5、クロム0.25からなるものである。低温
溶射条件は溶射線径1.6mmφ、溶射線搬速5m/
分、圧縮空気圧7.5Kg/cm2、ガン先端空気圧6.0
Kg/cm2、減圧度0.5気圧、アルミニウム溶融温度
1800℃、圧縮空気温度5℃とした。得られた溶射
被膜の厚さは700μm、被塗物温度は30℃であつ
た。ついで、前記実施例1と同様に被塗物と溶射
被膜間の付着強度を測定し、その結果を第1表に
示した。又、前記溶射被膜上に、前記エポキシ樹
脂塗料とアルキド樹脂塗料を各々実施例1と同様
に塗布した。その付着強度を測定し、その結果を
第2表に示した。 実施例 6 被塗物は銅金属とし、これに銅合金の低温溶射
を実施した。銅合金の組成は銅90、ニツケル10か
らなるものである。低温溶射条件は溶射線径1.1
mmφ、溶射線搬速1.5m/分、圧縮空気7.5Kg/
cm2、ガン先端空気圧6.0Kg/cm2、減圧度0.5気圧、
銅合金溶融温度2800℃、圧縮空気温度0℃とし
た。得られた溶射被膜の厚さは200μ、被塗物温
度は30℃であつた。ついで、前記実施例1と同様
に被塗物と溶射被膜間の付着強度を測定し、その
結果を第1表に示した。又、前記溶射被膜上に、
前記エポキシ樹脂塗料とアルキド樹脂塗料を各々
実施例1と同様に塗布した。その付着強度を測定
し、その結果を第2表に示した。 実施例 7 被塗物は銅合金とし、これに銅合金の低温溶射
を実施した。被塗物銅合金の組成は銅95、マンガ
ン5、溶射銅合金の組成は銅90、ニツケル10から
なるものである。低温溶射条件は溶射線径1.6mm
φ、溶射線搬速2m/分、圧縮空気圧7.5Kg/cm2
ガン先端空気圧6.0Kg/cm2、減圧度0.5気圧、銅合
金溶融温度3100℃、圧縮空気温度0℃とした。得
られた溶射被膜の厚さは300μm、被塗物温度は
28℃であつた。ついで、前記実施例1と同様に被
塗物と溶射被膜間の付着強度を測定し、その結果
を第1表に示した。又、前記溶射被膜上に、前記
エポキシ樹脂塗料とアルキド樹脂塗料を各々実施
例1と同様に塗布した。その付着強度を測定し、
その結果を第2表に示した。 比較例 1 被塗物として銅−マンガン合金(実施例7と同
一)を用いた。前記被塗物表面を#320のサンド
ペーパーにより研磨した後、前記エポキシ樹脂塗
料とアルキド樹脂塗料を各々実施例1と同様に塗
布した。その付着強度を測定し、結果を第2表に
示した。 比較例 2 被塗物として、亜鉛金属(実施例1と同一)を
用いた。前記被塗物表面を#320のサンドペーパ
ーにより研磨した後、前記エポキシ樹脂塗料とア
ルキド樹脂塗料を各々実施例1と同様に塗布し
た。その付着強度を測定し、結果を第2表に示し
た。 比較例 3 被塗物として、アルミニウム金属(実施例2と
同一)を用いた。前記被塗物表面を#320のサン
ドペーパーにより研磨した後、前記エポキシ樹脂
塗料とアルキド樹脂塗料を各々実施例1と同様に
塗布した。その付着強度を測定し、結果を第2表
に示した。 比較例 4 被塗物として、ステンレス(SUS304:実施例
3と同一)を用いた。前記被塗物表面を#320の
サンドペーパーにより研磨した後、前記エポキシ
樹脂塗料とアルキド樹脂塗料を各々実施例1と同
様に塗布した。その付着強度を測定し、結果を第
2表に示した。
(Industrial Application Field) The present invention relates to a method for closely coating a paint onto a metal or alloy that inherently has poor adhesion to paint. (Prior art) Traditionally, iron has been the most common metal to be painted, but recently metals other than iron, such as stainless steel, zinc, aluminum, and copper, have been used for decorative or anti-corrosion reasons. It is becoming more and more used. For these metals,
For aesthetic reasons or surface protection, it is necessary to apply paint. However, these metals have a problem in that they have very poor adhesion to paint. One of the major factors is the oxide film formed on the surface of these metals, which is said to inhibit the adhesion of paint. Therefore, when painting these metals, methods such as using a paint containing a compound that is reactive with the base metal or chemically etching the surface are used. However, the former method has various problems, such as the types of paints that can be used are limited, and the latter method has areas that are difficult to treat. On the other hand, it has been practiced for a long time to thermally spray certain metals, alloys, etc. onto the surface of iron or the like in order to improve corrosion resistance. Conventional metal spraying has most commonly involved spraying a metal less noble than iron, such as zinc or a zinc-aluminum alloy, onto an iron substrate to electrochemically protect the iron. Typical conventional thermal spraying methods are gas flame spraying and electric arc thermal spraying. In these types of thermal spraying methods, molten metal particles adhere to the workpiece while still at a high temperature, causing distortion due to heat. problems such as the occurrence of dust, limitations on the object to be coated, the environment during thermal spraying and construction workability, problems such as reduced coating efficiency and fumes caused by the diffusion of metal kept at high temperatures, and other problems caused by exposure to high temperatures. Due to various problems such as oxidation of the metal (formation of oxide film → decrease in paint adhesion) depending on the state in which it is exposed, it is only used in very limited cases, such as when long-term corrosion protection is required. is the current situation. The present invention solves the problems in the prior art as described above, and improves the adhesion of paint to substrates selected from copper, copper alloys, zinc, zinc alloys, aluminum, aluminum alloys, and stainless steel, which have very poor adhesion. The purpose is to provide a coating method for forming an excellent coating film. (Means for Solving the Problems) That is, the present invention enables the surface of an object to be coated selected from copper, copper alloy, zinc, zinc alloy, aluminum, aluminum alloy, and stainless steel to be coated without blasting. A coating method characterized by arc-melting a metal or alloy, simultaneously transferring it into a high-speed air stream, rapidly supercooling it, atomizing it, low-temperature spraying it onto the surface of the object to be coated, and then applying a synthetic resin coating. Regarding. (Specific content of the present invention) In the present invention, copper, zinc,
Aluminum is a metal itself, and copper alloys are mainly composed of copper, with small amounts of Ni, Zn, Sn, Al,
It is an alloy obtained by mixing one or more components such as Fe, Mn, Pb, Co, Si, P, etc. Zinc alloy is mainly composed of zinc, with a small amount of Al,
It is an alloy obtained by mixing one or more components such as Cu, Mg, Pb, Fe, Cd, Sn, etc. Aluminum alloy is the main component of aluminum, Zn, Mg, Cr, Si, Mn, etc. Ni, Pb, Bi,
It is an alloy obtained by mixing small amounts of one or more components such as Cu. Furthermore, what is stainless steel?
SUS304, SUS316, SUS403, SUS410,
Alloys such as SUS414, SUS416, and SUS420. Naturally, those plated with these metals or alloys are also included in the above range. In the present invention, the metal or alloy to be thermally sprayed onto the surface of the metal or alloy coated object is of the same type as the metal or alloy. Here, the same type means, for example, that copper metal or copper alloy is thermally sprayed on the surface of a copper coating object, and that copper metal or copper alloy is thermally sprayed on a copper alloy, and furthermore, for example, on a Cu-Ni alloy. Cu−
It also includes combinations of alloys with different components mixed in small amounts, such as by thermal spraying a Mn alloy. The reason for using the same type of metal or alloy as the object to be coated in the coating method of the present invention is to prevent dissimilar metal contact corrosion between the object metal and the sprayed metal and to improve the adhesion between the object metal and the thermally sprayed coating. This is to do so. As the synthetic resin paint used in the coating method of the present invention, any of the known synthetic resin paints that are generally commercially available can be used. For example, amine adducts are added to bisphenol-type epoxy resins, phenol novolac-type epoxy resins, polyglycol-type epoxy resins, ester-type epoxy resins, etc., or to bituminous or urethane-modified versions of these. , polyamine, polyamide resin, or other amino-based curing agent or polyisocyanate curing agent; chlorinated rubber or this together with rosin, coumaron, etc.
Chlorinated rubber paint mixed with indene resin, phenol resin, petroleum resin, plasticizer, etc.; vinyl chloride resin paint using vinyl chloride homopolymer or copolymer of vinyl chloride, vinyl acetate, vinylidene chloride, etc. as a color vehicle ; Acrylic resin paints whose color vehicle is a copolymer of two or more selected from acrylic acid or methacrylic acid, their alkyl esters, monomers such as styrene and vinyltoluene; polybasic acids such as phthalic acid, glycerin, etc. Alkyd resin paint whose color vehicle is the reaction product obtained by the condensation reaction of polyhydric alcohol and fatty acid; polyester resin paint whose color vehicle is the product obtained by the condensation reaction of polybasic acid and polyhydric alcohol. ; Polyurethane resin paint (including bituminous modification) whose main component is a polyol component such as polyester polyol, polyether polyol, or acrylic polyol and polyisocyanate as a curing agent; Room-temperature-curing or heat-curing fluororesins using isocyanate or melamine resin as a curing agent, fluororesin paints using vinyl fluoride resin, vinylidene fluoride resin, etc. as a color vehicle; other silicone resins, silicone-modified alkyd resins , silicone resin paints using silicone-modified acrylic resin as a color vehicle; other phenolic resins,
Examples include melamine resin. The synthetic resin paint may contain colored pigments, if necessary.
Various additives such as extender pigments, dyes, and other leveling agents, ultraviolet absorbers, and dispersion stabilizers may be added and mixed. Furthermore, the synthetic resin coating used in the present invention may be a solvent-based coating, a water-soluble coating, a water-dispersion coating, or a solvent-free coating. Further, the synthetic resin paint may be either a room temperature drying type or a forced drying (including heating) type. Next, the coating method of the present invention will be explained. First, the thermal spray metal is low-temperature sprayed onto the surface of the object to be coated. Incidentally, there is no need to perform blasting treatment on the surface of the object to be coated in advance. In the present invention, low-temperature spraying refers to the process of arm-melting the sprayed metal and at the same time injecting a low-temperature air stream or inert gas stream at high speed around the front of the melting point, and creating a high-speed jet stream by the depressurization part created in between. The sprayed metal melt is transferred and rapidly supercooled,
This is a method of welding a sprayed metal onto the surface of an object to be coated at a low temperature by flying it while atomizing it, and this low-temperature spraying method itself has been conventionally known as a method for manufacturing molds. When zinc is used as the spray metal, the low-temperature spraying can be carried out as follows. Arc melting zinc at about 1350℃ and at the same time about 0℃ to approx.
An inert gas such as nitrogen cooled to 10°C is injected at a compressed air pressure of about 5 to 10 kg/ cm2 , and a reduced pressure of about 0.2 to about 0.7 atmospheres is created between the melting point and the jet stream to remove the zinc melt. The mixture is transferred to a high-velocity jet stream to rapidly supercool, atomize the particles, and form a sprayed coating of about 5 to 5,000 microns, preferably 20 to 1,000 microns, on the surface of the object to be coated at a temperature of about 15°C. Other detailed conditions for low-temperature spraying will become clearer from the examples described later. By performing low-temperature thermal spraying as described above, it is possible to obtain a thermal sprayed coating having a finer unevenness and an unoxidized surface compared to other thermal spraying methods, such as electric arc thermal spraying, and furthermore, Since the welding temperature is also low, the sprayed coating has no thermal distortion, and therefore the adhesion of the synthetic resin paint to the sprayed coating and the adhesion of the sprayed coating to the object to be coated are extremely good. In the present invention, the synthetic resin paint is applied onto the sprayed coating thus obtained. The application is
By conventional methods, such as air spray, airless spray, roller, brush, etc., the dry film thickness is approximately 25 cm.
It can be done so that the thickness is about 300μ. Thus, by the method of the present invention, the synthetic resin paint can be applied with excellent adhesion to objects that originally have poor adhesion to paints, and the beautification or protection of objects to be coated can be done more efficiently and reliably. I can do it. Hereinafter, the details of the present invention will be explained with reference to Examples.
"Part" or "%" indicates "part by weight" or "% by weight". Example 1 The object to be coated by low-temperature spraying was zinc, and low-temperature spraying of a zinc alloy was applied to it. The composition of zinc alloy is zinc
99.932, lead 0.05, iron 0.012, cadmium 0.005,
It consists of 0.001 copper. The low-temperature spraying conditions are: spray wire diameter 1.6 mmφ, spray wire travel speed 2 m/min, compressed air pressure 7.5 Kg/cm 2 , gun tip air pressure 6.0 Kg/cm 2 , degree of vacuum
The temperature was 0.5 atm, the zinc alloy melting temperature was 1550°C, and the compressed air temperature was 5°C. The thickness of the sprayed coating obtained was 1 mm.
The temperature of the object to be coated was 25°C. The adhesion strength between the coated object and the sprayed coating is shown in Table 1. The adhesion strength was measured by vertical tension using a tensile tester at a tension speed of 1 mm/min. In addition, on this thermal spray coating, epoxy resin paint and alkyd resin paint with the following compositions were applied to the dry film thickness.
Air spray coating was applied to a thickness of 100 μm and 50 μm, followed by drying at room temperature for 7 days. The initial adhesion and the secondary adhesion after 300 hours of the humidity test were evaluated and the results are shown in Table 2. [Epoxy resin paint] (Main ingredient) Epoxy resin 15 parts Xylol 25 Methyl isobutyl ketone 22.5 Titanium oxide 5 Calcium carbonate 7.5 (Curing agent) Polyamide resin 10 Xylol 10 Isobutanol 5 The above epoxy resin is manufactured by Ciel Chemical Co., Ltd., trade name Epicote #1001 [Epoxy equivalent: 450 to 520], and the polyamide resin is manufactured by Fuji Kasei Co., Ltd. under the trade name Tomide #210.
were used respectively. Immediately before use, 75 parts of the base resin and 25 parts of a curing agent were mixed to obtain an epoxy resin coating composition. [Alkyd resin paint] Soybean oil modified medium oil type alkyd resin 15 parts (oil length 50%, acid value 5) Chlorinated rubber 15 Chlorinated paraffin 40% 7 Titanium oxide 15 Metal dryer 2 Anti-skinning agent 0.5 Anti-settling agent 1 Xylol 44.5 Example 2 The object to be coated was aluminum metal, and low-temperature thermal spraying of aluminum metal was applied to the object. The low-temperature spraying conditions were: spray wire diameter 1.6 mmφ, spray wire travel speed 5 m/min, compressed air pressure 7.0 Kg/cm 2 , gun tip air pressure 5.8 Kg/cm 2 , degree of vacuum 0.5 atm, aluminum melting temperature 1600°C, compressed air temperature 3 ℃. The thickness of the sprayed coating obtained was 0.5 mm, and the temperature of the object to be coated was 20°C. Then,
The adhesion strength between the coated object and the thermally sprayed coating was measured in the same manner as in Example 1, and the results are shown in Table 1. or,
The epoxy resin paint and the alkyd resin paint were each applied on the thermal spray coating in the same manner as in Example 1.
The adhesion strength was measured and the results are shown in Table 2. Example 3 The object to be coated was stainless steel SUS304, and low-temperature spraying of stainless steel SUS316 was performed on it. The low-temperature spraying conditions are a sprayed wire diameter of 1.6 mmφ, a sprayed wire velocity of 2 m/min,
Compressed air pressure 7.5Kg/cm 2 , gun tip air pressure 6.0Kg/
cm2 , vacuum degree 0.5 atm, stainless steel 316 melting temperature 2700
℃, and the compressed air temperature was 0℃. The thickness of the sprayed coating obtained was 500μ, and the temperature of the object to be coated was 40°C. Next, the adhesion strength between the coated object and the thermally sprayed coating was measured in the same manner as in Example 1, and the results are shown in Table 1. Further, the epoxy resin paint and the alkyd resin paint were respectively applied on the thermal spray coating in the same manner as in Example 1. Measure the adhesion strength and use the results as a second
Shown in the table. Example 4 The object to be coated was a zinc alloy, and low-temperature thermal spraying of the zinc alloy was applied to the object. The composition of zinc alloy is zinc
99.932, lead 0.05, iron 0.012, cadmium 0.005, copper
It consists of 0.001. The low-temperature spraying conditions were: spray wire diameter 1.6 mmφ, spray wire travel speed 8 m/min, compressed nitrogen gas pressure 7.5 Kg/cm 2 , gun tip pressure 6.0 Kg/cm 2 , and degree of vacuum.
The temperature was 0.5 atm, the zinc alloy melting temperature was 1550°C, and the compressed air pressure was 0°C. The thickness of the sprayed coating obtained was 500 μm.
The temperature of the object to be coated was 20°C. Next, the adhesion strength between the coated object and the thermally sprayed coating was measured in the same manner as in Example 1, and the results are shown in Table 1. Further, the epoxy resin paint and the alkyd resin paint were respectively applied on the thermal spray coating in the same manner as in Example 1. The adhesion strength was measured and the results are shown in Table 2. Example 5 The object to be coated was an aluminum alloy, and low-temperature thermal spraying of aluminum metal was applied to the object. The aluminum alloy to be coated consists of 97.25% aluminum, 2.5% magnesium, and 0.25% chromium. The low-temperature spraying conditions are a spraying line diameter of 1.6mmφ and a spraying line velocity of 5m/
min, compressed air pressure 7.5Kg/cm 2 , gun tip air pressure 6.0
Kg/cm 2 , degree of vacuum 0.5 atm, aluminum melting temperature
The temperature of the compressed air was 1800℃ and the compressed air temperature was 5℃. The thickness of the sprayed coating obtained was 700 μm, and the temperature of the object to be coated was 30°C. Next, the adhesion strength between the coated object and the thermally sprayed coating was measured in the same manner as in Example 1, and the results are shown in Table 1. Further, the epoxy resin paint and the alkyd resin paint were respectively applied on the thermal spray coating in the same manner as in Example 1. The adhesion strength was measured and the results are shown in Table 2. Example 6 The object to be coated was copper metal, and low-temperature thermal spraying of a copper alloy was applied to it. The composition of the copper alloy is 90% copper and 10% nickel. Low-temperature spraying conditions are sprayed wire diameter 1.1
mmφ, thermal spray line velocity 1.5m/min, compressed air 7.5Kg/
cm 2 , gun tip air pressure 6.0Kg/cm 2 , degree of vacuum 0.5 atm,
The copper alloy melting temperature was 2800°C, and the compressed air temperature was 0°C. The thickness of the sprayed coating obtained was 200μ, and the temperature of the object to be coated was 30°C. Next, the adhesion strength between the coated object and the thermally sprayed coating was measured in the same manner as in Example 1, and the results are shown in Table 1. Moreover, on the thermal spray coating,
The epoxy resin paint and alkyd resin paint were each applied in the same manner as in Example 1. The adhesion strength was measured and the results are shown in Table 2. Example 7 The object to be coated was a copper alloy, and low-temperature thermal spraying of the copper alloy was applied to the object. The composition of the copper alloy to be coated is 95% copper and 5% manganese, and the composition of the sprayed copper alloy is 90% copper and 10% nickel. Low-temperature spraying conditions are sprayed wire diameter 1.6mm.
φ, thermal spray line velocity 2m/min, compressed air pressure 7.5Kg/cm 2 ,
The air pressure at the tip of the gun was 6.0 Kg/cm 2 , the degree of vacuum was 0.5 atm, the copper alloy melting temperature was 3100°C, and the compressed air temperature was 0°C. The thickness of the sprayed coating obtained was 300μm, and the temperature of the object to be coated was
It was 28℃. Next, the adhesion strength between the coated object and the thermally sprayed coating was measured in the same manner as in Example 1, and the results are shown in Table 1. Further, the epoxy resin paint and the alkyd resin paint were respectively applied on the thermal spray coating in the same manner as in Example 1. Measure the adhesion strength,
The results are shown in Table 2. Comparative Example 1 A copper-manganese alloy (same as Example 7) was used as the object to be coated. After the surface of the object to be coated was polished with #320 sandpaper, the epoxy resin paint and the alkyd resin paint were respectively applied in the same manner as in Example 1. The adhesion strength was measured and the results are shown in Table 2. Comparative Example 2 Zinc metal (same as Example 1) was used as the object to be coated. After the surface of the object to be coated was polished with #320 sandpaper, the epoxy resin paint and the alkyd resin paint were respectively applied in the same manner as in Example 1. The adhesion strength was measured and the results are shown in Table 2. Comparative Example 3 Aluminum metal (same as Example 2) was used as the object to be coated. After the surface of the object to be coated was polished with #320 sandpaper, the epoxy resin paint and the alkyd resin paint were respectively applied in the same manner as in Example 1. The adhesion strength was measured and the results are shown in Table 2. Comparative Example 4 Stainless steel (SUS304: same as Example 3) was used as the object to be coated. After the surface of the object to be coated was polished with #320 sandpaper, the epoxy resin paint and the alkyd resin paint were respectively applied in the same manner as in Example 1. The adhesion strength was measured and the results are shown in Table 2.

【表】【table】

【表】【table】

【表】 物と塗膜の間の層間はくりを示す。
上記比較試験の結果から明らかな如く、本発明
の方法により得られた被覆物は、被塗物表面を研
磨して合成樹脂塗料を塗布した場合(比較例1〜
4)に較べ付着性が格段と優れるものである。 尚、上記比較試験に於いて、付着性の評価を正
確にするため条件を一定にする必要上、特定の合
成樹脂塗料を使用したが、その他の合成樹脂塗料
を使用しても同様の結果が得られた。 (本発明の効果) 本発明の方法に従つて、本来的に塗料に対して
付着性の悪い金属又は合金に同種の金属又は合金
を低温溶射することにより美装用あるいは保護用
合成樹脂塗料を優れた付着性、塗装作業性でもつ
て塗布することが出来る。 また、本発明の方法によれば、被塗物表面にブ
ラスト処理を施さなくても、溶射される金属等の
被塗物への付着性が良好であるので、処理作業時
間を大幅に削減し、それによつて加工コストを著
しく低下させることができる。 それ故、本発明の実用価値は至大であると云つ
ても過言ではない。
[Table] Indicates interlayer peeling between the object and the paint film.
As is clear from the results of the above comparative tests, the coatings obtained by the method of the present invention are different from each other when the surface of the object to be coated is polished and the synthetic resin paint is applied (Comparative Examples 1 to 3).
The adhesion is much better than that of 4). In addition, in the above comparative test, a specific synthetic resin paint was used because it was necessary to keep the conditions constant in order to accurately evaluate adhesion, but similar results could be obtained even if other synthetic resin paints were used. Obtained. (Effects of the present invention) According to the method of the present invention, by low-temperature spraying a metal or alloy of the same type onto a metal or alloy that inherently has poor adhesion to paint, a synthetic resin paint for beauty or protection can be improved. It has excellent adhesion and painting workability and can be applied easily. In addition, according to the method of the present invention, the adhesion of the thermally sprayed metal to the object is good even without blasting the surface of the object, so the processing time can be significantly reduced. , thereby significantly reducing processing costs. Therefore, it is no exaggeration to say that the practical value of the present invention is enormous.

Claims (1)

【特許請求の範囲】[Claims] 1 銅、銅合金、亜鉛、亜鉛合金、アルミニウ
ム、アルミニウム合金及びステンレスから選ばれ
た被塗物表面をブラスト処理することなく、前記
と同種の金属又は合金をアーク溶融すると同時に
高速気流中に移行させ、急激に過冷却し、微粒化
させて被塗物表面に低温溶射し、ついで合成樹脂
塗膜を塗布することを特徴とする被覆方法。
1. Without blasting the surface of the object to be coated selected from copper, copper alloy, zinc, zinc alloy, aluminum, aluminum alloy, and stainless steel, metals or alloys of the same type as those mentioned above are melted in an arc and transferred into a high-speed air stream at the same time. A coating method characterized by rapidly supercooling, atomizing, and low-temperature spraying onto the surface of the object to be coated, and then applying a synthetic resin coating.
JP21741485A 1985-09-30 1985-09-30 Coating method Granted JPS6274478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21741485A JPS6274478A (en) 1985-09-30 1985-09-30 Coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21741485A JPS6274478A (en) 1985-09-30 1985-09-30 Coating method

Publications (2)

Publication Number Publication Date
JPS6274478A JPS6274478A (en) 1987-04-06
JPH0425077B2 true JPH0425077B2 (en) 1992-04-28

Family

ID=16703827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21741485A Granted JPS6274478A (en) 1985-09-30 1985-09-30 Coating method

Country Status (1)

Country Link
JP (1) JPS6274478A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1257969B (en) * 1992-12-31 1996-02-19 Fiat Auto Spa IMPROVEMENTS IN PROCESSES AND SYSTEMS FOR THE CONTROL OF THE MOVEMENT OF VEHICLES, FOR EXAMPLE FOR THE CONTROL OF THE TRAJECTORY AND / OR OF THE SAFETY DISTANCE OF VEHICLES.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122973A (en) * 1981-01-23 1982-07-31 Shiyain Kogei:Kk Method of forming corrosion-resistant non-sticky coat on aluminum die-cast article
JPS60197273A (en) * 1984-03-16 1985-10-05 Sekisui Chem Co Ltd Preparation of coated metal body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122973A (en) * 1981-01-23 1982-07-31 Shiyain Kogei:Kk Method of forming corrosion-resistant non-sticky coat on aluminum die-cast article
JPS60197273A (en) * 1984-03-16 1985-10-05 Sekisui Chem Co Ltd Preparation of coated metal body

Also Published As

Publication number Publication date
JPS6274478A (en) 1987-04-06

Similar Documents

Publication Publication Date Title
KR100790917B1 (en) Water-based two component protective coating compositions
CA1329071C (en) Resistance welding of galvanized steel
JPS63176453A (en) Production of thermally sprayed metal film
JPH08503014A (en) Composition for coating involved articles and coating method
JP2006509105A (en) Corrosion-resistant composite metal diffusion coating and its construction method
JP4094707B2 (en) Precoat coating composition and precoated steel sheet
JP3702193B2 (en) Non-delaminating lubricated galvanized steel sheet with excellent corrosion resistance after machining
JPH0425077B2 (en)
JPH0256424B2 (en)
JPH0244897B2 (en)
JP3007223U (en) Metal body with metal low temperature spray coating
US4788411A (en) Welding method which provides a weld with corrosion protection
TWI731335B (en) Coating with oxidation resistance at high temperature and method for coating surface of carbon steel
US4479891A (en) Process for manufacturing an anti-corrosion paint and the paint resulting from that process
JP2617838B2 (en) Manufacturing method of high performance lubricated steel sheet
JPH01301241A (en) Weldable coated metal plate
JPS6112516B2 (en)
JPH0328507B2 (en)
JPH0225555A (en) Formation of molten metal-sprayed coating film
JP3013826U (en) Base material protective coating structure
DE1906299C3 (en) Process for the production of adhesive and hot water resistant polyolefin coatings on metallic objects
JP3013827U (en) Non-metal molded article with metal low temperature spray coating
JPS58138758A (en) Coating compound composition for weldable precoated metal
JPS63282247A (en) Treatment of edge part, connecting part or the like of clad steel
JPH11131259A (en) Anticorrosive coating of galvanized steel

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term