JPH04250608A - Energy storage quick discharge capacitor - Google Patents

Energy storage quick discharge capacitor

Info

Publication number
JPH04250608A
JPH04250608A JP3025317A JP2531791A JPH04250608A JP H04250608 A JPH04250608 A JP H04250608A JP 3025317 A JP3025317 A JP 3025317A JP 2531791 A JP2531791 A JP 2531791A JP H04250608 A JPH04250608 A JP H04250608A
Authority
JP
Japan
Prior art keywords
capacitor
metal
small
film
capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3025317A
Other languages
Japanese (ja)
Inventor
Minoru Den
實 田
Masayoshi Kakine
垣根 正義
Shusaku Tsujio
辻尾 周作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP3025317A priority Critical patent/JPH04250608A/en
Publication of JPH04250608A publication Critical patent/JPH04250608A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To raise a working potential gradient and miniaturize a capacitor by forming a small-capacity metallized film or metallized paper into many series connections and parallel connections, by reducing a breakdown discharge energy in the defective part of the film or insulating paper, and by limiting the amount of evaporation and scattering of a deposited metal through the discharge of that part. CONSTITUTION:Two films a, b having a metal-deposited electrode on one surface are piled up into capacitor elements. A deposited metal part is provided with insulating parts 2, 2' continuing in the longitudinal direction and three or more series capacitors are formed in one capacitor element. Insulating parts 3, 3' are also provided in the width direction of a film and a capacity in one capacitor element is divided into many parallel connections. Out of many small capacitors formed into a plurality of capacitor parallel circuits in that element, input-output terminal lead-out parts 1, 1' in contact with metal sputter are continuous or a plurality of continuous conductors. Therefore, even if e.g. a small capacitor C1 part is defective to cause a dielectric breakdown, other parts are not influenced by the breakdown.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、主としてパルス大電流
発生のためのコンデンサ電源に使用するエネルギー蓄積
急放電用コンデンサに関するものである。パルス大電流
の用途としては核融合、パルス超強磁場発生、人工雷発
生、電磁力加速機、大強度パルスレーザー電源、その他
フラッシュランプ電源などのインパルス電圧、インパル
ス電流発生の装置である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy storage rapid discharge capacitor used primarily as a capacitor power source for generating pulsed large currents. Applications of pulsed large current include devices that generate impulse voltage and impulse current, such as nuclear fusion, pulsed ultra-strong magnetic field generation, artificial lightning generation, electromagnetic force accelerators, high-intensity pulsed laser power sources, and other flash lamp power sources.

【0002】0002

【従来の技術】従来、この種装置に使用しているコンデ
ンサは、誘電体として、紙またはプラスチックフィルム
あるいはその前記2者の組合せで使用し、電極としてア
ルミニウム箔を使用し、これらを巻回してコンデンサ素
子とし、これを1〜複数個集合して、並列接続または電
圧に応じて直列接続または両者の組合せとして必要な耐
電圧と静電容量のコンデンサ電源を構成していた。また
一部にはアルミ箔電極の替わりに金属蒸着された紙また
はプラスチックフィルムを使用したコンデンサも使用さ
れている。
[Prior Art] Conventionally, capacitors used in this type of device use paper or plastic film, or a combination of the two, as the dielectric, and aluminum foil as the electrode, which is wound around the capacitor. One or more capacitor elements are assembled to form a capacitor power supply having the necessary withstand voltage and capacitance by connecting in parallel, connecting in series depending on the voltage, or a combination of both. Some capacitors also use metal-deposited paper or plastic film instead of aluminum foil electrodes.

【0003】0003

【発明が解決しようとする課題】最近の上記装置は大規
模化され、装置自体が大形かつ高価なものとなり、その
当然の帰結として小型、軽量化の要望がある。コンデン
サの容積の大部分をしめる誘電体の蓄積エネルギーJc
Problems to be Solved by the Invention Recently, the above-mentioned devices have become larger in scale, and the devices themselves have become larger and more expensive, and as a natural consequence of this, there is a desire to make them smaller and lighter. The stored energy Jc of the dielectric material that occupies most of the capacitor volume
teeth

【数1】 となり、容積当りの蓄積エネルギーは、電位傾度の2乗
に比例する。すなわち、誘電体電位傾度を強くすること
がコンデンサ小型化への最有力手段である。
The stored energy per volume is proportional to the square of the potential gradient. In other words, increasing the dielectric potential gradient is the most effective means for downsizing the capacitor.

【0004】誘電体として、ポリエチレンテレフタレー
トフィルム、ポリプロピレンフィルムなどが高絶縁耐力
材料として多用されている。これらのフィルムの絶縁耐
力は400〜 600kV/mmであるが、コンデンサ
として使用するときその面積が大きく、1部に欠陥があ
るとき、その最低絶縁耐力以下で設計しなくては絶縁破
壊となる。
As dielectric materials, polyethylene terephthalate films, polypropylene films, and the like are often used as high dielectric strength materials. The dielectric strength of these films is 400 to 600 kV/mm, but when used as a capacitor, the area is large and if there is a defect in one part, dielectric breakdown will occur unless the film is designed to have a minimum dielectric strength or less.

【0005】また、大容量大蓄積エネルギー(例えば1
MJ以上)コンデンサバンクとするとき、多数の単位コ
ンデンサを並列結線として使用されるが、その1つで絶
縁破壊が起こると、これに並列接続されたコンデンサの
蓄積エネルギーが破壊コンデンサに集中放電され、爆発
的破壊が起こり破片の飛散と、出火の危険がある。
[0005] Also, large-capacity, large-storage energy (for example, 1
MJ or higher) When forming a capacitor bank, a large number of unit capacitors are connected in parallel, but if dielectric breakdown occurs in one of them, the stored energy of the capacitors connected in parallel will be concentrated and discharged to the broken capacitor. There is a risk of explosive destruction, scattering of debris, and fire.

【0006】これらの事故を防止するため、従来のコン
デンサ誘電体の電位傾度は70〜 150kV/mmで
設計されており、フィルムの真の絶縁耐力との間に3〜
8倍の開きがあった。これがコンデンサを大きくしてい
る最大の原因であった。また、低圧コンデンサでは電極
を金属蒸着膜として絶縁欠陥部周辺の電極金属を放電に
より蒸発させ、その部分のコンデンサ機能を除去して使
用する自己回復型コンデンサもあるが高電圧では破壊箇
所が大きくなり、絶縁回復が不可能であった。
[0006] In order to prevent these accidents, the potential gradient of conventional capacitor dielectrics is designed to be 70 to 150 kV/mm, and there is a difference of 3 to 150 kV/mm between the true dielectric strength of the film.
There was a difference of 8 times. This was the main reason for making the capacitor larger. In addition, in low-voltage capacitors, there are also self-healing capacitors in which the electrode is a metal evaporated film and the electrode metal around the insulation defect is evaporated by discharge, removing the capacitor function in that area. , insulation recovery was impossible.

【0007】[0007]

【課題を解決するための手段】本発明は誘電体フィルム
に散在する耐電圧上の微少欠陥部をコンデンサ機能より
除外し、フィルムの理想的耐電圧のある部分のみでコン
デンサを構成し、これにより使用電位傾度を上げて、コ
ンデンサを小型化しようとするものである。
[Means for Solving the Problems] The present invention eliminates micro-defects on the withstand voltage scattered in the dielectric film from the capacitor function, and configures the capacitor only with the portions of the film that have the ideal withstand voltage. This is an attempt to reduce the size of the capacitor by increasing the potential gradient used.

【0008】その手段として、小容量金属化フィルムま
たは金属化紙を多数直列結線と並列結線とし、フィルム
または絶縁紙の欠陥部分での破壊放電エネルギーを小さ
くし、該部分の放電による蒸着金属の蒸発飛散量を制限
し、良好な絶縁回復特性をもたせるものである。
As a means of achieving this, a large number of small-capacity metallized films or metallized papers are connected in series or in parallel to reduce the destructive discharge energy at defective parts of the film or insulating paper, and to reduce the evaporation of the deposited metal due to the discharge in the parts. This limits the amount of scattering and provides good insulation recovery characteristics.

【0009】この機能をもたせるためのコンデンサ素子
の金属蒸着電極の構造を図1に示す。図1は片面に金属
蒸着電極を有する2枚のフィルムa、bを重ね合わせて
、巻回し、コンデンサ素子とする構造で、斜線部が蒸着
金属電極部である。2枚のフィルムは同一形状で図面上
、 180°回転した配置である。
FIG. 1 shows the structure of a metal vapor-deposited electrode of a capacitor element to provide this function. FIG. 1 shows a structure in which two films a and b, each having a metal vapor-deposited electrode on one side, are overlapped and wound to form a capacitor element, and the shaded area is the vapor-deposited metal electrode part. The two films have the same shape and are rotated 180 degrees in the drawing.

【0010】1、1’は蒸着金属がフィルム端面に位置
し、フィルム巻取後金属スパッタによりコンデンサの入
出力を導出する端子導出部分である。2、2’は蒸着金
属電極に長手方向に設けた絶縁帯であり、2枚のフィル
ムを重ね合わせた場合、互い違いとなり、1、1’両端
子間に複数直列のコンデンサを形成する。3、3’はフ
ィルムの幅方向に設けた絶縁帯で、一素子内の容量を多
数の並列接続に分割するものである。この2枚のフィル
ムを巻取り後偏平に圧縮した形状を図3に示す。
Reference numerals 1 and 1' denote terminal lead-out portions where vapor-deposited metal is located on the end face of the film, and the input and output of the capacitor is led out by metal sputtering after the film is wound up. 2 and 2' are insulating bands provided in the longitudinal direction of the vapor-deposited metal electrodes, and when the two films are overlapped, they are staggered to form a plurality of series capacitors between both terminals 1 and 1'. 3 and 3' are insulating bands provided in the width direction of the film, which divide the capacitance within one element into a large number of parallel connections. FIG. 3 shows the shape of these two films after being rolled up and compressed into a flat shape.

【0011】両端面1、1’には金属スパッタ4により
素子端子面が形成される。この素子内結線図を図2に示
す。図は多数の小コンデンサ群が端子1、1’間に直列
および並列に網目状に配置されていることを示す。
Element terminal surfaces are formed on both end surfaces 1 and 1' by metal sputtering 4. A wiring diagram within this element is shown in FIG. The figure shows a large number of small capacitor groups arranged in series and in parallel in a mesh pattern between the terminals 1, 1'.

【0012】小コンデンサ群の1つの容量は長手方向お
よび幅方向絶縁帯の間隔を変えることにより自由に設定
できる。図2の互いに隣接する小コンデンサ部、例えば
図1のC1 とC2 で示した部分で、C1 とC2 
の容量は、2枚のフィルムの幅方向絶縁帯の重なり具合
により異なるが、幅方向絶縁帯間隔を一定にすることに
よりC1 +C2は一定となる。またC2 +C3 も
一定値である。これはフィルム幅方向の中心部に近い所
でも同じことである。
The capacitance of one of the small capacitor groups can be freely set by changing the spacing between the insulating bands in the longitudinal and width directions. In the small capacitor parts adjacent to each other in Fig. 2, for example, the parts indicated by C1 and C2 in Fig. 1, C1 and C2
The capacitance varies depending on the degree of overlap of the width direction insulating bands of the two films, but C1 +C2 becomes constant by keeping the width direction insulating band interval constant. Further, C2 +C3 is also a constant value. This is also the case near the center in the width direction of the film.

【0013】[0013]

【作用】図1に示すコンデンサ素子を構成するフィルム
の厚さは4〜9μm程度が現在の生産技術上、厚さのバ
ラツキ、むらなどより適当であり、これに 300kV
/mmの電界強度となる電圧を印加すると、その電圧は
4μm厚で1200V 9μm厚で、2700Vとなる
。このような電圧をフィルムに印加すると、フィルム面
積数m2 に1点程度の欠陥があり、絶縁破壊を起こす
。このときフィルム幅方向の絶縁帯がないと破壊部を含
むコンデンサ容量が大きく蓄積エネルギーも大きいので
、絶縁破壊箇所周辺の蒸着金属電極の放電により蒸発飛
散するが、電圧が高いため絶縁回復に至らず、放電を持
続し、コンデンサ全体の不良となる。
[Function] The thickness of the film constituting the capacitor element shown in Fig. 1 is approximately 4 to 9 μm, which is appropriate due to current production technology and thickness variations and unevenness.
When a voltage with an electric field strength of /mm is applied, the voltage is 1200 V for a 4 μm thickness and 2700 V for a 9 μm thickness. If such a voltage is applied to the film, there will be about one defect in the film area of several square meters, causing dielectric breakdown. At this time, if there is no insulating band in the width direction of the film, the capacitor capacity including the breakdown area is large and the stored energy is large, so it evaporates and scatters due to the discharge of the vapor-deposited metal electrode around the breakdown area, but due to the high voltage, insulation recovery does not occur. , the discharge continues and the entire capacitor becomes defective.

【0014】これに対し、本発明のコンデンサ素子にお
いては、第1図のフィルム構造で、例えば小コンデンサ
部C1 部に欠陥があり、絶縁破壊を起こしてもC1 
とC2 の全充電電荷を放出してもC1 +C2 の充
電エネルギーを1ジュール以下としておけば、蒸着金属
電極の蒸発飛散部直径は約2mmφでおさまり、それ以
上の部分への破壊の波及は起こらない。
On the other hand, in the capacitor element of the present invention, in the film structure shown in FIG.
If the charging energy of C1 + C2 is kept below 1 joule even if all the charged charges of .

【0015】この場合図1の例では、素子内直列数は9
となっているので、放電コンデンサ部と直列になってい
るコンデンサは8ヶあり、端子1、1’間の電圧を残り
の8直列コンデンサで分担することになる。この場合8
ヶの直列コンデンサの電圧は 1/8を 1/9  で
割るので1.125 となり、定格電圧の112.5 
%となる。定格電圧における電位傾度でいえば、初期 
300kV/mmが1小コンデンサの放電により残8直
列コンデンサには 337.5kV/mmとなり、フィ
ルム大部分の耐電圧400〜 600kV/mmに対し
、充分な安全率をもって耐える。
In this case, in the example of FIG. 1, the number of series connections in the element is 9.
Therefore, there are eight capacitors in series with the discharge capacitor section, and the voltage between terminals 1 and 1' is shared by the remaining eight series capacitors. In this case 8
The voltage of the series capacitor is 1.125 because 1/8 is divided by 1/9, which is 112.5 of the rated voltage.
%. In terms of potential gradient at rated voltage, the initial
300kV/mm becomes 337.5kV/mm in the remaining 8 series capacitors due to the discharge of one small capacitor, which withstands the withstand voltage of most of the film from 400 to 600kV/mm with a sufficient safety factor.

【0016】なお、この直列数が2の場合には1小コン
デンサの放電により他コンデンサの電圧は2倍となり、
初期電圧をあまり上げられない。また直列数を3とした
場合には1小コンデンサの放電による他コンデンサの電
圧は 1.5倍となり、実用的な範囲に入る。
Note that when the number of series connections is 2, the voltage of the other capacitors is doubled due to the discharge of one small capacitor,
The initial voltage cannot be raised much. Furthermore, when the number of series connections is 3, the voltage of other capacitors due to discharge of one small capacitor becomes 1.5 times, which is within a practical range.

【0017】図1において、金属スパッタに接する蒸着
金属のみ幅方向の絶縁帯を複数個の小コンデンサ毎に形
成するかもしくは絶縁帯を形成しないのは1の絶縁帯を
複数個の小コンデンサ部が放電を起こした場合、これと
直列となる小コンデンサ群に周囲のコンデンサ群より同
電圧となるようパルス大電流が流入する。この電流が金
属スパッタ面に流れると金属スパッタと接する蒸着金属
が複数個連続であるので、この破壊時の電流は集中され
ず隣接小コンデンサに分散される。
In FIG. 1, an insulating band in the width direction of the vapor-deposited metal in contact with the metal sputter is formed for each of a plurality of small capacitors, or if no insulating band is formed, one insulating band is formed between a plurality of small capacitor parts. When a discharge occurs, a large pulse current flows into the small capacitors connected in series so that the voltage is the same as that of the surrounding capacitors. When this current flows to the metal sputtered surface, since a plurality of evaporated metals are in continuous contact with the metal sputter, the current at the time of breakdown is not concentrated but is dispersed to adjacent small capacitors.

【0018】以上の説明は、コンデンサ充電中の現象で
あるが、上記説明のように1小コンデンサ部が放電し、
これにより欠陥部が蒸発して絶縁回復した状態で、コン
デンサ放電により大電流を発生し、コンデンサ端子電圧
が零となった状態では、放電した小コンデンサには、定
格電圧と絶体値が等しく、極性が逆の残留電圧が残る。 この電荷の大部分は次回の充電までに相当時間のある場
合、内部漏洩により放電される。
The above explanation is about the phenomenon during capacitor charging, but as explained above, one small capacitor section is discharged,
As a result, when the defective part evaporates and insulation is restored, a large current is generated by capacitor discharge, and the capacitor terminal voltage becomes zero, the discharged small capacitor has an absolute value equal to the rated voltage, A residual voltage with opposite polarity remains. Most of this charge is discharged due to internal leakage if there is a considerable amount of time before the next charge.

【0019】[0019]

【実施例】図1のフィルムの厚さ9μm、幅 380m
mとし、長手方向絶縁帯幅8mmとし、9直列のコンデ
ンサとした場合1小コンデンサの有効幅は 32.67
mmとなる。また、幅方向絶縁帯の幅を8mm、間隔を
 400mmとすると、小コンデンサの対向面積は、 
32.67× 392=12.8×103(mm2)と
なり、容量は0.08μFであり、これに2700V充
電した場合の充電エネルギーは0.292 ジュールと
なる。 コンデンサ素子の長さを 475m、巻芯直径を160
 mmとし、これを偏平素子とした場合の形状は第3図
の如くなり、素子厚31mm、幅 283mm、長さ 
382mmとなる。この素子は、小コンデンサ0.08
μF、2700Vが直列数9ヶ並列数1250ヶ合計 
11250ヶで構成され、素子の総容量は11.11μ
F、定格電圧は24.3kVとなる。
[Example] The film shown in Figure 1 has a thickness of 9 μm and a width of 380 m.
m, the longitudinal insulation band width is 8 mm, and when there are 9 capacitors in series, the effective width of one small capacitor is 32.67
It becomes mm. Also, if the width of the insulating band in the width direction is 8 mm and the interval is 400 mm, the opposing area of the small capacitor is:
32.67×392=12.8×103 (mm2), the capacity is 0.08 μF, and the charging energy when charged at 2700 V is 0.292 Joule. The length of the capacitor element is 475m, and the core diameter is 160m.
mm, and when this is used as a flat element, its shape is as shown in Figure 3, with an element thickness of 31 mm, width of 283 mm, and length of
It becomes 382mm. This element is a small capacitor 0.08
μF, 2700V, 9 in series, 1250 in parallel, total
Consists of 11,250 elements, total capacitance of element is 11.11μ
F, the rated voltage is 24.3kV.

【0020】図4は上記素子を18ヶ集合して、1ユニ
ットとしたものであり、図5は上記ユニットを鉄板製ケ
ースに収納し、油含浸した完成図である。ケース寸法は
 300× 410× 700Hmmとなる。コンデン
サ定格は 200μF 24kV  57.6kJ で
ある。ケース容積は86.1l、1ジュール当り容積は
 1.5CC/joulesである。なお、実施例にお
いて、金属スパッタに接する入出力端蒸着金属は、複数
個の連続導体とした場合であるが、巻始めから巻終わり
まで連続に形成しても同様な効果を有する。
FIG. 4 shows 18 of the above elements assembled into one unit, and FIG. 5 is a completed view of the above unit housed in an iron plate case and impregnated with oil. The case dimensions are 300 x 410 x 700Hmm. The capacitor rating is 200μF 24kV 57.6kJ. The case volume is 86.1 l, and the volume per joule is 1.5 CC/joules. In the embodiment, the input/output end vapor-deposited metal in contact with the metal sputter is a plurality of continuous conductors, but the same effect can be obtained even if the metal is formed continuously from the beginning of winding to the end of winding.

【0021】[0021]

【発明の効果】従来のコンデンサは定格20kV、62
.5μF、12.5kJのもので、ケース寸法 650
×240×500(H)mm、容積78l、1ジュール
当り容積6.24CC/joulesであり、本発明の
充放電用コンデンサは従来品に比し、24%に小型化さ
れる。また、コンデンサ内絶縁破壊時に従来品では大電
流放電を伴う放電事故となるのに対し、本コンデンサは
内部絶縁破壊しても大電流放電は起こらず、安全な構造
となっている。
[Effect of the invention] The conventional capacitor has a rating of 20 kV, 62
.. 5μF, 12.5kJ, case size 650
x240 x 500 (H) mm, volume: 78 liters, volume per joule: 6.24 CC/joules, and the charging/discharging capacitor of the present invention is 24% smaller than conventional products. In addition, in contrast to conventional products, which cause a discharge accident accompanied by a large current discharge when the internal insulation breaks down, this capacitor has a safe structure, with no large current discharge occurring even if the internal insulation breaks down.

【0022】本コンデンサは内部放電により微少な容量
現象を起こすものであり、その繰り返しにより容量が過
度に不足となったとき、コンデンサを交換すればよく、
従来の充放電用コンデンサの如く、爆発的破壊をしない
ので、保守が簡単で安全な特長があり、工業的価値が高
いものである。
[0022] This capacitor causes a minute capacitance phenomenon due to internal discharge, and when the capacitance becomes excessively insufficient due to repeated cycles, the capacitor can be replaced.
Unlike conventional charging/discharging capacitors, it does not explode and break down, so it is easy to maintain and safe, and has high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例のコンデンサ素子の金属蒸着
電極構造図である。
FIG. 1 is a structural diagram of a metal vapor deposited electrode of a capacitor element according to an embodiment of the present invention.

【図2】図1のコンデンサ素子結線図である。FIG. 2 is a wiring diagram of a capacitor element in FIG. 1;

【図3】図1のコンデンサ素子の斜視図である。FIG. 3 is a perspective view of the capacitor element of FIG. 1;

【図4】本発明の実施例の構成状態の斜視図である。FIG. 4 is a perspective view of the configuration of the embodiment of the present invention.

【図5】本発明のコンデンサの完成斜視図である。FIG. 5 is a completed perspective view of the capacitor of the present invention.

【符号の説明】[Explanation of symbols]

1、1’:コンデンサ端子導出部 2、2’:フィルムの長手方向に設けた絶縁帯3、3’
:フィルムの幅方向に設けた絶縁帯C1 :C2 :小
コンデンサ。
1, 1': Capacitor terminal lead-out part 2, 2': Insulating band 3, 3' provided in the longitudinal direction of the film
: Insulating band C1 provided in the width direction of the film : C2 : Small capacitor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属膜を蒸着したプラスチックフィルムを
組み合わせて巻回したメタライズドフィルムコンデンサ
において、蒸着金属部に長手方向の連続した絶縁部を設
け、1コンデンサ素子内で3ヶ以上の直列コンデンサを
形成すると共に、フィルム幅方向にも絶縁部を設けて、
1コンデンサ素子内で複数のコンデンサ並列回路とした
多数の小コンデンサの内、金属スパッタに接する入出力
端子蒸着金属のみを連続又は複数個の連続導体としたこ
とを特徴とするエネルギー蓄積急放電用コンデンサ。
Claim 1: A metallized film capacitor in which plastic films on which metal films are deposited are combined and wound, in which a continuous insulating part in the longitudinal direction is provided in the deposited metal part, and three or more series capacitors are formed in one capacitor element. At the same time, an insulating part is also provided in the film width direction,
A capacitor for energy storage and rapid discharge, characterized in that among a large number of small capacitors in which multiple capacitors are connected in parallel in one capacitor element, only the vapor-deposited metal at the input/output terminals in contact with the metal sputter is made into a continuous conductor or a plurality of continuous conductors. .
【請求項2】上記直列および並列に区切られた一つの連
続導体部が対極電極と対向して構成する小コンデンサの
蓄積エネルギーが定格電圧において、1ジュール以下で
あり、定格充電電圧においてプラスチックフィルムの電
位傾度が 150kV/mm以上であることを特徴とす
る請求項1記載のエネルギー蓄積急放電用コンデンサ。
[Claim 2] The stored energy of the small capacitor constituted by one continuous conductor section separated in series and parallel facing the counter electrode is 1 joule or less at the rated voltage, and the stored energy of the small capacitor constituted by one continuous conductor section separated in series and parallel is 1 joule or less at the rated charging voltage, The energy storage rapid discharge capacitor according to claim 1, wherein the potential gradient is 150 kV/mm or more.
JP3025317A 1991-01-25 1991-01-25 Energy storage quick discharge capacitor Pending JPH04250608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3025317A JPH04250608A (en) 1991-01-25 1991-01-25 Energy storage quick discharge capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3025317A JPH04250608A (en) 1991-01-25 1991-01-25 Energy storage quick discharge capacitor

Publications (1)

Publication Number Publication Date
JPH04250608A true JPH04250608A (en) 1992-09-07

Family

ID=12162617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3025317A Pending JPH04250608A (en) 1991-01-25 1991-01-25 Energy storage quick discharge capacitor

Country Status (1)

Country Link
JP (1) JPH04250608A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650174A2 (en) * 1993-10-21 1995-04-26 Koninklijke Philips Electronics N.V. Multiple metallized film capacitor with improved oxidation resistance
WO2022259899A1 (en) * 2021-06-11 2022-12-15 パナソニックIpマネジメント株式会社 Film capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650174A2 (en) * 1993-10-21 1995-04-26 Koninklijke Philips Electronics N.V. Multiple metallized film capacitor with improved oxidation resistance
EP0650174A3 (en) * 1993-10-21 1995-08-02 Philips Electronics Nv Multiple metallized film capacitor with improved oxidation resistance.
WO2022259899A1 (en) * 2021-06-11 2022-12-15 パナソニックIpマネジメント株式会社 Film capacitor

Similar Documents

Publication Publication Date Title
CA2108668C (en) Power capacitor
US3308359A (en) Low-inductance capacitor
US5567995A (en) Multi winding spiral generator
US5057967A (en) Rolled film capacitor
JPH04250608A (en) Energy storage quick discharge capacitor
US5621255A (en) Marx generator
JP3454043B2 (en) Metallized film capacitors
JPH0357206A (en) Capacitor for energy storage and quick discharge
JPS5825291A (en) Strand conductor condenser
JPS6018154B2 (en) high energy laser
DE3312076A1 (en) HIGH ENERGY DENSITY CAPACITOR AND METHOD FOR PRODUCING THE SAME
US3248619A (en) Metallized-electrode capacitor construction
DE10140599A1 (en) cartridge
DE2608602A1 (en) VALVE ARRANGEMENT
US3018427A (en) Power capacitor units
DE1640259A1 (en) Multi-stage spark gap switch in a cascade arrangement
US2611107A (en) Electric lightning arrester
JP2798611B2 (en) High voltage capacitors for power
JPH06168844A (en) High-pressure capacitor for power
JP3284384B2 (en) High voltage condenser
US3275916A (en) High q power capacitor
US3248599A (en) Dirt-proof multiple-gap device for lightning arresters
JPH03280410A (en) High voltage power capacitor
US2861231A (en) Electrical capacitors
JP3126490B2 (en) Metallized film capacitors