JPH04250332A - Trapping device for organism-related material and observing method for organism-related material using the same - Google Patents

Trapping device for organism-related material and observing method for organism-related material using the same

Info

Publication number
JPH04250332A
JPH04250332A JP859891A JP859891A JPH04250332A JP H04250332 A JPH04250332 A JP H04250332A JP 859891 A JP859891 A JP 859891A JP 859891 A JP859891 A JP 859891A JP H04250332 A JPH04250332 A JP H04250332A
Authority
JP
Japan
Prior art keywords
related substance
comb
pair
biologically
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP859891A
Other languages
Japanese (ja)
Other versions
JP2937498B2 (en
Inventor
Toshiro Higuchi
俊郎 樋口
Hideki Kawakatsu
英樹 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP859891A priority Critical patent/JP2937498B2/en
Publication of JPH04250332A publication Critical patent/JPH04250332A/en
Application granted granted Critical
Publication of JP2937498B2 publication Critical patent/JP2937498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To perform manipulation and trapping of materials relating to living organs and enable the materials to be observed promptly and accurately and also in their more proper configuration by applying an electric field in trapping and observing the organism-related materials. CONSTITUTION:A device for trapping materials related to organism is provided with a prepared slide 11 for trapping and a pair of opposite comb-shaped electrodes 12, 13 formed in the prepared slide 11 and an electric field is applied between the respective teeth 12a, 13a of the pair of comb-shaped electrodes 12, 13 and a sample 14 serving as a material related to organism is trapped between the teeth 12a, 13a of the comb-shaped electrodes and observed using a probe 15.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、DNA、バクテリア、
フィブリノーゲンなどの生体関連物質の捕捉装置とそれ
を用いた観察方法に関するものである。
[Industrial Application Field] The present invention is applicable to DNA, bacteria,
This invention relates to a device for capturing bio-related substances such as fibrinogen and an observation method using the same.

【0002】0002

【従来の技術】近年、走査形トンネル顕微鏡(Scan
ning  Tunneling  Microsco
pe、以下STMという)や原子間顕微鏡(Atomi
c  Force  Microscope、以下AF
Mという)を用いて、サブナノメータからμmのオーダ
で様々な物体の観察が行われている。表面界面物性等の
研究では、試料として準備された固体表面が直接観察さ
れる。 それに対し、生体関連物質などの微小な試料を観察する
場合は、試料をまずプレパラートとして準備したグラフ
ァイトの上に固定し、次に観察が行われる。
[Prior Art] In recent years, scanning tunneling microscopes (Scan
ning Tunneling Microsco
pe (hereinafter referred to as STM) and atomic microscope (Atomi
c Force Microscope, hereinafter AF
A variety of objects have been observed on the order of subnanometers to micrometers by using the micrometer (referred to as M). In research on surface and interfacial properties, solid surfaces prepared as samples are directly observed. On the other hand, when observing a minute sample such as a biological substance, the sample is first fixed on graphite prepared as a slide and then observed.

【0003】図6はかかる従来の試料をグラファイト上
に固定して観察する状態を示す斜視図である。この図に
示すように、プレパラートとしてのグラファイト1上に
試料2を載置して、探針3をグラファイト1上に移動さ
せて観察を行うようにしていた。このように、従来の方
法ではプレパラートとして準備したグラファイト1の上
に試料を固定して観察を行っている。その場合、試料2
が固定される時の試料の姿勢や方向は制御されていない
ため、図6に示すように、試料2はグラファイト1上に
雑然と捕捉される。そして、生体物質の観察を行うため
のSTM、AFMは広い視野が必要とされている(例え
ば、「A  small  scanningtunn
ellng  microscope  with  
large  scan  range  for  
biological  studies」  by 
 R.Emch,P.Descouts  et  a
l,Journal  of  Microscopy
,Vol.152,Pt1,October  198
8,pp.85−92  参照)。
FIG. 6 is a perspective view showing a state in which such a conventional sample is fixed on graphite and observed. As shown in this figure, a sample 2 was placed on graphite 1 as a preparation, and a probe 3 was moved onto the graphite 1 for observation. As described above, in the conventional method, a sample is fixed on graphite 1 prepared as a slide and observed. In that case, sample 2
Since the posture and direction of the sample when it is fixed are not controlled, the sample 2 is roughly captured on the graphite 1, as shown in FIG. STM and AFM for observing biological materials require a wide field of view (for example, "A small scanning tunnel").
ellng microscope with
large scan range for
biological studies” by
R. Emch, P. Descouts et a
l, Journal of Microscopy
, Vol. 152, Pt1, October 198
8, pp. 85-92).

【0004】0004

【発明が解決しようとする課題】しかしながら、上記し
た従来の観察方法では、(1)試料2がプレパラートと
してのグラファイト1上に雑然と捕捉されるため、有効
な試料を広い観察領域の中から探さなければならない。 (2)また、試料2がプレパラートとしてのグラファイ
ト1上に雑然と捕捉されるため、試料2の交差などが生
じ易い。(3)その時々により捕捉状態が変わり、試料
2の同定の確度(再現性)が低い。また、更に、(4)
プレパラートとしてのグラファイト1上に載置されるた
め、試料2がそのグラファイト1上で潰れてしまう。 (5)試料を一方向からのみ観察を行うため、探針の有
効先端半径によって像が丸められる(例えば、「Sca
nning  tunneling  microsc
ope  of  cytoskeletal  pr
oteins:Microtubules  and 
 intermediate  filaments」
by  Stuart  Hameroffet  a
l,J.Vac.Sci.Technol.A8(1)
,Jan/Feb,1990,pp687−691参照
)といった問題があった。例えば、図7に示すような、
X線回析によった生体物質としての微小管(micro
tubule)4のSTMイメージは図8に示すように
なる。
[Problems to be Solved by the Invention] However, in the conventional observation method described above, (1) the sample 2 is roughly captured on the graphite 1 as a preparation, so it is difficult to search for an effective sample from a wide observation area; There must be. (2) Furthermore, since the sample 2 is roughly captured on the graphite 1 as a preparation, the samples 2 are likely to cross each other. (3) The capture state changes from time to time, and the accuracy (reproducibility) of identifying sample 2 is low. Furthermore, (4)
Since the sample 2 is placed on the graphite 1 as a preparation, the sample 2 is crushed on the graphite 1. (5) Since the sample is observed from only one direction, the image is rounded by the effective tip radius of the probe (for example, “Sca
nnning tunneling microsc
open of cytoskeletal pr
oteins: Microtubules and
"intermediate filaments"
by Stuart Hameroffet a
l, J. Vac. Sci. Technol. A8 (1)
, Jan/Feb, 1990, pp. 687-691). For example, as shown in FIG.
Microtubules as a biological material by X-ray diffraction
The STM image of tube) 4 is shown in FIG.

【0005】本発明は、上記問題点を除去するために、
電界をかけることにより、生体関連物質としての試料の
マニピュレーションと捕捉を行い、迅速、かつ的確に観
察することができ、しかも試料をより本来の姿に近い形
で観察可能な生体関連物質の捕捉装置とそれを用いた観
察方法を提供することを目的とする。
[0005] In order to eliminate the above problems, the present invention has the following features:
A capture device for bio-related substances that can manipulate and capture samples as bio-related substances by applying an electric field, and observe them quickly and accurately, as well as allowing the specimen to be observed in a form closer to its original form. The purpose is to provide an observation method using it.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、(A)生体関連物質の捕捉装置において
、プレパラートと、該プレパラートに形成される対向し
た一対の櫛形電極と、該一対の櫛形電極間に電界をかけ
、該櫛形電極の歯の間に生体関連物質を捕捉する手段と
を設けるようにしたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides (A) a biologically related substance trapping device that includes a preparation, a pair of opposed comb-shaped electrodes formed on the preparation; A means is provided for applying an electric field between a pair of comb-shaped electrodes and trapping biological substances between the teeth of the comb-shaped electrodes.

【0007】また、前記プレパラートの生体関連物質の
捕捉部に凹溝を形成し、前記生体関連物質を吊り橋状に
捕捉するようにしたものである。更に、前記凹溝の底部
に複数の電極を配置し、該電極の電位を制御することに
より前記生体関連物質を変位させるようにしたものであ
る。 (B)生体関連物質の観察方法において、プレパラート
に形成される対向した一対の櫛形電極間に電界をかけ、
該櫛形電極の歯の間に生体関連物質を捕捉し、該捕捉さ
れた生体関連物質を探針を走査して観察するようにした
ものである。 (C)生体関連物質の観察方法において、プレパラート
の捕捉部に凹溝を形成し、該凹溝の両側に対向した一対
の櫛形電極間に電界をかけ、該櫛形電極の歯の間に生体
関連物質を吊り橋状に捕捉し、該捕捉された生体関連物
質を探針を走査して観察するようにしたものである。 (D)生体関連物質の観察方法において、プレパラート
の捕捉部に凹溝を形成し、該凹溝の両側に対向した一対
の櫛形電極間に電界をかけ、該櫛形電極の歯の間に生体
関連物質を吊り橋状に捕捉し、前記凹溝の底部に電極を
設け、該電極の電位を制御し、該捕捉された生体関連物
質を回転させながら探針を走査して観察するようにした
ものである。 (E)生体関連物質の捕捉装置において、三次元空間に
対向した一対の捕捉用針と、該一対の捕捉用針間に電界
をかけ、生体関連物質を捕捉する手段とを設け、該生体
関連物質を三次元的に観察するようにしたものである。
[0007]Furthermore, a concave groove is formed in the bio-related substance trapping portion of the preparation, so that the bio-related substance is captured in the form of a suspension bridge. Furthermore, a plurality of electrodes are arranged at the bottom of the groove, and the biologically related substance is displaced by controlling the potential of the electrodes. (B) In a method for observing biological substances, applying an electric field between a pair of opposing comb-shaped electrodes formed on a preparation,
A biological substance is captured between the teeth of the comb-shaped electrode, and the captured biological substance is observed by scanning the probe. (C) In a method for observing biologically related substances, a groove is formed in the capture portion of the preparation, an electric field is applied between a pair of comb-shaped electrodes facing each other on both sides of the groove, and biologically related substances are generated between the teeth of the comb-shaped electrodes. A substance is captured in the shape of a suspension bridge, and the captured biologically related substance is observed by scanning with a probe. (D) In the method for observing biologically related substances, a groove is formed in the trapping part of the preparation, an electric field is applied between a pair of comb-shaped electrodes facing each other on both sides of the groove, and biologically related substances are applied between the teeth of the comb-shaped electrodes. The substance is captured in the form of a suspension bridge, an electrode is provided at the bottom of the groove, the potential of the electrode is controlled, and the probe is scanned and observed while rotating the captured biological substance. be. (E) A capture device for biologically related substances, which includes a pair of capturing needles facing each other in three-dimensional space and means for applying an electric field between the pair of capturing needles to capture the biologically related substances. This allows for three-dimensional observation of matter.

【0008】また、前記生体関連物質を中心としてラジ
アル電極を形成するようにしたものである。 (F)生体関連物質の観察方法において、空間に対向し
た一対の捕捉用針間に電界をかけ、生体関連物質を捕捉
し、該生体関連物質を探針により三次元的に観察するよ
うにしたものである。 (G)生体関連物質の観察方法において、空間に対向し
た一対の捕捉用針間に電界をかけ、生体関連物質を捕捉
し、前記生体関連物質を中心としたラジアル電極を設け
、該ラジアル電極への電位の印加により、生体関連物質
を回転させながら探針により三次元的に観察するように
したものである。
[0008] Furthermore, the radial electrode is formed mainly of the biologically related substance. (F) In a method for observing biological substances, an electric field is applied between a pair of trapping needles facing each other in space to capture biological substances, and the biological substances are observed three-dimensionally using a probe. It is something. (G) In a method for observing biological substances, an electric field is applied between a pair of trapping needles facing each other in space to capture the biological substance, a radial electrode is provided around the biological substance, and the radial electrode is connected to the biological substance. By applying an electric potential, biological substances are rotated and observed three-dimensionally with a probe.

【0009】[0009]

【作用】本発明によれば、(1)試料捕捉面(プレパラ
ート面)に沿って電界をかけ、生体関連物質である試料
を列状に捕捉する。従って、同一試料が整然と列状に捕
捉されることにより、試料の観察結果の再現性が検証さ
れ、試料の同定の確度の向上を図ることができる。 (2)生体関連物質である試料の捕捉のための針を一対
用意し、その間に静電界をかけることによって線状の試
料を一対の針の間に捕捉する。それにより、プレパラー
トを用いずに試料の観察を行うことが可能になり、試料
をより本来の姿に近い形で観察することができる。 (3)捕捉用針の間に捕捉された試料を回転する静電界
をかけて回転させる。それにより、観察用探針の先端有
効半径による像の丸まりの影響を低減することができる
[Function] According to the present invention, (1) an electric field is applied along the sample capture surface (preparation surface) to capture samples, which are biological substances, in a row. Therefore, by capturing the same sample in an orderly row, the reproducibility of the sample observation results can be verified, and the accuracy of sample identification can be improved. (2) A pair of needles for capturing a sample, which is a biological substance, is prepared, and a linear sample is captured between the pair of needles by applying an electrostatic field between them. Thereby, it becomes possible to observe the sample without using a preparation, and the sample can be observed in a form closer to its original appearance. (3) A rotating electrostatic field is applied to rotate the sample captured between the capturing needles. Thereby, the influence of image rounding due to the effective radius of the tip of the observation probe can be reduced.

【0010】従って、生体関連物質の捕捉を迅速、かつ
的確に行うことができ、益々増大する生体関連物質の観
察の信頼性を向上させると共に、その自動化を図ること
ができる。
[0010] Therefore, biological substances can be captured quickly and accurately, and the reliability of the observation of biological substances, which is increasingly increasing, can be improved and the observation can be automated.

【0011】[0011]

【実施例】以下、本発明の実施例について図面を参照し
ながら詳細に説明する。図1は本発明の第1の実施例を
示す生体関連物質の観察方法を示す図であり、図1(a
)はそれに用いる捕捉用プレパラートの斜視図、図1(
b)はその捕捉用プレパラート上に試料を捕捉し、観察
を行う状態を示す斜視図である。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram illustrating a method for observing biological substances according to a first embodiment of the present invention, and FIG.
) is a perspective view of the capture preparation used for it, and Figure 1 (
b) is a perspective view showing a state in which a sample is captured on the capture preparation and observed.

【0012】ここで、捕捉用プレパラートは、半導体集
積回路製造技術を応用して製造され、微細な対向した櫛
形電極が形成される。まず、生体関連物質(DNA、バ
クテリア、フィブリノーゲン等)を観察する場合、図1
(a)に示すように、捕捉用プレパラート11上には捕
捉用櫛形電極12と捕捉用櫛形電極13とが対向するよ
うに形成され、それらの櫛形電極12と13間に端子1
5と16を介して電圧を印加し、対向する櫛形電極の歯
12aと13a間に電界(例えば、106 V/m)を
かける。なお、ここで、印加される電圧は、通常、交流
を用いるが、直流を用いるようにしてもよい。
[0012] Here, the trapping preparation is manufactured by applying semiconductor integrated circuit manufacturing technology, and fine, opposed comb-shaped electrodes are formed. First, when observing biological substances (DNA, bacteria, fibrinogen, etc.), Figure 1
As shown in (a), a trapping comb-shaped electrode 12 and a trapping comb-shaped electrode 13 are formed on the trapping preparation 11 so as to face each other, and a terminal 1 is provided between the comb-shaped electrodes 12 and 13.
A voltage is applied through 5 and 16 to create an electric field (for example 106 V/m) between opposing comb electrode teeth 12a and 13a. Note that, although alternating current is normally used as the applied voltage here, direct current may also be used.

【0013】次に、捕捉用櫛形電極12と13間に電圧
が印加された状態で、生体関連物質としての試料14を
分散させた溶液を捕捉用プレパラート11上に導入する
。すると、図1(b)に示すように、試料14は捕捉さ
れる際、捕捉用プレパラート11の表面の電界の影響を
受けて配列し、櫛形電極の各歯12aと各歯13aの間
に捕捉される。その後、そのまま液中で観察を行うか、
もしくは、液を取り除き、ドライな状態でSTMやAF
Mの探針15による観察を行う。
Next, while a voltage is applied between the capture comb-shaped electrodes 12 and 13, a solution in which a sample 14 as a biologically related substance is dispersed is introduced onto the capture preparation 11. Then, as shown in FIG. 1(b), when the samples 14 are captured, they are arranged under the influence of the electric field on the surface of the capture preparation 11, and are captured between each tooth 12a and each tooth 13a of the comb-shaped electrode. be done. After that, you can observe it directly in the liquid, or
Alternatively, remove the liquid and use STM or AF in a dry state.
Observation is performed using the M probe 15.

【0014】なお、櫛形電極12と13間に印加される
電圧及び周波数は、捕捉される試料14の種類や条件に
応じて適宜設定することができる。また、櫛形電極12
と13の歯12aと13aの先端は尖らせて、試料14
を捕捉し易いようにすることが望ましい。図2は本発明
の第2の実施例を示す生体関連物質の捕捉装置とそれを
用いた観察方法を示す図である。
Note that the voltage and frequency applied between the comb-shaped electrodes 12 and 13 can be appropriately set depending on the type and conditions of the sample 14 to be captured. In addition, the comb-shaped electrode 12
The tips of teeth 12a and 13a of sample 14 and 13 are made sharp.
It is desirable to make it easy to capture. FIG. 2 is a diagram illustrating a biological substance capture device and an observation method using the same, which is a second embodiment of the present invention.

【0015】この図に示すように、この実施例において
は、従来の欠点である(1)試料が二次元的に潰れてし
まう。(2)一方向からのみ観察を行うため、探針の有
効先端半径によって像が丸められるなどの問題点を解決
するために、四探針型AFMを構成する。即ち、図2に
示すように、一対の捕捉用針21と22を対向させ、そ
れらの捕捉用針21と22間に端子25と26を介して
電圧を印加し、適当な電界をかけることによって、生体
関連物質である試料23を捕捉する。
[0015] As shown in this figure, this embodiment has the disadvantages of the conventional method (1): the sample is crushed two-dimensionally; (2) Since observation is performed only from one direction, a four-probe AFM is configured to solve the problem that the image is rounded due to the radius of the effective tip of the probe. That is, as shown in FIG. 2, a pair of capture needles 21 and 22 are placed opposite each other, and a voltage is applied between the capture needles 21 and 22 via terminals 25 and 26 to apply an appropriate electric field. , captures a sample 23 which is a biologically related substance.

【0016】それにより、試料23を二次元的に拘束す
ることなく捕捉することができる。そこで、探針24を
移動させることにより、STM、AFMによる観察を行
うと、試料本来の形に近い形で三次元的観察を行うこと
ができる。図3は本発明の第3の実施例を示す生体関連
物質の捕捉装置とそれを用いた観察方法を示す図である
[0016] Thereby, the sample 23 can be captured without being constrained two-dimensionally. Therefore, by moving the probe 24 and performing observation using STM or AFM, it is possible to perform three-dimensional observation in a shape close to the original shape of the sample. FIG. 3 is a diagram illustrating a biological substance capture device and an observation method using the device according to a third embodiment of the present invention.

【0017】この図に示すように、この実施例において
は、図2の生体関連物質の捕捉装置に、更に、試料が捕
捉される方向を軸としたラジアル電極27を配置し、該
ラジアル電極27に試料23を軸として回転する電圧を
印加することによって、試料23を捕捉用針21,22
に捕捉された状態でその軸回りに回転させることができ
る。それにより、探針24の先端有効半径による像の丸
まりを低減することができ、的確な三次元的観察を行う
ことができる。
As shown in this figure, in this embodiment, a radial electrode 27 whose axis is in the direction in which the sample is captured is further arranged in the bio-related substance capture device of FIG. By applying a voltage that rotates around the sample 23 to
It can be rotated around its axis while being held in place. Thereby, it is possible to reduce the rounding of the image due to the effective radius of the tip of the probe 24, and it is possible to perform accurate three-dimensional observation.

【0018】図4は本発明の第4の実施例を示す生体関
連物質の捕捉装置とそれを用いた観察方法を示す図であ
る。この図に示すように、この実施例においては、捕捉
用櫛状電極の各歯が空間にオーバーハング状態に配置さ
れている。つまり、捕捉用プレパラート31の試料捕捉
部には凹溝32が形成され、この凹溝32の両側から捕
捉用櫛形電極33の歯33aと捕捉用櫛形電極34の歯
34aが突出し、互いに対向している。そして、これら
の捕捉用櫛形電極33と34間には端子36と37を介
して適当な電圧が印加され、捕捉用櫛形電極33と34
の各歯33aと34a間に電界がかけられている。従っ
て、これらの捕捉用櫛形電極33と34の各歯33aと
34a間に試料35が二次元的に潰されることなく捕捉
される。
FIG. 4 is a diagram illustrating a biological substance capture device and an observation method using the device according to a fourth embodiment of the present invention. As shown in this figure, in this embodiment, each tooth of the capture comb-shaped electrode is arranged in an overhanging state in the space. That is, a groove 32 is formed in the sample trapping part of the trapping preparation 31, and the teeth 33a of the comb-shaped trapping electrode 33 and the teeth 34a of the comb-shaped trapping electrode 34 protrude from both sides of the groove 32, and are opposed to each other. There is. An appropriate voltage is applied between these comb-shaped trapping electrodes 33 and 34 via terminals 36 and 37, and the comb-shaped trapping electrodes 33 and 34
An electric field is applied between each tooth 33a and 34a. Therefore, the sample 35 is captured between the teeth 33a and 34a of the capturing comb-shaped electrodes 33 and 34 without being crushed two-dimensionally.

【0019】そこで、試料を分散させた溶液を凹溝32
に導入する。すると、試料35は捕捉される際、表面の
電界の影響を受けて配列し、櫛形電極の各歯33aと各
歯34aの間に捕捉される。その後、そのまま液中で観
察を行うか、もしくは、液を取り除き、ドライな状態で
STMやAFMの探針38による観察を行う。図5は本
発明の第5の実施例を示す生体関連物質の捕捉装置とそ
れを用いた観察方法を示す図である。
Therefore, the solution in which the sample is dispersed is poured into the groove 32.
to be introduced. Then, when the sample 35 is captured, it is arranged under the influence of the electric field on the surface and is captured between each tooth 33a and each tooth 34a of the comb-shaped electrode. Thereafter, observation is performed directly in the liquid, or the liquid is removed and observation is performed in a dry state using an STM or AFM probe 38. FIG. 5 is a diagram illustrating a biological substance capture device and an observation method using the device according to a fifth embodiment of the present invention.

【0020】この図に示すように、この実施例において
は、図4の生体関連物質の捕捉装置に、更に、凹溝32
の底部に複数の帯状の電極39を形成する。そこで、こ
れらの電極39に印加される電位を制御することによっ
て、捕捉された試料35を一斉に回転(変位)させ、同
一の姿勢(回転角)で探針38により、該試料35を観
察することができる。
As shown in this figure, in this embodiment, the biological substance trapping device of FIG.
A plurality of strip-shaped electrodes 39 are formed on the bottom of the electrode. Therefore, by controlling the potential applied to these electrodes 39, the captured samples 35 are rotated (displaced) all at once, and the samples 35 are observed with the probe 38 in the same posture (rotation angle). be able to.

【0021】また、上記生体関連物質の捕捉装置により
、試料が捕捉されたことを以下のようにして確認するこ
とができる。 (1)図2及び図3に関して試料23が捕捉用針21,
22間に捕捉されたことを確認する場合、捕捉用針21
,22にAFMの探針としての力検出機能を持たせた状
態で、捕捉用針21,22を微小に振動させ、その振幅
が大きく変化した時を持って捕捉が行われたと見ること
ができる。 (2)捕捉用針のアライメント 図2及び図3に関して一対の捕捉用針は試料が小さいほ
ど厳密な相互のアライメントを行う必要がある。そのた
めに捕捉用針にAFM探針としての力検出機能を持たせ
る。そこで、一方の捕捉用針を用いて他方の捕捉用針を
観察することによって相互の頂点を一致させることがで
きる。これによって厳密なアライメントが可能となり、
既知の非常に微小な領域に試料を捕捉することができる
[0021]Furthermore, it is possible to confirm that a sample has been captured by the biological substance capture device as described below. (1) Regarding FIGS. 2 and 3, the sample 23 is the capturing needle 21,
If you want to confirm that it has been captured between 22 and 22, use the capture needle 21
, 22 have a force detection function as an AFM probe, the acquisition needles 21 and 22 are slightly vibrated, and when the amplitude changes significantly, it can be determined that acquisition has occurred. . (2) Alignment of Capture Needles Regarding FIGS. 2 and 3, the smaller the sample, the more strictly the pair of capture needles must be aligned with each other. For this purpose, the capturing needle is provided with a force detection function as an AFM probe. Therefore, by observing the other capturing needle using one capturing needle, it is possible to match the mutual apexes. This allows for precise alignment,
The sample can be captured in a known, extremely small area.

【0022】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
Note that the present invention is not limited to the above-mentioned embodiments, and various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0023】[0023]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、生体関連物質である試料の捕捉面(プレパラー
ト面)に沿って電界をかけ、線状の同一試料が列状に捕
捉されるようにしたので、同一試料が整然と列状に捕捉
されることにより、試料の観察結果の再現性が検証され
、試料の同定の確度の向上を図ることができる。
Effects of the Invention As described above in detail, according to the present invention, an electric field is applied along the capture surface (preparation surface) of a sample, which is a biological substance, and the same linear sample is captured in a row. Since the same sample is captured in an orderly row, the reproducibility of the sample observation results can be verified and the accuracy of sample identification can be improved.

【0024】また、試料の捕捉のための針を一対用意し
、その間に静電界をかけることによって線状の試料を一
対の針の間に捕捉する。それにより、プレパラートを用
いずに試料の観察を行うことが可能になり、試料をより
本来の姿に近い形で観察することができる。更に、捕捉
用針の間に捕捉された試料を回転する静電界をかけて回
転させる。それにより、観察用探針の先端有効半径によ
る像の丸まりの影響を低減することができる。
Further, a pair of needles for capturing a sample is prepared, and a linear sample is captured between the pair of needles by applying an electrostatic field between them. Thereby, it becomes possible to observe the sample without using a preparation, and the sample can be observed in a form closer to its original appearance. Furthermore, a rotating electrostatic field is applied to rotate the sample captured between the capturing needles. Thereby, the influence of image rounding due to the effective radius of the tip of the observation probe can be reduced.

【0025】従って、本発明によれば、生体関連物質の
捕捉を迅速、かつ的確に行うことができ、益々増大する
生体関連物質の観察の信頼性を向上させると共に、その
自動化を図ることができ、本発明によってもたらされる
効果は著大である。
[0025] Therefore, according to the present invention, it is possible to quickly and accurately capture biological substances, improve the reliability of the observation of biological substances, which are increasingly increasing, and to automate the observation. , the effects brought about by the present invention are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例を示す生体関連物質の観
察方法を示す図である。
FIG. 1 is a diagram illustrating a method for observing biological substances according to a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す生体関連物質の捕
捉装置とそれを用いた観察方法を示す図である。
FIG. 2 is a diagram illustrating a biologically related substance capturing device and an observation method using the same, showing a second embodiment of the present invention.

【図3】本発明の第3の実施例を示す生体関連物質の捕
捉装置とそれを用いた観察方法を示す図である。
FIG. 3 is a diagram illustrating a biologically related substance capturing device and an observation method using the same according to a third embodiment of the present invention.

【図4】本発明の第4の実施例を示す生体関連物質の捕
捉装置とそれを用いた観察方法を示す図である。
FIG. 4 is a diagram illustrating a bio-related substance capturing device and an observation method using the same, showing a fourth embodiment of the present invention.

【図5】本発明の第5の実施例を示す生体関連物質の捕
捉装置とそれを用いた観察方法を示す図である。
FIG. 5 is a diagram illustrating a biologically related substance capturing device and an observation method using the same according to a fifth embodiment of the present invention.

【図6】従来の試料をグラファイト上に固定して観察す
る状態を示す斜視図である。
FIG. 6 is a perspective view showing a state in which a conventional sample is fixed on graphite and observed.

【図7】従来のX線回析による生体物質としての微小管
の斜視図である。
FIG. 7 is a perspective view of microtubules as a biological material obtained by conventional X-ray diffraction.

【図8】従来の生体物質のSTMイメージを示す図であ
る。
FIG. 8 is a diagram showing a conventional STM image of a biological material.

【符号の説明】[Explanation of symbols]

11,31    捕捉用プレパラート12,13,3
3,34    捕捉用櫛形電極12a,13a,33
a,34a    櫛形電極の歯14,23,35  
  試料(生体関連物質)15,16,25,26,3
6,37  端子17,24,38    探針 21,22    捕捉用針 27    ラジアル電極 32    凹溝 39    帯状の電極
11, 31 Capture preparation 12, 13, 3
3, 34 Comb-shaped capture electrodes 12a, 13a, 33
a, 34a Comb-shaped electrode teeth 14, 23, 35
Samples (biological substances) 15, 16, 25, 26, 3
6, 37 Terminals 17, 24, 38 Probes 21, 22 Capture needle 27 Radial electrode 32 Concave groove 39 Band-shaped electrode

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】(a)プレパラートと、(b)該プレパラ
ートに形成される対向した一対の櫛形電極と、(c)該
一対の櫛形電極間に電界をかけ、該櫛形電極の歯の間に
生体関連物質を捕捉する手段とを具備する生体関連物質
の捕捉装置。
Claim 1: Applying an electric field between (a) a preparation, (b) a pair of opposing comb-shaped electrodes formed on the preparation, and (c) the pair of comb-shaped electrodes, and applying an electric field between the teeth of the comb-shaped electrodes. 1. A biologically related substance capturing device, comprising: a means for capturing a biologically related substance.
【請求項2】  前記プレパラートの生体関連物質の捕
捉部に凹溝を形成し、前記生体関連物質を吊り橋状に捕
捉してなる請求項1記載の生体関連物質の捕捉装置。
2. The biologically related substance trapping device according to claim 1, wherein a concave groove is formed in the biologically related substance trapping portion of the preparation to trap the biologically related substance in the form of a suspension bridge.
【請求項3】  前記凹溝の底部に複数の電極を配置し
、該電極の電位を制御することにより前記生体関連物質
を変位させることを特徴とする請求項1記載の生体関連
物質の捕捉装置。
3. The biologically related substance trapping device according to claim 1, wherein a plurality of electrodes are disposed at the bottom of the groove, and the biologically related substance is displaced by controlling the potential of the electrodes. .
【請求項4】  プレパラートに形成される対向した一
対の櫛形電極間に電界をかけ、該櫛形電極の歯の間に生
体関連物質を捕捉し、該捕捉された生体関連物質を探針
を走査して観察する生体関連物質の観察方法。
4. Applying an electric field between a pair of opposing comb-shaped electrodes formed on a preparation, trapping a bio-related substance between the teeth of the comb-shaped electrode, and scanning the captured bio-related substance with a probe. A method for observing biologically related substances.
【請求項5】  プレパラートの捕捉部に凹溝を形成し
、該凹溝の両側に対向した一対の櫛形電極間に電界をか
け、該櫛形電極の歯の間に生体関連物質を吊り橋状に捕
捉し、該捕捉された生体関連物質を探針を走査して観察
する生体関連物質の観察方法。
5. A concave groove is formed in the capture portion of the preparation, an electric field is applied between a pair of comb-shaped electrodes facing each other on both sides of the concave groove, and biologically related substances are captured between the teeth of the comb-shaped electrodes in the form of a suspension bridge. A method for observing a biologically-related substance, in which the captured biologically-related substance is observed by scanning with a probe.
【請求項6】  プレパラートの捕捉部に凹溝を形成し
、該凹溝の両側に対向した一対の櫛形電極間に電界をか
け、該櫛形電極の歯の間に生体関連物質を吊り橋状に捕
捉し、前記凹溝の底部に電極を設け、該電極の電位を制
御し、該捕捉された生体関連物質を回転させながら探針
を走査して観察する生体関連物質の観察方法。
6. Forming a concave groove in the trapping portion of the preparation, applying an electric field between a pair of comb-shaped electrodes facing each other on both sides of the concave groove, and capturing biological substances between the teeth of the comb-shaped electrodes in the form of a suspension bridge. A method for observing a living body-related substance, wherein an electrode is provided at the bottom of the groove, the electric potential of the electrode is controlled, and the captured living body-related substance is scanned and observed with a probe while rotating.
【請求項7】(a)三次元空間に対向した一対の捕捉用
針と、(b)該一対の捕捉用針間に電界をかけ、生体関
連物質を捕捉する手段とを設け、(c)該生体関連物質
を三次元的に観察することを特徴とする生体関連物質の
捕捉装置。
7. A method comprising: (a) a pair of capturing needles facing each other in a three-dimensional space; (b) means for applying an electric field between the pair of capturing needles to capture biological substances; (c) A biologically related substance capturing device characterized in that the biologically related substance is observed three-dimensionally.
【請求項8】  前記生体関連物質を中心としてラジア
ル電極を形成してなる請求項7記載の生体関連物質の捕
捉装置。
8. The biologically related substance trapping device according to claim 7, wherein a radial electrode is formed around the biologically related substance.
【請求項9】  空間に対向した一対の捕捉用針間に電
界をかけ、生体関連物質を捕捉し、該生体関連物質を探
針により三次元的に観察する生体関連物質の観察方法。
9. A method for observing a biologically related substance, in which an electric field is applied between a pair of trapping needles facing each other in space, a biologically related substance is captured, and the biologically related substance is observed three-dimensionally with a probe.
【請求項10】  空間に対向した一対の捕捉用針間に
電界をかけ、生体関連物質を捕捉し、前記生体関連物質
を中心としたラジアル電極を設け、該ラジアル電極への
電位の印加により、生体関連物質を回転させながら探針
により三次元的に観察する生体関連物質の観察方法。
10. Applying an electric field between a pair of capturing needles facing each other in space to capture a biological substance, providing a radial electrode centered on the biological substance, and applying a potential to the radial electrode, A method for observing biological substances in three dimensions using a probe while rotating the biological substances.
JP859891A 1991-01-28 1991-01-28 Apparatus for capturing biological substances and method for observing biological substances using the same Expired - Fee Related JP2937498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP859891A JP2937498B2 (en) 1991-01-28 1991-01-28 Apparatus for capturing biological substances and method for observing biological substances using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP859891A JP2937498B2 (en) 1991-01-28 1991-01-28 Apparatus for capturing biological substances and method for observing biological substances using the same

Publications (2)

Publication Number Publication Date
JPH04250332A true JPH04250332A (en) 1992-09-07
JP2937498B2 JP2937498B2 (en) 1999-08-23

Family

ID=11697408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP859891A Expired - Fee Related JP2937498B2 (en) 1991-01-28 1991-01-28 Apparatus for capturing biological substances and method for observing biological substances using the same

Country Status (1)

Country Link
JP (1) JP2937498B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501251A (en) * 2001-08-24 2005-01-13 アプレラ コーポレイション Working with analytes using electric fields

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501251A (en) * 2001-08-24 2005-01-13 アプレラ コーポレイション Working with analytes using electric fields

Also Published As

Publication number Publication date
JP2937498B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
Kizilyaprak et al. Focused ion beam scanning electron microscopy in biology
DE69825226T2 (en) Micromechanical XYZ microscope slide for use with optical components
EP1144989B1 (en) Nanotomography
EP3161463B1 (en) Device and method for the stoichiometric analysis of samples
JP2009516198A (en) Dielectrophoretic tweezers apparatus and method
Fujii et al. IV measurement of NiO nanoregion during observation by transmission electron microscopy
Ruggeri et al. Characterizing individual protein aggregates by infrared nanospectroscopy and atomic force microscopy
US7335882B1 (en) High resolution low dose transmission electron microscopy real-time imaging and manipulation of nano-scale objects in the electron beam
Webb et al. Volume scanning electron microscopy: serial block-face scanning electron microscopy focussed ion beam scanning electron microscopy
JP2008275481A (en) Device and method for analyzing biomolecule function structure
JPH04250332A (en) Trapping device for organism-related material and observing method for organism-related material using the same
US20050017173A1 (en) Individually addressable nanoelectrode array
DE102007049321A1 (en) Samples facility
EP3117448B1 (en) Device for correlative scanning transmission electron microscopy (stem) and light microscopy
DE19745807C2 (en) Magnetic ball microrheometer
Braga et al. Detection of rokitamycin-induced morphostructural alterations in Helicobacter pylori by atomic force microscopy
Cheran et al. Scanning Kelvin microprobe in the tandem analysis of surface topography and chemistry
Sokolov Atomic force microscopy for protein nanotechnology
Lashuel et al. Molecular electron microscopy approaches to elucidating the mechanisms of protein fibrillogenesis
Tomes et al. Three‐dimensional imaging and analysis of the surface of hair fibres using scanning electron microscopy
Gangotra et al. Scanning ion conductance microscopy mapping of tunable nanopore membranes
JP3756470B2 (en) Cantilever having a plurality of electrodes and manufacturing method thereof
JP4863405B2 (en) Non-contact scanning probe microscope
JP2789244B2 (en) Method of forming microprobe
Mizutani et al. Measurements of polyphosphoric acid on HOPG

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees