JP2937498B2 - Apparatus for capturing biological substances and method for observing biological substances using the same - Google Patents

Apparatus for capturing biological substances and method for observing biological substances using the same

Info

Publication number
JP2937498B2
JP2937498B2 JP859891A JP859891A JP2937498B2 JP 2937498 B2 JP2937498 B2 JP 2937498B2 JP 859891 A JP859891 A JP 859891A JP 859891 A JP859891 A JP 859891A JP 2937498 B2 JP2937498 B2 JP 2937498B2
Authority
JP
Japan
Prior art keywords
capturing
substance
biological substance
comb
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP859891A
Other languages
Japanese (ja)
Other versions
JPH04250332A (en
Inventor
俊郎 樋口
英樹 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP859891A priority Critical patent/JP2937498B2/en
Publication of JPH04250332A publication Critical patent/JPH04250332A/en
Application granted granted Critical
Publication of JP2937498B2 publication Critical patent/JP2937498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、DNA、バクテリア、
フィブリノーゲンなどの生体関連物質の捕捉装置とそれ
を用いた観察方法に関するものである。
The present invention relates to DNA, bacteria,
The present invention relates to a device for capturing biological substances such as fibrinogen and an observation method using the same.

【0002】[0002]

【従来の技術】近年、走査形トンネル顕微鏡(Scan
ning Tunneling Microscop
e、以下STMという)や原子間顕微鏡(Atomic
Force Microscope、以下AFMとい
う)を用いて、サブナノメータからμmのオーダで様々
な物体の観察が行われている。表面界面物性等の研究で
は、試料として準備された固体表面が直接観察される。
それに対し、生体関連物質などの微小な試料を観察する
場合は、試料をまずプレパラートとして準備したグラフ
ァイトの上に固定し、次に観察が行われる。
2. Description of the Related Art In recent years, a scanning tunneling microscope (Scan) has been proposed.
Ning Tunneling Microscope
e, hereinafter referred to as STM) or atomic microscope (Atomic)
BACKGROUND ART Various objects are observed on the order of sub-nanometers to μm using Force Microscope (hereinafter referred to as AFM). In the study of surface interface properties and the like, a solid surface prepared as a sample is directly observed.
On the other hand, when observing a minute sample such as a biological substance, the sample is first fixed on graphite prepared as a preparation and then observed.

【0003】図6はかかる従来の試料をグラファイト上
に固定して観察する状態を示す斜視図である。この図に
示すように、プレパラートとしてのグラファイト1上に
試料2を載置して、探針3をグラファイト1上に移動さ
せて観察を行うようにしていた。このように、従来の方
法ではプレパラートとして準備したグラファイト1の上
に試料を固定して観察を行っている。その場合、試料2
が固定される時の試料の姿勢や方向は制御されていない
ため、図6に示すように、試料2はグラファイト1上に
雑然と捕捉される。そして、生体物質の観察を行うため
のSTM、AFMは広い視野が必要とされている(例え
ば、「A small scanningtunnel
lng microscope with large
scan range for biologica
l studies」 by R.Emch,P.De
scouts et al,Journal of M
icroscopy,Vol.152,Pt1,Oct
ober 1988,pp.85−92 参照)。
FIG. 6 is a perspective view showing a state in which such a conventional sample is fixed on graphite and observed. As shown in this figure, a sample 2 was placed on a graphite 1 as a preparation, and a probe 3 was moved onto the graphite 1 for observation. As described above, in the conventional method, observation is performed while fixing the sample on the graphite 1 prepared as a preparation. In that case, sample 2
Since the posture and the direction of the sample when is fixed are not controlled, the sample 2 is cluttered on the graphite 1 as shown in FIG. STM and AFM for observing biological materials are required to have a wide field of view (for example, “A small scanning tunnel”).
lng microscope with large
scan range for biologica
l studios "by R.L. Emch, P .; De
scouts et al, Journal of M
icroscopy, Vol. 152, Pt1, Oct
ober 1988, pp. 139-143. 85-92).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の観察方法では、(1)試料2がプレパラートと
してのグラファイト1上に雑然と捕捉されるため、有効
な試料を広い観察領域の中から探さなければならない。
(2)また、試料2がプレパラートとしてのグラファイ
ト1上に雑然と捕捉されるため、試料2の交差などが生
じ易い。(3)その時々により捕捉状態が変わり、試料
2の同定の確度(再現性)が低い。また、更に、(4)
プレパラートとしてのグラファイト1上に載置されるた
め、試料2がそのグラファイト1上で潰れてしまう。
(5)試料を一方向からのみ観察を行うため、探針の有
効先端半径によって像が丸められる(例えば、「Sca
nning tunneling microscop
e of cytoskeletal protein
s:Microtubules and interm
ediate filaments」by Stuar
t Hameroffet al,J.Vac.Sc
i.Technol.A8(1),Jan/Feb,1
990,pp687−691参照)といった問題があっ
た。例えば、図7に示すような、X線回析によった生体
物質としての微小管(microtubule)4のS
TMイメージは図8に示すようになる。
However, in the above-mentioned conventional observation method, (1) the sample 2 is cluttered on the graphite 1 as a preparation, so that an effective sample is searched from a wide observation area. There must be.
(2) Further, since the sample 2 is cluttered on the graphite 1 as a preparation, crossing of the sample 2 is likely to occur. (3) The capture state changes from time to time, and the accuracy (reproducibility) of identification of the sample 2 is low. In addition, (4)
Since the sample 2 is placed on the graphite 1 as a preparation, the sample 2 is crushed on the graphite 1.
(5) Since the sample is observed from only one direction, the image is rounded by the effective tip radius of the probe (for example, “Sca”).
nunning tunneling microscopic
e of cytoskeleton protein
s: Microtubules and interm
edit Filaments "by Stuar
t Hameroff et al, J. Mol. Vac. Sc
i. Technol. A8 (1), Jan / Feb, 1
990, pp. 687-691). For example, as shown in FIG. 7, S of microtubules 4 as a biological material obtained by X-ray diffraction
The TM image is as shown in FIG.

【0005】本発明は、上記問題点を除去するために、
電界をかけることにより、生体関連物質としての試料の
マニピュレーションと捕捉を行い、迅速、かつ的確に観
察することができ、しかも試料をより本来の姿に近い形
で観察可能な生体関連物質の捕捉装置とそれを用いた観
察方法を提供することを目的とする。
The present invention has been made to solve the above problems.
By applying an electric field, the manipulation and capture of a sample as a bio-related substance can be performed quickly and accurately, and a bio-related substance capture device that allows the sample to be observed in a more original form And an observation method using the same.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、(A)生体関連物質の捕捉装置におい
て、プレパラートと、該プレパラートに形成される対向
した一対の櫛形電極と、該一対の櫛形電極間に電界をか
け、該櫛形電極の歯の間に生体関連物質を捕捉する手段
とを設けるようにしたものである。
In order to achieve the above object, the present invention provides (A) an apparatus for capturing a biological substance, comprising: a preparation; a pair of opposed comb-shaped electrodes formed on the preparation; An electric field is applied between a pair of comb-shaped electrodes, and means for capturing a biological substance is provided between the teeth of the comb-shaped electrodes.

【0007】また、前記プレパラートの生体関連物質の
捕捉部に凹溝を形成し、前記生体関連物質を吊り橋状に
捕捉するようにしたものである。更に、前記凹溝の底部
に複数の電極を配置し、該電極の電位を制御することに
より前記生体関連物質を変位させるようにしたものであ
る。 (B)生体関連物質の観察方法において、プレパラート
に形成される対向した一対の櫛形電極間に電界をかけ、
該櫛形電極の歯の間に生体関連物質を捕捉し、該捕捉さ
れた生体関連物質を探針を走査して観察するようにした
ものである。 (C)生体関連物質の観察方法において、プレパラート
の捕捉部に凹溝を形成し、該凹溝の両側に対向した一対
の櫛形電極間に電界をかけ、該櫛形電極の歯の間に生体
関連物質を吊り橋状に捕捉し、該捕捉された生体関連物
質を探針を走査して観察するようにしたものである。 (D)生体関連物質の観察方法において、プレパラート
の捕捉部に凹溝を形成し、該凹溝の両側に対向した一対
の櫛形電極間に電界をかけ、該櫛形電極の歯の間に生体
関連物質を吊り橋状に捕捉し、前記凹溝の底部に電極を
設け、該電極の電位を制御し、該捕捉された生体関連物
質を回転させながら探針を走査して観察するようにした
ものである。 (E)生体関連物質の捕捉装置において、三次元空間に
対向した一対の捕捉用針と、該一対の捕捉用針間に電界
をかけ、生体関連物質を捕捉する手段とを設け、該生体
関連物質を三次元的に観察するようにしたものである。
[0007] In addition, a groove is formed in a capturing part of the preparation in which the biological substance is captured, so that the biological substance is captured like a suspension bridge. Further, a plurality of electrodes are arranged at the bottom of the concave groove, and the biological substance is displaced by controlling the potential of the electrodes. (B) In the method for observing a biological substance, an electric field is applied between a pair of opposed comb-shaped electrodes formed on a preparation,
A biological substance is captured between the teeth of the comb-shaped electrode, and the captured biological substance is observed by scanning a probe. (C) In the method of observing a biological substance, a concave groove is formed in a capturing portion of a preparation, and an electric field is applied between a pair of comb electrodes facing each other on both sides of the concave groove, and a biological substance is interposed between teeth of the comb electrode. A substance is captured in a suspension bridge shape, and the captured biological substance is observed by scanning a probe. (D) In the method of observing a biological substance, a concave groove is formed in a capturing portion of a preparation, and an electric field is applied between a pair of comb-shaped electrodes opposed to both sides of the concave groove, and a biological substance is interposed between teeth of the comb-shaped electrode. The substance is captured in a suspension bridge shape, an electrode is provided at the bottom of the groove, the potential of the electrode is controlled, and the probe is scanned and observed while rotating the captured biological substance. is there. (E) In the biological substance capturing apparatus, a pair of capturing needles facing the three-dimensional space, and means for applying an electric field between the pair of capturing needles to capture the biological substance are provided. It is designed to observe a substance three-dimensionally.

【0008】また、前記生体関連物質を中心としてラジ
アル電極を形成するようにしたものである。 (F)生体関連物質の観察方法において、空間に対向し
た一対の捕捉用針間に電界をかけ、生体関連物質を捕捉
し、該生体関連物質を探針により三次元的に観察するよ
うにしたものである。 (G)生体関連物質の観察方法において、空間に対向し
た一対の捕捉用針間に電界をかけ、生体関連物質を捕捉
し、前記生体関連物質を中心としたラジアル電極を設
け、該ラジアル電極への電位の印加により、生体関連物
質を回転させながら探針により三次元的に観察するよう
にしたものである。
[0008] Further, a radial electrode is formed around the biological substance. (F) In the method of observing a biological substance, an electric field is applied between a pair of capturing needles facing the space to capture the biological substance, and the biological substance is three-dimensionally observed with a probe. Things. (G) In the method of observing a biological substance, an electric field is applied between a pair of capturing needles facing the space to capture the biological substance, and a radial electrode centering on the biological substance is provided. By applying the potential, the biological substance is three-dimensionally observed with a probe while rotating.

【0009】[0009]

【作用】本発明によれば、(1)試料捕捉面(プレパラ
ート面)に沿って電界をかけ、生体関連物質である試料
を列状に捕捉する。従って、同一試料が整然と列状に捕
捉されることにより、試料の観察結果の再現性が検証さ
れ、試料の同定の確度の向上を図ることができる。
(2)生体関連物質である試料の捕捉のための針を一対
用意し、その間に静電界をかけることによって線状の試
料を一対の針の間に捕捉する。それにより、プレパラー
トを用いずに試料の観察を行うことが可能になり、試料
をより本来の姿に近い形で観察することができる。
(3)捕捉用針の間に捕捉された試料を回転する静電界
をかけて回転させる。それにより、観察用探針の先端有
効半径による像の丸まりの影響を低減することができ
る。
According to the present invention, (1) an electric field is applied along a sample capturing surface (preparation surface) to capture samples of biological substances in a row. Therefore, the reproducibility of the observation result of the sample is verified by orderly capturing the same sample in a row, and the accuracy of sample identification can be improved.
(2) A pair of needles for capturing a sample that is a bio-related substance is prepared, and a linear sample is captured between the pair of needles by applying an electrostatic field therebetween. Thus, the sample can be observed without using the preparation, and the sample can be observed in a form closer to the original shape.
(3) The sample captured between the capturing needles is rotated by applying a rotating electrostatic field. Thereby, the influence of the rounding of the image due to the effective radius of the tip of the observation probe can be reduced.

【0010】従って、生体関連物質の捕捉を迅速、かつ
的確に行うことができ、益々増大する生体関連物質の観
察の信頼性を向上させると共に、その自動化を図ること
ができる。
[0010] Therefore, it is possible to quickly and accurately capture biologically relevant substances, to improve the reliability of observation of biologically relevant substances, which is increasing more and more, and to automate them.

【0011】[0011]

【実施例】以下、本発明の実施例について図面を参照し
ながら詳細に説明する。図1は本発明の第1の実施例を
示す生体関連物質の観察方法を示す図であり、図1
(a)はそれに用いる捕捉用プレパラートの斜視図、図
1(b)はその捕捉用プレパラート上に試料を捕捉し、
観察を行う状態を示す斜視図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a view showing a method for observing a biological substance according to a first embodiment of the present invention.
FIG. 1A is a perspective view of a capture preparation used for the sample, FIG. 1B is a view showing a sample captured on the capture preparation,
It is a perspective view which shows the state which performs observation.

【0012】ここで、捕捉用プレパラートは、半導体集
積回路製造技術を応用して製造され、微細な対向した櫛
形電極が形成される。まず、生体関連物質(DNA、バ
クテリア、フィブリノーゲン等)を観察する場合、図1
(a)に示すように、捕捉用プレパラート11上には捕
捉用櫛形電極12と捕捉用櫛形電極13とが対向するよ
うに形成され、それらの櫛形電極12と13間に端子1
5と16を介して電圧を印加し、対向する櫛形電極の歯
12aと13a間に電界(例えば、106 V/m)をか
ける。なお、ここで、印加される電圧は、通常、交流を
用いるが、直流を用いるようにしてもよい。
Here, the capturing preparation is manufactured by applying a semiconductor integrated circuit manufacturing technique, and fine opposing comb-shaped electrodes are formed. First, when observing biological substances (DNA, bacteria, fibrinogen, etc.), FIG.
As shown in FIG. 1A, a capturing comb electrode 12 and a capturing comb electrode 13 are formed on a capturing slide 11 so as to face each other, and a terminal 1 is provided between the comb electrodes 12 and 13.
A voltage is applied via 5 and 16, and an electric field (for example, 10 6 V / m) is applied between opposing comb-shaped electrode teeth 12a and 13a. Here, the applied voltage is usually an alternating current, but a direct current may be used.

【0013】次に、捕捉用櫛形電極12と13間に電圧
が印加された状態で、生体関連物質としての試料14を
分散させた溶液を捕捉用プレパラート11上に導入す
る。すると、図1(b)に示すように、試料14は捕捉
される際、捕捉用プレパラート11の表面の電界の影響
を受けて配列し、櫛形電極の各歯12aと各歯13aの
間に捕捉される。その後、そのまま液中で観察を行う
か、もしくは、液を取り除き、ドライな状態でSTMや
AFMの探針15による観察を行う。
Next, a solution in which a sample 14 as a bio-related substance is dispersed is introduced onto the capture preparation 11 with a voltage applied between the capture comb electrodes 12 and 13. Then, as shown in FIG. 1B, when the sample 14 is captured, the sample 14 is arranged under the influence of the electric field on the surface of the capturing preparation 11, and is captured between each tooth 12a and each tooth 13a of the comb-shaped electrode. Is done. Thereafter, the observation is performed in the liquid as it is, or the liquid is removed and the observation is performed with the probe 15 of STM or AFM in a dry state.

【0014】なお、櫛形電極12と13間に印加される
電圧及び周波数は、捕捉される試料14の種類や条件に
応じて適宜設定することができる。また、櫛形電極12
と13の歯12aと13aの先端は尖らせて、試料14
を捕捉し易いようにすることが望ましい。図2は本発明
の第2の実施例を示す生体関連物質の捕捉装置とそれを
用いた観察方法を示す図である。
The voltage and frequency applied between the comb electrodes 12 and 13 can be appropriately set according to the type and conditions of the sample 14 to be captured. In addition, the comb-shaped electrode 12
The tips of the teeth 12a and 13a of and
It is desirable to make it easy to capture FIG. 2 is a view showing an apparatus for capturing a biological substance and an observation method using the same according to a second embodiment of the present invention.

【0015】この図に示すように、この実施例において
は、従来の欠点である(1)試料が二次元的に潰れてし
まう。(2)一方向からのみ観察を行うため、探針の有
効先端半径によって像が丸められるなどの問題点を解決
するために、四探針型AFMを構成する。即ち、図2に
示すように、一対の捕捉用針21と22を対向させ、そ
れらの捕捉用針21と22間に端子25と26を介して
電圧を印加し、適当な電界をかけることによって、生体
関連物質である試料23を捕捉する。
As shown in FIG. 1, in this embodiment, (1) the sample is two-dimensionally crushed, which is a conventional disadvantage. (2) A four-probe AFM is configured to solve problems such as that an image is rounded by the effective tip radius of the probe because observation is performed from only one direction. That is, as shown in FIG. 2, a pair of capturing needles 21 and 22 are opposed to each other, a voltage is applied between the capturing needles 21 and 22 via terminals 25 and 26, and an appropriate electric field is applied. Then, the sample 23 which is a biological substance is captured.

【0016】それにより、試料23を二次元的に拘束す
ることなく捕捉することができる。そこで、探針24を
移動させることにより、STM、AFMによる観察を行
うと、試料本来の形に近い形で三次元的観察を行うこと
ができる。図3は本発明の第3の実施例を示す生体関連
物質の捕捉装置とそれを用いた観察方法を示す図であ
る。
Thus, the sample 23 can be captured without being constrained two-dimensionally. Therefore, if the observation by STM or AFM is performed by moving the probe 24, three-dimensional observation can be performed in a shape close to the original shape of the sample. FIG. 3 is a view showing an apparatus for capturing a biological substance and an observation method using the same according to a third embodiment of the present invention.

【0017】この図に示すように、この実施例において
は、図2の生体関連物質の捕捉装置に、更に、試料が捕
捉される方向を軸としたラジアル電極27を配置し、該
ラジアル電極27に試料23を軸として回転する電圧を
印加することによって、試料23を捕捉用針21,22
に捕捉された状態でその軸回りに回転させることができ
る。それにより、探針24の先端有効半径による像の丸
まりを低減することができ、的確な三次元的観察を行う
ことができる。
As shown in this figure, in this embodiment, a radial electrode 27 whose axis is in the direction in which a sample is captured is further arranged in the biological substance capturing apparatus of FIG. The sample 23 is captured by applying a voltage that rotates about the sample 23 to the capture needles 21 and 22.
Can be rotated about its axis while being captured by the Thereby, rounding of the image due to the effective radius of the tip of the probe 24 can be reduced, and accurate three-dimensional observation can be performed.

【0018】図4は本発明の第4の実施例を示す生体関
連物質の捕捉装置とそれを用いた観察方法を示す図であ
る。この図に示すように、この実施例においては、捕捉
用櫛状電極の各歯が空間にオーバーハング状態に配置さ
れている。つまり、捕捉用プレパラート31の試料捕捉
部には凹溝32が形成され、この凹溝32の両側から捕
捉用櫛形電極33の歯33aと捕捉用櫛形電極34の歯
34aが突出し、互いに対向している。そして、これら
の捕捉用櫛形電極33と34間には端子36と37を介
して適当な電圧が印加され、捕捉用櫛形電極33と34
の各歯33aと34a間に電界がかけられている。従っ
て、これらの捕捉用櫛形電極33と34の各歯33aと
34a間に試料35が二次元的に潰されることなく捕捉
される。
FIG. 4 is a view showing an apparatus for capturing biological substances and an observation method using the same according to a fourth embodiment of the present invention. As shown in this figure, in this embodiment, each tooth of the comb-like electrode for capture is arranged in an overhang state in the space. That is, a concave groove 32 is formed in the sample capturing portion of the capturing preparation 31, and the teeth 33 a of the capturing comb-shaped electrode 33 and the teeth 34 a of the capturing comb-shaped electrode 34 project from both sides of the concave groove 32 and face each other. I have. Then, an appropriate voltage is applied between these catching comb electrodes 33 and 34 via terminals 36 and 37, and the catching comb electrodes 33 and 34 are applied.
An electric field is applied between the respective teeth 33a and 34a. Therefore, the sample 35 is captured without being two-dimensionally crushed between the teeth 33a and 34a of the capturing comb electrodes 33 and 34.

【0019】そこで、試料を分散させた溶液を凹溝32
に導入する。すると、試料35は捕捉される際、表面の
電界の影響を受けて配列し、櫛形電極の各歯33aと各
歯34aの間に捕捉される。その後、そのまま液中で観
察を行うか、もしくは、液を取り除き、ドライな状態で
STMやAFMの探針38による観察を行う。図5は本
発明の第5の実施例を示す生体関連物質の捕捉装置とそ
れを用いた観察方法を示す図である。
Therefore, the solution in which the sample is dispersed is placed in the groove 32.
To be introduced. Then, when being captured, the samples 35 are arranged under the influence of the electric field on the surface, and are captured between each tooth 33a and each tooth 34a of the comb-shaped electrode. After that, the observation is performed in the liquid as it is, or the liquid is removed and the observation is performed with a probe 38 of STM or AFM in a dry state. FIG. 5 is a view showing an apparatus for capturing biological substances and an observation method using the same according to a fifth embodiment of the present invention.

【0020】この図に示すように、この実施例において
は、図4の生体関連物質の捕捉装置に、更に、凹溝32
の底部に複数の帯状の電極39を形成する。そこで、こ
れらの電極39に印加される電位を制御することによっ
て、捕捉された試料35を一斉に回転(変位)させ、同
一の姿勢(回転角)で探針38により、該試料35を観
察することができる。
As shown in this figure, in this embodiment, the trapping device for the biological substance shown in FIG.
A plurality of strip-shaped electrodes 39 are formed on the bottom of the substrate. Therefore, by controlling the potential applied to these electrodes 39, the captured sample 35 is rotated (displaced) all at once, and the sample 35 is observed by the probe 38 in the same posture (rotation angle). be able to.

【0021】また、上記生体関連物質の捕捉装置によ
り、試料が捕捉されたことを以下のようにして確認する
ことができる。 (1)図2及び図3に関して試料23が捕捉用針21,
22間に捕捉されたことを確認する場合、捕捉用針2
1,22にAFMの探針としての力検出機能を持たせた
状態で、捕捉用針21,22を微小に振動させ、その振
幅が大きく変化した時を持って捕捉が行われたと見るこ
とができる。 (2)捕捉用針のアライメント 図2及び図3に関して一対の捕捉用針は試料が小さいほ
ど厳密な相互のアライメントを行う必要がある。そのた
めに捕捉用針にAFM探針としての力検出機能を持たせ
る。そこで、一方の捕捉用針を用いて他方の捕捉用針を
観察することによって相互の頂点を一致させることがで
きる。これによって厳密なアライメントが可能となり、
既知の非常に微小な領域に試料を捕捉することができ
る。
Further, it is possible to confirm that the sample has been captured by the above-described biological substance capturing apparatus as follows. (1) Regarding FIGS. 2 and 3, the sample 23 is
In order to confirm that it has been captured between the
In a state where the force detection function as the probe of the AFM is provided to the first and second 22, the capturing needles 21 and 22 are vibrated minutely, and it can be seen that the capturing is performed when the amplitude changes greatly. it can. (2) Alignment of Capture Needles As for the pair of capture needles in FIGS. 2 and 3, the smaller the sample, the more strict mutual alignment needs to be performed. Therefore, the capturing needle is provided with a force detecting function as an AFM probe. Therefore, by observing the other capturing needle using one capturing needle, the vertexes of the two can be matched. This allows for strict alignment,
Samples can be captured in known very small areas.

【0022】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0023】[0023]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、生体関連物質である試料の捕捉面(プレパラー
ト面)に沿って電界をかけ、線状の同一試料が列状に捕
捉されるようにしたので、同一試料が整然と列状に捕捉
されることにより、試料の観察結果の再現性が検証さ
れ、試料の同定の確度の向上を図ることができる。
As described above in detail, according to the present invention, an electric field is applied along a capturing surface (preparation surface) of a sample which is a biological substance, and the same linear sample is captured in a row. Since the same sample is orderly captured in a row, the reproducibility of the observation result of the sample is verified, and the accuracy of sample identification can be improved.

【0024】また、試料の捕捉のための針を一対用意
し、その間に静電界をかけることによって線状の試料を
一対の針の間に捕捉する。それにより、プレパラートを
用いずに試料の観察を行うことが可能になり、試料をよ
り本来の姿に近い形で観察することができる。更に、捕
捉用針の間に捕捉された試料を回転する静電界をかけて
回転させる。それにより、観察用探針の先端有効半径に
よる像の丸まりの影響を低減することができる。
A pair of needles for capturing a sample are prepared, and a linear sample is captured between the pair of needles by applying an electrostatic field therebetween. Thus, the sample can be observed without using the preparation, and the sample can be observed in a form closer to the original shape. Further, the sample captured between the capturing needles is rotated by applying a rotating electrostatic field. Thereby, the influence of the rounding of the image due to the effective radius of the tip of the observation probe can be reduced.

【0025】従って、本発明によれば、生体関連物質の
捕捉を迅速、かつ的確に行うことができ、益々増大する
生体関連物質の観察の信頼性を向上させると共に、その
自動化を図ることができ、本発明によってもたらされる
効果は著大である。
Therefore, according to the present invention, it is possible to quickly and accurately capture biologically relevant substances, to improve the reliability of observation of biologically relevant substances, which is increasing, and to achieve automation thereof. The effect provided by the present invention is remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す生体関連物質の観
察方法を示す図である。
FIG. 1 is a view showing a method for observing a biological substance according to a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す生体関連物質の捕
捉装置とそれを用いた観察方法を示す図である。
FIG. 2 is a view showing a biological substance capturing apparatus and an observation method using the same according to a second embodiment of the present invention.

【図3】本発明の第3の実施例を示す生体関連物質の捕
捉装置とそれを用いた観察方法を示す図である。
FIG. 3 is a view showing a device for capturing biological substances and an observation method using the same according to a third embodiment of the present invention.

【図4】本発明の第4の実施例を示す生体関連物質の捕
捉装置とそれを用いた観察方法を示す図である。
FIG. 4 is a view showing a biological substance capturing device and an observation method using the same according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施例を示す生体関連物質の捕
捉装置とそれを用いた観察方法を示す図である。
FIG. 5 is a view showing a biological substance capturing apparatus and an observation method using the same according to a fifth embodiment of the present invention.

【図6】従来の試料をグラファイト上に固定して観察す
る状態を示す斜視図である。
FIG. 6 is a perspective view showing a state where a conventional sample is fixed on graphite and observed.

【図7】従来のX線回析による生体物質としての微小管
の斜視図である。
FIG. 7 is a perspective view of a microtubule as a biological material obtained by conventional X-ray diffraction.

【図8】従来の生体物質のSTMイメージを示す図であ
る。
FIG. 8 is a diagram showing an STM image of a conventional biological material.

【符号の説明】[Explanation of symbols]

11,31 捕捉用プレパラート 12,13,33,34 捕捉用櫛形電極 12a,13a,33a,34a 櫛形電極の歯 14,23,35 試料(生体関連物質) 15,16,25,26,36,37 端子 17,24,38 探針 21,22 捕捉用針 27 ラジアル電極 32 凹溝 39 帯状の電極 11, 31 Capture preparation 12, 13, 33, 34 Comb electrode 12a, 13a, 33a, 34a Tooth of comb electrode 14, 23, 35 Sample (biological substance) 15, 16, 25, 26, 36, 37 Terminal 17, 24, 38 Probe 21, 22 Capture needle 27 Radial electrode 32 Groove 39 Strip electrode

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(a)プレパラートと、(b)該プレパラ
ートに形成される対向した一対の櫛形電極と、(c)該
一対の櫛形電極間に電界をかけ、該櫛形電極の歯の間に
生体関連物質を捕捉する手段とを具備する生体関連物質
の捕捉装置。
An electric field is applied between (a) a preparation, (b) a pair of opposing comb-shaped electrodes formed on the preparation, and (c) a pair of comb-shaped electrodes, between the teeth of the comb-shaped electrodes. Means for capturing a biologically-related substance.
【請求項2】 前記プレパラートの生体関連物質の捕捉
部に凹溝を形成し、前記生体関連物質を吊り橋状に捕捉
してなる請求項1記載の生体関連物質の捕捉装置。
2. The bio-related substance capturing device according to claim 1, wherein a groove is formed in the bio-related substance capturing portion of the preparation, and the bio-related substance is captured in a suspension bridge shape.
【請求項3】 前記凹溝の底部に複数の電極を配置し、
該電極の電位を制御することにより前記生体関連物質を
変位させることを特徴とする請求項1記載の生体関連物
質の捕捉装置。
3. A plurality of electrodes are arranged at a bottom of the groove,
The bio-related substance capturing device according to claim 1, wherein the bio-related substance is displaced by controlling a potential of the electrode.
【請求項4】 プレパラートに形成される対向した一対
の櫛形電極間に電界をかけ、該櫛形電極の歯の間に生体
関連物質を捕捉し、該捕捉された生体関連物質を探針を
走査して観察する生体関連物質の観察方法。
4. An electric field is applied between a pair of opposed comb-shaped electrodes formed on a preparation, a biological substance is captured between the teeth of the comb-shaped electrode, and a probe is scanned with the captured biological substance. Observation method of biological substances to observe.
【請求項5】 プレパラートの捕捉部に凹溝を形成し、
該凹溝の両側に対向した一対の櫛形電極間に電界をか
け、該櫛形電極の歯の間に生体関連物質を吊り橋状に捕
捉し、該捕捉された生体関連物質を探針を走査して観察
する生体関連物質の観察方法。
5. A groove is formed in a capturing part of the preparation,
An electric field is applied between a pair of comb-shaped electrodes opposed to both sides of the concave groove to capture a biological substance between the teeth of the comb-shaped electrode in a suspension bridge shape, and scan the probe with the captured biological substance. Observation method of the biological substance to be observed.
【請求項6】 プレパラートの捕捉部に凹溝を形成し、
該凹溝の両側に対向した一対の櫛形電極間に電界をか
け、該櫛形電極の歯の間に生体関連物質を吊り橋状に捕
捉し、前記凹溝の底部に電極を設け、該電極の電位を制
御し、該捕捉された生体関連物質を回転させながら探針
を走査して観察する生体関連物質の観察方法。
6. A groove is formed in a capturing part of the preparation,
An electric field is applied between a pair of comb-shaped electrodes opposed to both sides of the concave groove, a biological substance is trapped between the teeth of the comb-shaped electrode like a suspension bridge, an electrode is provided at the bottom of the concave groove, and the electric potential of the electrode is provided. , And scanning the probe while rotating the captured biological substance to observe the biological substance.
【請求項7】(a)三次元空間に対向した一対の捕捉用
針と、(b)該一対の捕捉用針間に電界をかけ、生体関
連物質を捕捉する手段とを設け、(c)該生体関連物質
を三次元的に観察することを特徴とする生体関連物質の
捕捉装置。
7. A pair of capturing needles facing a three-dimensional space, and (b) means for applying an electric field between the pair of capturing needles to capture a biological substance, and (c) An apparatus for capturing a biological substance, wherein the biological substance is observed three-dimensionally.
【請求項8】 前記生体関連物質を中心としてラジアル
電極を形成してなる請求項7記載の生体関連物質の捕捉
装置。
8. The biological substance-trapping device according to claim 7, wherein a radial electrode is formed around the biological substance.
【請求項9】 空間に対向した一対の捕捉用針間に電界
をかけ、生体関連物質を捕捉し、該生体関連物質を探針
により三次元的に観察する生体関連物質の観察方法。
9. A method for observing a biologically relevant substance in which an electric field is applied between a pair of capturing needles facing a space to capture a biologically relevant substance, and the biologically relevant substance is three-dimensionally observed with a probe.
【請求項10】 空間に対向した一対の捕捉用針間に電
界をかけ、生体関連物質を捕捉し、前記生体関連物質を
中心としたラジアル電極を設け、該ラジアル電極への電
位の印加により、生体関連物質を回転させながら探針に
より三次元的に観察する生体関連物質の観察方法。
10. An electric field is applied between a pair of capturing needles facing a space to capture a biological substance, a radial electrode centered on the biological substance is provided, and a potential is applied to the radial electrode. A method of observing a biologically related substance in which a biologically related substance is three-dimensionally observed with a probe while rotating the biologically related substance.
JP859891A 1991-01-28 1991-01-28 Apparatus for capturing biological substances and method for observing biological substances using the same Expired - Fee Related JP2937498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP859891A JP2937498B2 (en) 1991-01-28 1991-01-28 Apparatus for capturing biological substances and method for observing biological substances using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP859891A JP2937498B2 (en) 1991-01-28 1991-01-28 Apparatus for capturing biological substances and method for observing biological substances using the same

Publications (2)

Publication Number Publication Date
JPH04250332A JPH04250332A (en) 1992-09-07
JP2937498B2 true JP2937498B2 (en) 1999-08-23

Family

ID=11697408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP859891A Expired - Fee Related JP2937498B2 (en) 1991-01-28 1991-01-28 Apparatus for capturing biological substances and method for observing biological substances using the same

Country Status (1)

Country Link
JP (1) JP2937498B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7014744B2 (en) * 2001-08-24 2006-03-21 Applera Corporation Method of purification and concentration using AC fields with a transfer tip

Also Published As

Publication number Publication date
JPH04250332A (en) 1992-09-07

Similar Documents

Publication Publication Date Title
JP2915554B2 (en) Barrier height measurement device
JPH0365248A (en) Image formation device and method thereof
DE60121446T2 (en) KELVIN GRID MICROPROBE SYSTEM AND METHOD FOR SURFACE ANALYSIS
JP2686645B2 (en) Scanning tunnel current detector
US6245204B1 (en) Vibrating tip conducting probe microscope
JP2009516198A (en) Dielectrophoretic tweezers apparatus and method
JP2937498B2 (en) Apparatus for capturing biological substances and method for observing biological substances using the same
GB2235049A (en) Chemical bond microscopy
US20040100268A1 (en) Method and apparatus for separating biological molecules
Tassieri et al. Analysis of the linear viscoelasticity of polyelectrolytes by magnetic microrheometry—Pulsed creep experiments and the one particle response
Goldsbury et al. Time-lapse atomic force microscopy in the characterization of amyloid-like fibril assembly and oligomeric intermediates
Sokolov Atomic force microscopy for protein nanotechnology
JP2789244B2 (en) Method of forming microprobe
Stumme-Diers et al. Assembly of centromere chromatin for characterization by high-speed time-lapse atomic force microscopy
JP3756470B2 (en) Cantilever having a plurality of electrodes and manufacturing method thereof
Gangotra et al. Scanning ion conductance microscopy mapping of tunable nanopore membranes
JP3766261B2 (en) Measuring method and measuring apparatus using scanning capacitance microscope
JPH04238203A (en) Probe for scanning type capacity microscope and manufacture thereof
Mizutani et al. Measurements of polyphosphoric acid on HOPG
Kim et al. Revisiting contrast mechanism of lateral piezoresponse force microscopy
JP2956144B2 (en) Sidewall shape measurement method
Maddox Scanning Electrochemical Microscope Electrode Fabrication
JP2001351956A (en) Method for measuring by scanning electrostatic capacity microscope
JP2000162114A (en) Scanning probe device
Bykov et al. Scanning Probe Microscopy Application for Biological Objects Investigation

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees