JPH04249352A - Leadframe for semiconductor device - Google Patents

Leadframe for semiconductor device

Info

Publication number
JPH04249352A
JPH04249352A JP3549591A JP3549591A JPH04249352A JP H04249352 A JPH04249352 A JP H04249352A JP 3549591 A JP3549591 A JP 3549591A JP 3549591 A JP3549591 A JP 3549591A JP H04249352 A JPH04249352 A JP H04249352A
Authority
JP
Japan
Prior art keywords
nickel
plating
iron
alloy plating
solderability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3549591A
Other languages
Japanese (ja)
Inventor
Satoshi Chinda
聡 珍田
Osamu Yoshioka
修 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP3549591A priority Critical patent/JPH04249352A/en
Publication of JPH04249352A publication Critical patent/JPH04249352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To provide a leadframe, for use in a semiconductor, coated with a nickel plating, which possesses a superior solderability without a flux. CONSTITUTION:A leadframe, for use in a semiconductor device, is composed of a substrate, which is made up of copper, a copper alloy or an iron alloy, coated with a nickel-cobalt alloy plating. The substrate thus plated is further coated with a nickel-iron-phosphorus alloy plating, which is composed of, in percent by weight, 1-10 iron, 2-10 phosphorus, and the balance nickel. Since an oxide layer, produced by the nickel-cobalt alloy plating, is not as hard as that produced by a pure nickel plating, the nickel-cobalt alloy plating is improved in solderability. However, the nickel-cobalt alloy plating tends to be impaired in colorfastness when used solely, and suffers the progressive growth of an oxide layer, thereby being deteriorated in solderability. To prevent this, the surface of the nickel-cobalt alloy plating is further coated with a thin film of the amorphous nickel-iron-phosphorus alloy plating which is superior in anticorrosion and not liable to the growth of the oxide film.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体装置用リードフレ
ーム特にトランジスタ又はIC用リードフレームに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to lead frames for semiconductor devices, particularly lead frames for transistors or ICs.

【0002】0002

【従来の技術】トランジスタやIC用リードフレームは
、従来銅合金又は鉄合金長尺条体に、帯状にニッケルめ
っき等を設けた後、プレス工程を経て所望の形状に打ち
抜く方法で作成されてきた。この工程においては、素子
搭載部、ワイヤボンド部及び実装時のはんだ付け部がめ
っき部になるようにめっき位置が制御される。
[Prior Art] Lead frames for transistors and ICs have conventionally been made by applying nickel plating, etc., to a long strip of copper alloy or iron alloy, and then punching it into the desired shape through a pressing process. . In this step, the plating position is controlled so that the element mounting area, the wire bonding area, and the soldering area during mounting become the plating area.

【0003】リードフレームでは、素子搭載部にトラン
ジスタ又はICチップがはんだ付けされる。また組み立
て後の実装置においてアウターリードピンが基板に装着
されはんだ付けされる。このようにリードフレームは素
子搭載部及びアウターリード部のどちらにも優れたはん
だ付け性が要求され、両者を満足する一つの方法として
、ニッケルめっきがおこなわれる。
In a lead frame, a transistor or an IC chip is soldered to an element mounting portion. Further, in the actual device after assembly, the outer lead pins are attached to the board and soldered. As described above, a lead frame is required to have excellent solderability on both the element mounting portion and the outer lead portion, and nickel plating is performed as one method that satisfies both.

【0004】ニッケルめっきには普通ワット浴が用いら
れ、光沢剤及び応力緩和剤が添加されている。
[0004] Watt baths are commonly used for nickel plating, and brighteners and stress relievers are added.

【0005】はんだ付け反応とは下地金属とはんだ中の
錫との金属間化合物生成反応である。ニッケルめっきは
一般に耐食性酸化皮膜を形成し易く、下地金属であるニ
ッケルの表面に酸化皮膜が形成されると、本反応が著し
く抑制される結果、はんだ付け性が劣化することになる
。従ってニッケルめっきは通常ははんだ特性がかなり悪
いめっき膜といえる。
[0005] The soldering reaction is a reaction between the base metal and tin in the solder to form an intermetallic compound. Nickel plating generally tends to form a corrosion-resistant oxide film, and when an oxide film is formed on the surface of the nickel base metal, this reaction is significantly suppressed, resulting in poor solderability. Therefore, nickel plating can be said to be a plating film that usually has very poor solder properties.

【0006】はんだ付け性の悪い、ニッケルめっきされ
た電子部品に、はんだ付けをする場合、従来はフラック
スを用いてニッケルめっきの表面の酸化皮膜を除去した
後、直ちにはんだ接合を行っていた。フラックスは塩素
等の活性イオンを含むことが多いため、フラックス使用
後該電子部品をフロン又はトリクロエチレンに代表され
る有機溶剤類で洗浄し、フラックスを溶解除去する必要
があった。近年地球規模の環境問題や化学物質取扱の安
全性基準等の面から、上記洗浄用溶剤類の使用が急激に
規制され始めたため、電子部品の後洗浄工程の効率化が
望まれるようになり、フラックスを用いなくてもはんだ
付け性のよいニッケルめっき工程の開発が急務となっい
る。
[0006] When soldering nickel-plated electronic components, which have poor solderability, conventionally, the oxide film on the surface of the nickel plating was removed using flux, and then soldering was immediately performed. Since flux often contains active ions such as chlorine, it is necessary to wash the electronic components with an organic solvent such as fluorocarbon or trichlorethylene after using the flux to dissolve and remove the flux. In recent years, due to global environmental issues and safety standards for handling chemicals, the use of the cleaning solvents mentioned above has begun to be rapidly regulated, and as a result, it has become desirable to improve the efficiency of the post-cleaning process for electronic components. There is an urgent need to develop a nickel plating process that provides good solderability without the use of flux.

【0007】従来、銅又は銅合金からなる基板にニッケ
ルめっきを施したリードフレームのはんだ付け性、特に
はんだ付けの強度の改良に関して、特公昭60−333
12号公報に光沢ニッケルめっきされたリードフレーム
のはんだ付け性を改良するため、該光沢ニッケルめっき
層の上にリング含有ニッケル層を設けて、含有リンの還
元性作用によるニッケル層表面の自然酸化を防止し、は
んだとの間の濡れをよくして、はんだの接着強度を改良
する方法を提案されている。また、特公昭61−224
58号公報において、上記リン含有ニッケル層を光沢ニ
ッケルめっき層の上に設けるはんだ付け性の改良法では
、自動組立機上ではんだ付けされたICチップとリード
フレームとの接着強度にバラツキが生じ満足できるもの
ではないため、更に自動組立機上でのはんだ付け性の改
良のため、めっき第1層に、コバルトを0.3〜20重
量%含有したニッケルめっき層を設けその上に、やはり
0.6〜20重量%のコバルトとリンを含有したニッケ
ルめっき層を設けて、自動組立機でICチップ等の電子
部品のリードフレームへのはんだ付けの接着強度を改良
する方法が提案されている。
[0007] Conventionally, Japanese Patent Publication No. 333/1983 has been published regarding the improvement of the solderability, especially the soldering strength, of lead frames in which a substrate made of copper or copper alloy is plated with nickel.
In order to improve the solderability of a lead frame plated with bright nickel, Patent No. 12 discloses that a ring-containing nickel layer is provided on the bright nickel plating layer to prevent natural oxidation of the surface of the nickel layer due to the reducing effect of the phosphorus contained therein. A method has been proposed to improve the adhesive strength of solder by preventing this and improving wetting with the solder. In addition, special public service 61-224
In the method for improving solderability in which a phosphorous-containing nickel layer is provided on a bright nickel plating layer, the adhesive strength between an IC chip and a lead frame soldered on an automatic assembly machine varies, making it unsatisfactory. Therefore, in order to further improve solderability on an automatic assembly machine, a nickel plating layer containing 0.3 to 20% by weight of cobalt was provided as the first plating layer, and a nickel plating layer containing 0.3 to 20% by weight of cobalt was added on top of the nickel plating layer. A method has been proposed in which a nickel plating layer containing 6 to 20% by weight of cobalt and phosphorus is provided to improve the adhesive strength of soldering electronic components such as IC chips to lead frames using automatic assembly machines.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特公昭
61−22458号公報には、工程におけるフラックス
の使用を省略することについては言及されておらず、な
おフラックスを用いないでよいめっき工程の開発の目標
を達成するには至っていないと思われる。
[Problems to be Solved by the Invention] However, Japanese Patent Publication No. 61-22458 does not mention omitting the use of flux in the process, and there is still no mention of the development of a plating process that does not require the use of flux. It seems that the goal has not yet been achieved.

【0009】特に鉄合金製の基板からのリードフレーム
に対しては上記従来技術では全く言及されていない。
In particular, the above-mentioned prior art does not mention at all a lead frame made of a substrate made of iron alloy.

【0010】従って、銅、銅合金又は鉄合金製の基板に
対して何れにも適用可能な、かつフラックスを用いなく
てもはんだ付け性のよいニッケルめっき工程の開発が望
まれている。
[0010] Therefore, it is desired to develop a nickel plating process that can be applied to substrates made of copper, copper alloys, or iron alloys and has good solderability without the use of flux.

【0011】本発明の目的は、銅、銅合金又は鉄合金製
の電子部品材料、特にリードフレームに対して、フラッ
クスなしでも優れたはんだ付け性を有するニッケルめっ
きを設けた半導体装置用リードフレームを提供すること
にある。
An object of the present invention is to provide a lead frame for a semiconductor device, which is provided with nickel plating that has excellent solderability even without flux, for electronic component materials made of copper, copper alloy, or iron alloy, especially lead frames. It is about providing.

【0012】0012

【課題を解決するための手段】本発明の上記目的は、銅
、銅合金又は鉄合金基板上に、ニッケル・コバルト合金
めっきを設け、更にその上に合金めっき中の鉄成分の割
合が鉄1〜10重量%、リン2〜10重量%、残部がニ
ッケルであるニッケル・鉄・リン合金めっきを設けるこ
とによって解決される。
[Means for Solving the Problems] The above-mentioned object of the present invention is to provide nickel-cobalt alloy plating on a copper, copper alloy or iron alloy substrate, and further to provide a nickel-cobalt alloy plating on which the proportion of iron in the alloy plating is iron 1. This can be solved by providing a nickel-iron-phosphorus alloy plating containing ~10% by weight, 2-10% by weight of phosphorus, and the balance being nickel.

【0013】また、該ニッケルめっき法における、第1
層目のニッケル・コバルト合金めっきの合金成分の割合
は、コバルト1〜10重量%、残部がニッケルである時
特に好適なリードフレームが得られる。
[0013] Also, in the nickel plating method, the first
A particularly suitable lead frame can be obtained when the alloy component ratio of the nickel-cobalt alloy plating layer is 1 to 10% by weight of cobalt and the balance is nickel.

【0014】ニッケル・鉄・リン合金めっきは、単独で
極めて優れたはんだ付け性を示す。しかし、非常に硬く
て脆いため折り曲げ加工の必要な電子部品には厚くめっ
きできない。従って、ニッケル・コバルト合金めっきを
下地めっきとして約3μm設けた後に、ニッケル・鉄・
リン合金めっきを約0.2μm設ける2層構造としてめ
っきする。このめっき法によりはんだ濡れ性は、光沢ニ
ッケルめっき単独及びニッケル・コバルト合金めっき単
独の場合よりも著しく向上し、また折り曲げ加工に伴う
めっき割れ現象は起きない。
[0014] Nickel-iron-phosphorus alloy plating alone exhibits extremely excellent solderability. However, because it is extremely hard and brittle, it cannot be plated thickly on electronic parts that require bending. Therefore, after applying nickel-cobalt alloy plating to approximately 3 μm as the base plating, nickel-iron
Plating is performed in a two-layer structure with a thickness of about 0.2 μm of phosphorus alloy plating. With this plating method, the solder wettability is significantly improved compared to bright nickel plating alone or nickel-cobalt alloy plating alone, and the plating cracking phenomenon that accompanies bending does not occur.

【0015】ニッケル・コバルト合金めっきは純ニッケ
ルめっきほど強固な酸化皮膜を形成しないので、はんだ
付け性は向上する。ただし、ニッケル・コバルト合金め
っきのみでは耐変色性が劣り、徐々に酸化皮膜が形成さ
れ、はんだ付け性が悪くなるので、表面に耐食性に優れ
、かつ酸化皮膜を形成しにくい、非晶質のニッケル・鉄
・リン合金めっきを薄く設けるものである。
Since nickel-cobalt alloy plating does not form an oxide film as strong as pure nickel plating, solderability is improved. However, nickel-cobalt alloy plating alone has poor discoloration resistance and gradually forms an oxide film, which impairs solderability.・Thin iron/phosphorus alloy plating is applied.

【0016】下地のニッケル・コバルト合金めっきの層
の厚さは1〜5μm程度、ニッケル・鉄・リン合金めっ
きの層の厚さは0.05〜0.2μmの範囲がよい。ニ
ッケル・鉄・リン合金めっきの層の厚さを0.2μmよ
り厚く設けると、電子部品を曲げ加工した際に、めっき
に割れ現象が起きる恐れがある。
The thickness of the underlying nickel-cobalt alloy plating layer is preferably about 1 to 5 μm, and the thickness of the nickel-iron-phosphorus alloy plating layer is preferably in the range of 0.05 to 0.2 μm. If the thickness of the nickel-iron-phosphorus alloy plating layer is greater than 0.2 μm, cracking may occur in the plating when the electronic component is bent.

【0017】下地のニッケル・コバルト合金めっきの合
金成分の割合については多くてもはんだ濡れ性はよく、
特に限定されないが、高価でもあるので、コバルトの含
量は1〜10重量%、残部がニッケルであることが好ま
しい。また、ニッケル・鉄・リン合金めっきの各合金成
分の割合は鉄が1〜10重量%、リン2〜10重量%、
残部をニッケルが占める。鉄の含有量を10重量%より
多くするとめっき面が僅かに変色し、ニッケル・鉄・リ
ン合金めっきの耐食性が低下するので、鉄の含有量は1
0重量%まででよい。下地のニッケル・コバルト合金め
っきは光沢めっきである方がよく、めっき液には光沢剤
及び応力緩和剤が添加される。
[0017] Even if the ratio of alloy components of the underlying nickel-cobalt alloy plating is high, the solder wettability is good;
Although not particularly limited, since it is expensive, it is preferable that the content of cobalt be 1 to 10% by weight, with the balance being nickel. In addition, the proportions of each alloy component in the nickel/iron/phosphorus alloy plating are iron: 1 to 10% by weight, phosphorus: 2 to 10% by weight,
Nickel accounts for the remainder. If the iron content is more than 10% by weight, the plated surface will be slightly discolored and the corrosion resistance of the nickel/iron/phosphorus alloy plating will decrease, so the iron content should be 1.
It may be up to 0% by weight. It is preferable that the underlying nickel-cobalt alloy plating be bright plating, and a brightener and stress relaxation agent are added to the plating solution.

【0018】[0018]

【実施例】本発明のよりよい理解のため、以下に具体的
な実施例を示すが、本発明はこれらの実施例によって制
限されないことはいうまでもない。
EXAMPLES For a better understanding of the present invention, specific examples are shown below, but it goes without saying that the present invention is not limited to these examples.

【0019】以下の実施例及び比較例において作成され
た、ニッケルめっきリードフレームのはんだ付け性の試
験法及びはんだ付け状態の評価基準は次の通りである。
The test method for the solderability of the nickel-plated lead frames and the evaluation criteria for the soldering condition prepared in the following Examples and Comparative Examples are as follows.

【0020】(はんだ付け試験法)リードフレームの1
ピースをクリップに挟み、自動昇降装置を用いて、フラ
ックスを使用しないで共晶はんだ(錫62%、鉛38%
)を溶融したはんだ槽中に10秒間浸漬してから引き上
げた。はんだ浴の温度を240℃から20℃ずつ320
℃まで段階的に変化させ、各々のはんだ浴の温度での各
サンプルのはんだ濡れ状態を目視観察した。はんだに濡
れる温度が低いほどはんだ付け性のよいめっき膜である
といえる。
(Soldering test method) Lead frame 1
Place the piece in a clip and use an automatic lifting device to solder it with eutectic solder (62% tin, 38% lead) without using flux.
) was immersed in a molten solder bath for 10 seconds and then pulled out. Increase the temperature of the solder bath from 240℃ to 320℃ in 20℃ increments.
The solder wetting state of each sample at each solder bath temperature was visually observed. It can be said that the lower the temperature at which the plating film gets wet with the solder, the better the solderability of the plating film.

【0021】なお、リードフレームは組立の際、必ず熱
履歴を受ける。そこで、組立工程の熱履歴を経た後のは
んだ付け性を模擬評価するために、各めっき後のリード
フレームの一部を100℃で30分間又は150℃で3
0分間熱処理し、加熱前後のサンプルではんだ付け性の
試験をおこなった。
[0021] Note that the lead frame is always subjected to thermal history during assembly. Therefore, in order to simulate and evaluate the solderability after the thermal history of the assembly process, a part of the lead frame after each plating was heated at 100°C for 30 minutes or at 150°C for 30 minutes.
The samples were heat-treated for 0 minutes, and a solderability test was conducted on the samples before and after heating.

【0022】浸漬試験は1条件につき3回以上おこなっ
た。
The immersion test was conducted three or more times per condition.

【0023】(はんだ付け状態の評価基準)○:全面が
均一に濡れる。
(Evaluation criteria for soldering condition) ○: The entire surface is uniformly wetted.

【0024】△:ほぼ濡れるが、僅かに下地めっき面が
露出したり、ディウェッティング現象が認められる。
Δ: Almost wet, but the underlying plating surface is slightly exposed and a dewetting phenomenon is observed.

【0025】×:はんだがはじかれ、下地面の露出がは
っきり分かる。
×: The solder is repelled and the underlying surface is clearly exposed.

【0026】(実施例―1)銅合金から成るリードフレ
ームを脱脂及び酸洗により清浄化した後、全面に(表1
)に示す組成のめっき液を用いて、ニッケル・コバルト
合金めっきを電流密度4A/dm2 で約3μm設けた
。この上に(表2)に示す組成のめっき液を用いて、ニ
ッケル・鉄・リン合金めっきを電流密度4A/dm2 
で約0.2μm設けた。なお、ニッケル・鉄・リン合金
めっきについては、めっき液中の亜リン酸(H3 PO
3 )の濃度を0〜20g/lの範囲で変化させ、合金
中に析出するリンの量が0〜15g/lになるようにし
た。
(Example 1) After cleaning a lead frame made of copper alloy by degreasing and pickling, the entire surface was cleaned (Table 1).
) Nickel-cobalt alloy plating was applied to a thickness of approximately 3 μm at a current density of 4 A/dm 2 using a plating solution having the composition shown in FIG. On top of this, nickel/iron/phosphorus alloy plating was applied at a current density of 4A/dm2 using a plating solution with the composition shown in Table 2.
The thickness was approximately 0.2 μm. For nickel/iron/phosphorus alloy plating, phosphorous acid (H3 PO
The concentration of 3) was varied in the range of 0 to 20 g/l so that the amount of phosphorus precipitated in the alloy was 0 to 15 g/l.

【0027】(比較例−1) (表3)に示す組成のめっき液を用いて、光沢ニッケル
めっきのみを約3μm設けたリードフレーム及び光沢め
っきを設けた後、ニッケル・鉄・リン合金めっき(リン
含有量8重量%)を約0.2μm設けたリードフレーム
を作製した。なお、(実施例−1)及び(比較例−1)
における、めっき合金の成分は容量分析法により定量し
た。
(Comparative Example-1) Using a plating solution with the composition shown in Table 3, a lead frame with only bright nickel plating of approximately 3 μm and bright plating was provided, and then nickel/iron/phosphorus alloy plating ( A lead frame with a phosphorus content (8% by weight) of about 0.2 μm was produced. In addition, (Example-1) and (Comparative Example-1)
The components of the plating alloy were determined by volumetric analysis.

【0028】[0028]

【表1】[Table 1]

【0029】[0029]

【表2】[Table 2]

【0030】[0030]

【表3】[Table 3]

【0031】また、(実施例−1)及び(比較例−1)
のはんだ付け性の評価結果は(表4)に示した。
[0031] Also, (Example-1) and (Comparative Example-1)
The evaluation results of solderability are shown in (Table 4).

【0032】[0032]

【表4】[Table 4]

【0033】この結果、本発明のニッケル・鉄・リン合
金/ニッケル・コバルト合金2層めっきリードフレーム
はニッケル・鉄・リン合金めっき中のリン含有量が2〜
10重量%の範囲で加熱後もフラックスなしで優れたは
んだ付け性を示すことが分かった。
As a result, the nickel-iron-phosphorus alloy/nickel-cobalt alloy two-layer plating lead frame of the present invention has a phosphorus content in the nickel-iron-phosphorus alloy plating of 2 to 2.
It was found that excellent solderability was exhibited without flux even after heating in a range of 10% by weight.

【0034】(実施例−2) (実施例−1)と同様に、銅合金リードフレーム表面を
清浄化した後、全面にニッケル・コバルト合金めっきを
約3μm設けた後、ニッケル・鉄・リン合金めっきを約
0.2μm設けた。この際、ニッケル・鉄・リン合金め
っき液中の亜リン酸の濃度は10g/lとし、硫酸鉄(
FeSO4 7H2 O)の添加量を0〜20g/lの
範囲で変化させた。
(Example-2) Similarly to (Example-1), after cleaning the surface of the copper alloy lead frame, a nickel-cobalt alloy plating of about 3 μm was applied to the entire surface, and then a nickel-iron-phosphorus alloy was applied. Plating was provided to a thickness of about 0.2 μm. At this time, the concentration of phosphorous acid in the nickel-iron-phosphorus alloy plating solution was 10 g/l, and iron sulfate (
The amount of FeSO4 7H2 O) added was varied in the range of 0 to 20 g/l.

【0035】上記はんだ付け試験法と評価基準に従い、
はんだ付け状態を表した結果を(表5)に示した。
According to the above soldering test method and evaluation criteria,
The results showing the soldering state are shown in (Table 5).

【0036】[0036]

【表5】[Table 5]

【0037】この結果、めっき膜中の鉄の含有量を1〜
10重量%の範囲で優れたはんだ付け性を示すことが分
かった。
As a result, the iron content in the plating film was reduced from 1 to
It was found that excellent solderability was exhibited within the range of 10% by weight.

【0038】[0038]

【発明の効果】本発明のリードフレームは、はんだ付け
時にフラックスを用いる必要がないので、残留フラック
スによる汚染の心配がなく、半導体の信頼性が著しく向
上するものである。
As described above, since the lead frame of the present invention does not require the use of flux during soldering, there is no fear of contamination due to residual flux, and the reliability of the semiconductor is significantly improved.

【0039】また、半導体組立後の洗浄が必要ないため
、経済的にも大きい効果がある。
Furthermore, since there is no need for cleaning after semiconductor assembly, there is a great economical effect.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  銅、銅合金又は鉄合金基板上に、ニッ
ケル・コバルト合金めっきを設け、更にその上に合金め
っき中の鉄成分の割合が鉄1〜10重量%、リン2〜1
0重量%、残部がニッケルであるニッケル・鉄・リン合
金めっきを設けたことを特徴とする半導体装置用リード
フレーム。
Claim 1: A nickel-cobalt alloy plating is provided on a copper, copper alloy or iron alloy substrate, and the proportion of iron in the alloy plating is 1 to 10% by weight of iron and 2 to 1% by weight of phosphorus.
A lead frame for a semiconductor device, characterized in that it is coated with a nickel-iron-phosphorous alloy plating of 0% by weight and the balance being nickel.
JP3549591A 1991-02-05 1991-02-05 Leadframe for semiconductor device Pending JPH04249352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3549591A JPH04249352A (en) 1991-02-05 1991-02-05 Leadframe for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3549591A JPH04249352A (en) 1991-02-05 1991-02-05 Leadframe for semiconductor device

Publications (1)

Publication Number Publication Date
JPH04249352A true JPH04249352A (en) 1992-09-04

Family

ID=12443334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3549591A Pending JPH04249352A (en) 1991-02-05 1991-02-05 Leadframe for semiconductor device

Country Status (1)

Country Link
JP (1) JPH04249352A (en)

Similar Documents

Publication Publication Date Title
JP3417395B2 (en) Lead frame for semiconductor device, method of manufacturing the same, and semiconductor device using the same
KR100303930B1 (en) Tin alloy plating composition
JP2801793B2 (en) Tin-plated copper alloy material and method for producing the same
US20060292847A1 (en) Silver barrier layers to minimize whisker growth in tin electrodeposits
US20030082398A1 (en) Method for producing tin-silver alloy plating film, the tin-silver alloy plating film and lead frame for electronic parts having the plating film
JP2001107290A (en) Tinned bar stock for electronic parts and its producing method
US6521358B1 (en) Lead frame for semiconductor device and method of producing same
JP3395772B2 (en) Method for producing tin-silver alloy plating film, tin-silver alloy plating film, and lead frame for electronic component provided with the same
TWI790062B (en) Plated structure with Ni plating film and lead frame including the plated structure
JPH10284667A (en) Material for electric electronic device component having superior corrosion resistance and oxidation resistance
EP0132596A2 (en) Solderable nickel-iron alloy article and method for making same
JP2006283149A (en) Surface treatment method for copper or copper alloy, surface-treated material, and electronic component using the same
JP3545549B2 (en) Electrical and electronic circuit components
JP2684631B2 (en) Lead wire for capacitor
JPH04249352A (en) Leadframe for semiconductor device
JPH04247646A (en) Lead frame for semiconductor device
JP3402228B2 (en) Semiconductor device having lead-free tin-based solder coating
JPH0529517A (en) Lead frame for semiconductor device
JPS607161A (en) Method for imparting soldering property and bonding property to lead frame of nickel iron alloy for ic
JPH02145794A (en) Copper or copper alloy material plated with tin or solder reflowed and excellent in thermal peeling resistance
JPS59219945A (en) Lead frame for integrated circuit
JP3077963B2 (en) Lead frame for semiconductor device
JP2682226B2 (en) Lead frame for semiconductor device
JPS6342393A (en) Method for tin or tin alloy plating copper or copper alloy wire
JP2000280066A (en) Forming method of non-lead jointing member